Decomposable solvable multiplication Lie groups and topological loops

Introduction

The application of Lie theory for topological loops was in the interest of Karl Strambach.

- A set L with a binary operation $(x, y) \mapsto x \cdot y$ is called a loop if there exists an element $e \in L$ such that $x = e \cdot x = x \cdot e$ holds for all $x \in L$ and for each $x \in L$ the left translations $\lambda_x : L \to L$, $\lambda_x(y) = x \cdot y$ and the right translations $\rho_x : L \to L, \ \rho_x(y) = y \cdot x$ are bijections of L.
- The multiplication group Mult(L) is the permutation group generated by the left and the right translation maps. The stabilizer of the identity element $e \in L$ in Mult(L) is called the inner mapping group Inn(L) of L.
- The left and right division operations on L are defined by the maps $(x,y) \mapsto x \setminus y = \lambda_x^{-1}(y)$, respectively $(x,y) \mapsto y/x = \rho_x^{-1}(y)$, $x,y \in Y$
- A loop (L, \cdot) is called topological, if L is a topological space and the loop operations $\cdot, \setminus, / : L \times L \to L$ are continuous mappings.
- The kernel of a homomorphism $\alpha: (L, \cdot) \to (L', *)$ of a loop L into a loop L' is a normal subloop N of L.
- The centre Z(L) of a loop L consists of all elements z which satisfy the equations $zx = xz, zx \cdot y = z \cdot xy, x \cdot yz = xy \cdot z, xz \cdot y = z$ $x \cdot zy$ for all $x, y \in L$. The loop L is called centrally nilpotent of class n if it has an upper central series of length n + 1.
- A Lie algebra is called decomposable, if it is the direct sum of two proper ideals.

Objective

Each 2-dimensional connected topological proper loop having a Lie group as its multiplication group has nilpotency class two. This nilpotency property is valid for 3-dimensional connected topological loops L having either a solvable Lie group of dimension at most 5 or a 6-dimensional indecomposable solvable Lie group as their group Mult(L). In this poster we show that the centrally nilpotency of class two property is satisfied for 3-dimensional topological loops L if the group Mult(L) is a 6-dimensional decomposable solvable Lie group.

Ameer Al-Abayechi¹ and Ágota Figula²

¹Phd student, Institute of Mathematics, University of Debrecen. Doctoral School of Mathematics and Computational Sciences. ameer@science.unideb.hu ²Institute of Mathematics, University of Debrecen. figula@science.unideb.hu Dedicated to the memory of Karl Strambach

The 3-dimensional connected simply connected topological loops L having a solvable indecomposable Lie group of dimension at most 6 as their multiplication group are known. To complete this classification for every solvable Lie group of dimension at most 6 we determine the multiplication Lie groups and the inner mapping subgroups for L in the class of the decomposable solvable Lie groups.

The procedures

For the classification of 3-dimensional connected simply connected topological loops L having a solvable Lie group G of dimension 6 as their multiplication group we may proceed in the following way:

As dim(L) = 3 first we determine those 3-dimensional Lie subgroups K of G which have no non-trivial normal subgroup of G and satisfy the condition, the normalizer $N_G(K)$ is the direct product $K \times Z$, where Z is the centre of (τ)

After this we have to find left transversals A and B to K in G such that for all $a \in A$ and $b \in B$ one has $a^{-1}b^{-1}ab \in K$ and G is generated by $A \cup B$. Since the transversals A and B are continuous, they are determined by 3 continuous real functions of 3 variables.

The condition that the products $a^{-1}b^{-1}ab$, $a \in A$ and $b \in B$, are in K is formulated by functional equations. Finding solution of these functional equations we obtain the classification of those Lie groups which are multiplication groups of loops L.

Results

The 6-dimensional decomposable solvable Lie groups Mult(L) of L have 1or 2-dimensional centre. Among the 6-dimensional decomposable solvable Lie groups with 1-dimensional centre there are 18 families which are groups Mult(L) of L. The corresponding loops have a centre $Z(L) \cong \mathbb{R}$ such that the factor loop L/Z(L) is isomorphic to \mathbb{R}^2 . In the class of the 6-dimensional decomposable solvable Lie groups with 2-dimensional centre 9 families can be represented as the group Mult(L) of L. The loops belonging to these families have a 2-dimensional centre Z(L) isomorphic to \mathbb{R}^2 such that the factor loop L/Z(L) is isomorphic to \mathbb{R} . Hence all these loops are centrally nilpotent of class 2. Their multiplication groups have 3-dimensional commutator subgroup and their inner mapping groups Inn(L) are abelian. The groups Mult(L) depend on at most two real parameters.



The centre of L has dimension 1 or 2

The 6-dimensional decomposable solvable Lie algebras with trivial centre are not the Lie algebra of the multiplication group of a topological loop of dimension 3.

The centre of L has dimension 1

Let L be a 3-dimensional connected simply connected topological proper loop having a solvable decomposable Lie group of dimension 6 with 1-dimensional centre as its multiplication group. Then for the Lie algebras of the groups Mult(L) of L we obtain: $g_1 = \mathbb{R} \oplus g_{5,19}^{\alpha=0}, \ g_2 = \mathbb{R} \oplus g_{5,20}^{\alpha=0}, \ g_3 = \mathbb{R} \oplus g_{5,27}^{\alpha}, \ g_4 = \mathbb{R} \oplus g_{5,28}^{\alpha=0},$ $\mathbf{g}_5 = \mathbb{R} \oplus \mathbf{g}_{5,32}^h$, $\mathbf{g}_6 = \mathbb{R} \oplus \mathbf{g}_{5,33}^{\beta,\gamma}$, $\mathbf{g}_7 = \mathbb{R} \oplus \mathbf{g}_{5,34}^{\alpha}$, $\mathbf{g}_8 = \mathbb{R} \oplus \mathbf{g}_{5,35}^{h,\alpha}$, $g_9 = l_2 \oplus g_{4,1}, \ g_{10} = l_2 \oplus g_{4,2}^{\alpha}, \ g_{11} = f_3 \oplus g_{3,2}, \ g_{12} = f_3 \oplus g_{3,3},$ $g_{13} = f_3 \oplus g_{3,4}, g_{14} = f_3 \oplus g_{3,5}, g_{15} = l_2 \oplus \mathbb{R} \oplus g_{3,2}, g_{16} = l_2 \oplus \mathbb{R} \oplus g_{3,3},$ $\mathbf{g}_{17} = \mathbf{l}_2 \oplus \mathbb{R} \oplus \mathbf{g}_{3,4}$, $\mathbf{g}_{18} = \mathbf{l}_2 \oplus \mathbb{R} \oplus \mathbf{g}_{3,5}$. Where \mathbf{l}_2 is the 2-dimensional non-abelian Lie algebra and f_3 is the 3-dimensional nilpotent Lie algebra.

The centre of L has dimension 2

Let L be a 3-dimensional connected simply connected topological proper loop having a solvable decomposable Lie group of dimension 6 with 2-dimensional centre as its multiplication group. Then the following Lie groups are the groups Mult(L) of L: The nilpotent Lie group $\mathbb{R} \times \mathcal{F}_5$ where \mathcal{F}_5 is the 5-dimensional elementary filiform Lie group.

If Mult(L) is solvable, non-nilpotent, then its Lie algebra is one of the following solvable Lie algebras: $\mathbf{g}_1 = \mathbb{R}^2 \oplus \mathbf{g}_{4,2}^{\alpha \neq 0}$, $\mathbf{g}_2 = \mathbb{R}^2 \oplus \mathbf{g}_{4,4}$, $\mathbf{g}_3 = \mathbb{R}^2 \oplus \mathbf{g}_{4\,5}^{-1 \leq \gamma \leq \beta \leq 1, \gamma \beta \neq 0}$,

 $\mathbf{g}_4 = \mathbb{R}^2 \oplus \mathbf{g}_{4,6}^{p \ge 0, \alpha \ne 0}$, $\mathbf{g}_5 = \mathbb{R} \oplus \mathbf{g}_{5,8}^{0 < |\gamma| \le 1}$, $\mathbf{g}_6 = \mathbb{R} \oplus \mathbf{g}_{5,10}$, $\mathbf{g}_7 = \mathbb{R} \oplus \mathbf{g}_{5,14}^{p \ne 0}$, $\mathbf{g}_8 = \mathbb{R} \oplus \mathbf{g}_{5.15}^{\gamma=0}.$

References

A. Al-Abayechi and Á. Figula, Topological loops having solvable decomposable multiplication group, submitted to *Results in Mathematics*, 2020.

