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Abstract 

   In this work we extend the Alexandrov theorem to the 
compact generalized Weingarten hypersurfaces 
embedded in Euclidian space, that is an hypersurface 

whose some of the 𝑘𝑡ℎ mean curvature 𝐻𝑘 are lineary 

related. ie : for some integers and satisfying the 

inequality 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑛 − 1we have : 

+ + = 
𝑛 is the dimension the hypersurface. 

Inroduction : 
 

A classical result by Alexandrov [1] states that a close 

compact hypersurface with constant mean curvature 
embedded in Euclidean space must be a round sphere. 

Replacing the mean curvature by 𝐻𝑘for 1, and 

using the Reilly formula, Ros [8] proved that any closed 

embedded hypersurface in Euclidian space with constant 

𝐻𝑘must be a round sphere. 

This result was obtained by Montiel and Ros [7] for 

hypersurfaces with constant 𝐻𝑘in hyperbolic space and 

hemisphere. Koh [5] and Koh.Lee [6] later generalized 

Montiel.Ros.s result [7] to hypersurfaces with constant 

mean curvature ratio 
𝐻𝑘

𝐻⁄ . 

In a recent work de Lima [2] proved a comparable result 

for the case of linear Weingarten hypersurfaces. That is 

an hypersurface satisfying 𝐻𝑘 = 𝑎𝐻 + 𝑏for two real 

constants 0 and 0. 

Following the approach introduced in [4] for the study of 

generalized Weingarten hypersurfaces in Euclidean 
space, the Alexandrov theorem to the compact 
generalized Weingarten hypersurfaces embedded in 
Euclidian space. 

Main results 
 

Theorem 1. Let 𝑀𝑛be a compact generalized 
Weingarten hypersurface embedded in the Euclidean 

space with at least a non vanishing 𝑘𝑡ℎmean curvature 

𝐻𝑘 If either one of the following case holds : 

(i) For some integer satisfying the inequality : 

0 ≤ 𝑟 ≤ 𝑛 − 1, the following linear relation holds : 

𝑎1𝐻1++𝑎𝑟𝐻𝑟 = 𝑏…………(1) 

with 𝑎𝑖 ≥ 0with at least one non zero, and 0.  

(ii) For some integer satisfying the inequality : 

0 ≤ 𝑟 ≤ 𝑛 − 1, the following linear relation holds : 

𝐻𝑟= 𝑎1𝐻1++𝑎𝑟−1𝐻𝑟−1… . . (2) 
with 𝑎𝑖 ≥ 0with at least one non zero 

Then 𝑀𝑛is a round sphere. 

Idea of the proof 
 

Let 𝜓 ∶ 𝑀𝑛 → ℝ𝑛+1be an dimensional compact 

hypersurface embedding in ℝ𝑛+1. Then 𝑀𝑛is the 

boundary of a compact domain Ω of ℝ𝑛+1 , 𝜕Ω = 𝑀𝑛. 
Under the hypothesis above there exists at least an elliptic 

point of𝑀𝑛 .This imply that all 𝐻𝑘are positive functions. 

For 1 ≤ 𝑖 ≤ 𝑛the Minkoswki formula is written as ([6]) : 

∫ 𝐻𝑖−1

𝑀

𝑑𝑀 + ∫ 𝐻𝑖

𝑀

〈𝜓,𝑁〉𝑑𝑀 = 0 

On the other hand, since is strictly positif and by the 

inequality (See [7]) : 
𝐻𝑘−1𝐻𝑙 ≥ 𝐻𝑘𝐻𝑙−1 

we obtain : 

∑∫ 𝑎𝑖𝐻𝑖−1

𝑀

𝑑𝑀 ≥

𝑟

𝑖=1

𝑏(𝑛 + 1)𝑣𝑜𝑙(Ω) 

By applying the divergence theorem, we have : 

−𝑏 ∫〈𝜓,𝑁〉

𝑀

𝑑𝑀 = 𝑏(𝑛 + 1)𝑣𝑜𝑙(Ω) 

This imply that all the above inequalities are equals. In 
particular we obtain : 

∫
1

𝐻1
𝑀

𝑑𝑀 = (𝑛 + 1)𝑣𝑜𝑙(Ω) 

Wich implies that 𝑀𝑛is a sphere (See [3]). 
For (ii), using the Minkowski formula, equation (2) and a 
reccursive argument, we obtain : 

1= 0= 
Were is a constant depends on  𝑎1 ,… , 𝑎𝑟. 

Hence 𝑀𝑛is the round sphere. 
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