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Introduction

The word “Cryptography” stems from ancient Greek words kryptós (English: “hidden”), and graphein
(English: “to write”).

The field of cryptography has been dominated by Number Theory since years, and the use of Groups in
Cryptography is relatively new.

Many papers have proposed cryptosystems based on group theoretic concepts in the last few years.

The quest for good candidate groups which can serve cryptography is still on.

Braid groups appear to be good candidates.

Some Hard Problems in Groups

There are some difficult group-theoretic problems which can be exploited for cryptographic purposes. Some
of them are listed below. (In this poster, the publicly known elements are in blue and the private elements
are in red.)

The factorisation problem Let H ,K be subgroups of a group G and let w ∈ G . Find elements h ∈ H
and k ∈ K such that hk = w .

The word problem Let G be a finitely generated group. Let W and W ′ be two words in G . Determine
if W and W ′ represent the same element.

Conjugacy decision problem Let G be a group and g ,g ′∈G . Determine whether g and g ′ are conjugate.

Conjugacy search problem Let G be a group and g ,g ′∈ G . If g and g ′ are known to be conjugate,
find a ∈ G such that g = ag ′a−1.

Generalised conjugacy search problem Let G be a group, g ,g ′∈ G , and H≤ G . Find a ∈H such that
g= ag ′a−1.

The isomorphic decision problem Let G and G ′ be two groups with finite presentation in terms of
generators and defining relations. Find out if G and G ′ are isomorphic.

Stickel’s Key Exchange

Let G be a non-abelian finite group. Let x ,y ∈ G be such that xy 6= yx . Let n1 and n2 be orders of x and
y respectively. The key between twp parties, say Alice and Bob, can be shared in the following manner.

Bob picks natural numbers r and s such that 0 <r< n1 and 0 <s< n2 and sends x ry s to Alice.

Alice picks natural numbers u and v such that 0 <u< n1 and 0 <v< n2 and sends xuy v to Bob.

Bob computes x r(xuy v)y s = x r+uy v+s = Kb and Alice computes Ka = xu(x ry s)y v = xu+ry s+v = Kb.
Hence, they both share the same key Ka = Kb.

Remarks

If a group G is to be used in a cryptographic protocol based on one-way functions, it must satisfy the
following general requirements [1].

1 G should be well known, or well studied, or both.
2 There should be an efficiently computable normal form for the elements of G .
3 By inspection, it should be impossible to compute the elements g1 and g2 from the product g1g2 where g1,g2 ∈ G .
4 The number of words of length n in G should grow faster than any polynomial in n.

The interest in infinite non-abelian groups has increased and many of the suggested protocols are in
need of such infinite non-abelian groups whose elements have efficient normal forms.

Efficiency is a huge concern at present, as most of the group theoretic protocols seem to face imple-
mentation issues.

The Braid Group Bn

The braid groups are infinite groups that arise naturally from geometric braids. They were explicitly intro-
duced by Emil Artin. The braid group on n-strings, denoted by Bn, is defined by the presentation

Bn =

〈
b1, . . . ,bn−1 :

bibjbi = bjbibj ; |i − j | = 1
bibj = bjbi ; |i − j | ≥ 2

〉
Each element of Bn is called an n - braid. Here, n is said to be the braid index.

Geometrically, a generator bi ∈ Bn can be visualised as an n - braid in which the i th string goes under the
(i +1)th string to occupy the lower (i +1)th position, while the (i +1)th string occupies the lower i th position.
Figure 1 is an example of b2 in B4.

Figure 1: The generator b2 in B4

Why braid groups enrich cryptography

There is an efficiently computable unique canonical form of a braid which can be written as an
ordered tuple (m,σ1,σ2, . . . ,σk) where m ∈ Z , σi ∈ Sn.

Braid groups have interesting hard problems which can be exploited for cryptographic purposes. Some
of them are the Generalised conjugacy search problem, the Conjugacy search, decision & decomposition
problem, the Cycling problem and the Markov problem.

Canonical form of a braid

Let σ ∈ Sn such that σ(i) = ai . Denote σ by σ = a1a2 · · ·an. Define the surjective homomorphism
h : Bn→ Sn by

h(a) = σ = a1a2 · · ·an
where a ∈ Bn is a braid in which the string at the upper i th position ends at the lower ath

i position.

We obtain an n-braid, say Aσ , corresponding to σ in which the upper i th string is connected to the
lower ath

i string with each crossing positive. Such a braid Aσ is said to be the permutation braid. We
denote the set of all such braids by S+

n .

The permutation braid corresponding to the permutation τn = n(n−1) · · · (2)1 is called the fundamental
braid and is denoted by ∆n. Figure 2 is an example of ∆4.

� Every word B in Bn has a unique left weighted factorisation B = ∆mA1A2 · · ·At where Ai ∈ S+
n \{I ,∆}

for all i = 1,2, . . . , t, m is an integer and ∆ is the fundamental braid. This factorisation is called the
left canonical (or Garside’s normal) form of B , and t said to be its canonical length.

� Let B be a word in Bn with word length k . Then the left canonical form of B can be computed in time
O(k2nlogn). ([6])

� Let B = ∆mA1A2 · · ·At be an n braid of canonical length t. The total number of such n braids, that is,
of canonical length t is at least (bn−1

2 c!)
t. ([6])

The fundamental braid

Figure 2: Example of the fundamental braid ∆4 in B4

The Ko et al. Protocol

Let A = LBl and B = RBr denote the subgroup of Bl+r obtained by braiding the left l strands and the right
r strands respectively. Thus, A =< b1,b2, . . . ,bl−1 > and B =< bl+1, . . . ,bl+r−1 >. It follows from braid
relations that every element of A commutes with every element of B .

Alice and Bob can share a key in the following manner.

An l + r braid, say x ∈ Bl+r is made public.

Alice selects a ∈ LBl and sends y1 = axa−1 to Bob.

Bob selects b ∈ RBr and sends y2 = bxb−1 to Alice.

Alice computes Ka = ay2a
−1, Bob computes Kb = by1b

−1. As ab = ba we have Ka = Kb

This key exchange protocol depends on the difficulty of solving the generalised conjugacy search prob-
lem in braid groups.

Bibliography
[1] Alexei Miasnikov, Vladimir Shpilrain and Alexander Ushakov. Group-based Cryptography. Birkhäuser
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