## Abstract

In this work we extend the Alexandrov theorem to the compact generalized Weingarten hypersurfaces embedded in Euclidian space, that is an hypersurface whose some of the $k^{\text {th }}$ mean curvature $H_{k}$ are lineary related. ie : for some integers $\rho$ and $\sigma$ satisfying the inequality $0 \leq s \leq r \leq n-1$; we have :
$\alpha \sigma \mathrm{H} \sigma+::::+\alpha \rho \mathrm{H} \rho=\beta$
$n$ is the dimension the hypersurface.

## Inroduction:

A classical result by Alexandrov [1] states that a close compact hypersurface with constant mean curvature embedded in Euclidean space must be a round sphere. Replacing the mean curvature H by $H_{k}$ for $\kappa>1$, and using the Reilly formula, Ros [8] proved that any closed embedded hypersurface in Euclidian space with constant $H_{k}$ must be a round sphere.
This result was obtained by Montiel and Ros [7] for hypersurfaces with constant $H_{k}$ in hyperbolic space and hemisphere. Koh [5] and Koh.Lee [6] later generalized Montiel.Ros.s result [7] to hypersurfaces with constant mean curvature ratio $H_{k} / H$.
In a recent work de Lima [2] proved a comparable result for the case of linear Weingarten hypersurfaces. That is an hypersurface satisfying $H_{k}=a H+b$ for two real constants $\alpha>0$ and $\beta>0$.
Following the approach introduced in [4] for the study of generalized Weingarten hypersurfaces in Euclidean space, the Alexandrov theorem to the compact generalized Weingarten hypersurfaces embedded in Euclidian space.

## Main results

Theorem 1. Let $M^{n}$ be a compact generalized Weingarten hypersurface embedded in the Euclidean space with at least a non vanishing $k^{\text {th }}$ mean curvature $H_{k}$ : If either one of the following case holds : (i) For some integer $\rho$ satisfying the inequality: $0 \leq r \leq n-1$, the following linear relation holds :

$$
a_{1} H_{1}+\ldots:+a_{r} H_{r}=b \ldots \ldots \ldots \ldots \text { (1) }
$$

with $a_{i} \geq 0$ with at least one non zero, and $\beta>0$. (ii) For some integer $\rho$ satisfying the inequality : $0 \leq r \leq n-1$, the following linear relation holds :

$$
H_{r}=a_{1} H_{1}+\cdots:+a_{r-1} H_{r-1} \ldots . \text { (2) }
$$

with $a_{i} \geq 0$ with at least one non zero:
Then $M^{n}$ is a round sphere.
Idea of the proof
Let $\psi: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an $v$ dimensional compact hypersurface embedding in $\mathbb{R}^{n+1}$. Then $M^{n}$ is the boundary of a compact domain $\Omega$ of $\mathbb{R}^{n+1}, \partial \Omega=M^{n}$. Under the hypothesis above there exists at least an elliptic point of $M^{n}$. This imply that all $H_{k}$ are positive functions. For $1 \leq i \leq n$; the Minkoswki formula is written as ([6]) :

$$
\int_{M} H_{i-1} d M+\int_{M} H_{i}\langle\psi, N\rangle d M=0
$$

On the other hand, since H is strictly positif and by the inequality (See [7]) :
we obtain :

$$
H_{k-1} H_{l} \geq H_{k} H_{l-1}
$$

$$
\sum_{i=1}^{r} \int_{M} a_{i} H_{i-1} d M \geq b(n+1) \operatorname{vol}(\Omega)
$$

By applying the divergence theorem, we have :

$$
-b \int_{M}\langle\psi, N\rangle d M=b(n+1) \operatorname{vol}(\Omega)
$$

This imply that all the above inequalities are equals. In particular we obtain :

$$
\int_{M} \frac{1}{H_{1}} d M=(n+1) \operatorname{vol}(\Omega)
$$

Wich implies that $M^{n}$ is a sphere (See [3]).
For (ii), using the Minkowski formula, equation (2) and a reccursive argument, we obtain :

$$
\mathrm{H} 1=\mathrm{X}: \mathrm{Ho}=\mathrm{X}
$$

Were X is a constant depends on $a_{1}, \ldots, a_{r}$.
Hence $M^{n}$ is the round sphere.

## References

[1] A. D. Aleksandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. 58 (1962) 303.315.
[2] E.L. de Lima, A note on compact Weingarten hypersurfaces embedded in $\mathrm{Rn}+1$, Arch. Math. December 2018, 111(6) (2018), 669.672.
[3] C.C. Hsiung, Some integral formulas for closed hypersurfaces. Math. Scand. 2 (1954), 286.294.
[4] N. J. Korevaar, Sphere theorems via Alexandrov constant Weingarten curvature hypersurfaces: appendix to a note of A. Ros, J. Differential Geom. 27 (1988), 221223.
[5] S.E. Koh, Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 42(1) (2000), 91.95.
[6] S.E. Koh and S.-W. Lee, Addendum to the paper: Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 43(2) (2001), 275.276.
[7] S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in Differential Geometry, eds. B. Lawson and K. Tonenblat, Pitman Monographs \& Surveys
in Pure \& Applied Mathematics, Vol. 52 (Longman Higher Education, 1991), 279.297.

