# Generalized Weingarten hypersurfaces embeddedin Euclidian space

Mohammed Abdelmalek Ecole Supérieure de Management de Tlemcen. Algeria



# Abstract

In this work we extend the Alexandrov theorem to the compact generalized Weingarten hypersurfaces embedded in Euclidian space, that is an hypersurface whose some of the  $k^{th}$  mean curvature  $H_k$  are lineary related. ie : for some integers  $\rho$  and  $\sigma$  satisfying the inequality  $0 \le s \le r \le n - 1$ ; we have :  $\alpha\sigma H\sigma$  + :::: +  $\alpha\rho H\rho$  =  $\beta$ *n* is the dimension the hypersurface.

### Inroduction :

A classical result by Alexandrov [1] states that a close compact hypersurface with constant mean curvature embedded in Euclidean space must be a round sphere. Replacing the mean curvature H by  $H_k$  for  $\kappa > 1$ , and using the Reilly formula, Ros [8] proved that any closed embedded hypersurface in Euclidian space with constant  $H_{\nu}$  must be a round sphere.

This result was obtained by Montiel and Ros [7] for hypersurfaces with constant  $H_{k}$  in hyperbolic space and hemisphere. Koh [5] and Koh.Lee [6] later generalized Montiel.Ros.s result [7] to hypersurfaces with constant

mean curvature ratio  $H_k/_{\mu}$ .

In a recent work de Lima [2] proved a comparable result for the case of linear Weingarten hypersurfaces. That is an hypersurface satisfying  $H_k = aH + b$  for two real constants  $\alpha > 0$  and  $\beta > 0$ .

Following the approach introduced in [4] for the study of generalized Weingarten hypersurfaces in Euclidean space, the Alexandrov theorem to the compact generalized Weingarten hypersurfaces embedded in Euclidian space.

## Main results

**Theorem 1.** Let  $M^n$  be a compact generalized Weingarten hypersurface embedded in the Euclidean space with at least a non vanishing  $k^{th}$  mean curvature  $H_k$ : If either one of the following case holds : (*i*) For some integer  $\rho$  satisfying the inequality :  $0 \le r \le n-1$ , the following linear relation holds : with  $a_i \ge 0$  with at least one non zero, and  $\beta > 0$ . (*ii*) For some integer  $\rho$  satisfying the inequality :  $0 \le r \le n-1$ , the following linear relation holds :  $H_r = a_1 H_1 + \dots + a_{r-1} H_{r-1} \dots (2)$ with  $a_i \ge 0$  with at least one non zero: Then  $M^n$  is a round sphere.

# Idea of the proof

Let  $\psi : M^n \to \mathbb{R}^{n+1}$  be an v dimensional compact hypersurface embedding in  $\mathbb{R}^{n+1}$ . Then  $M^n$  is the boundary of a compact domain  $\Omega$  of  $\mathbb{R}^{n+1}$ ,  $\partial \Omega = M^n$ . Under the hypothesis above there exists at least an elliptic point of  $M^n$ . This imply that all  $H_k$  are positive functions. For  $1 \le i \le n$ ; the Minkoswki formula is written as ([6]) :

$$\int_{M} H_{i-1} dM + \int_{M} H_i \langle \psi, N \rangle dM = 0$$

On the other hand, since H is strictly positif and by the inequality (See [7]) :

$$H_{k-1}H_l \ge H_kH_{l-1}$$

we obtain :

$$\sum_{i=1}^{\prime} \int_{M} a_{i}H_{i-1} dM \ge b(n+1)vol(\Omega)$$

By applyir

 $-b \left| \langle \psi, N \rangle dM = b(n+1)vol(\Omega) \right|$ 

This imply that all the above inequalities are equals. In particular we obtain :

$$\int_{\Omega} \frac{1}{H_1} dM = (n+1)vol(\Omega)$$

Wich implies that  $M^n$  is a sphere (See [3]). For (ii), using the Minkowski formula, equation (2) and a reccursive argument, we obtain :

#### $H_{1} = X: H_{0} = X$

Were X is a constant depends on  $a_1, \ldots, a_r$ . Hence  $M^n$  is the round sphere.

#### References

[1] A. D. Aleksandrov, A characteristic property of spheres, Ann. Mat. Pura Appl.58 (1962) 303.315. [2] E.L. de Lima, A note on compact Weingarten hypersurfaces embedded in Rn+1, Arch. Math. December 2018, 111(6) (2018), 669.672.

[3] C.C. Hsiung, Some integral formulas for closed hypersurfaces. Math. Scand. 2 (1954), 286.294. [4] N. J. Korevaar, Sphere theorems via Alexandrov constant Weingarten curvature hypersurfaces: appendix to a note of A. Ros, J. Differential Geom. 27 (1988), 221-223.

[5] S.E. Koh, Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 42(1) (2000), 91.95.

[6] S.E. Koh and S.-W. Lee, Addendum to the paper: Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 43(2) (2001), 275.276. [7] S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in Differential Geometry, eds. B. Lawson and K. Tonenblat, Pitman Monographs & Surveys in Pure & Applied Mathematics, Vol. 52 (Longman

Higher Education, 1991), 279.297.