SOMORPHISMS OF FUSION SUBCATEGORIES ON PERMUTATION ALGEBRAS

¹ Babeş-Bolyai University Cluj-Napoca, ² Technical University of Cluj-Napoca, Romania

Abstract

We present two isomorphisms of categories involving generalized Brauer pairs on *p*-permutation *N*-interior *G*-algebras, extending the results of [4]

Generalized Brauer pairs and

p-permutation N-interior G-algebras Consider the field k of characteristic p and A, a p-permutation Ninterior G-algebra over k, where $N \leq G$. Also consider $c \in A^G$, a primitive idempotent of that algebra. (Q, f_Q) is an (A, c, G)-Brauer pair if Q is a p-subgroup of G and f_Q is a block of A(Q) with $Br_Q(c)f_Q \neq 0$. The next proposition is an extension of [6, Lemma 8.6.4] and of [5, IV, Lemma 3.5].

Proposition 1. Let (Q, f_Q) denote an (A, c, G)-Brauer pair verifying that f_Q is primitive in $A(Q)^{C_N(Q)}$. Consider a *p*-subgroup *S* of *G* and a subgroup H of G with $C_N(Q) \leq H \leq N_G(Q, f_Q)$, such that $Q \leq S \leq H$. Also let f_S be a block of A(S). Then (S, f_S) is an (A, c, G)- Brauer pair with $(Q, f_Q) \leq (S, f_S)$ if and only if (S, f_S) is an $(A(Q), f_Q, H)$ -Brauer pair.

Equivalences of categories of Brauer pairs

In this section we assume that c is a G-invariant primitive idempotent of A^N . If we fix a (A, c, G)- Brauer pair (Q, f_Q) such that Q is a defect group of c in N, there is a maximal (A, c, G)-Brauer pair (P, f_P) such that $(Q, f_Q) \leq (P, f_P)^x$ for some $x \in N$.

Definition 1. Let (Q, f_Q) be a pair in which f_Q remains primitive in $A(Q)^{C_N(Q)}$. Denote $H = N_G(Q, f_Q)$ and define the sets:

 $F_1 := \{(R, f_R) | (R, f_R) \text{ is a } (A, c, G) \text{-Braver pair such that } \}$ $(Q, f_Q) \leq (R, f_R)$ as (A, c, G)-Brauer pairs } $F_2 := \{ (R, f_R) | (R, f_R) \text{ is a } (A(Q), f_Q, H) \text{-Brauer pair } \}$

Proposition 2. Let S, T be two *p*-subgroups of G and let f_S, f_T denote blocks of A(S), A(T), respectively. The $(S, f_S) \leq (T, f_T)$ as elements of F_1 if and only if $(S, f_S) \leq (T, f_T)$ as elements of F_2 .

Tiberiu Coconeț^{1,2}

Isomorphisms of categories of Brauer pairs

Corollary 1. Let (U, f_U) be an (A, c, G)-Brauer pair such that $(Q, f_Q) \leq C$ (U, f_U) . Then (U, f_U) is a maximal (A, c, G)-Brauer pair if and only if it is a maximal $(A(Q), f_Q, H)$ -Brauer pair.

Definition 2. For any maximal (A, c, G)-Brauer pair (U, f_U) , $\mathcal{F}_{(U, f_U)}(A, c, G)$ are the categories, called fusion systems, introduced in [5, Definition 2.3]. The similar notation is used for $\mathcal{F}_{(U,f_U)}(A(Q), f_Q, H)$. In this case, if (U, f_U) is maximal with $(Q, f_Q \leq (U, f_U))$, the full subcategory of $\mathcal{F}_{(U, f_U)}(A, c, G)$ whose elements are those of F_1 and morphisms are induced by conjugation with elements of G is denoted by \mathcal{C} ;

Theorem 1. The identity functor from $\mathcal{F}_{(U,f_U)}(A(Q), f_Q, H)$ to C provides an isomorphism of categories.

Covering points

In this section A is a p-permutation G-algebra and C is an N-interior Galgebra that is also a direct summand of A as k-modules, for some normal subgroup N of G. For the most general situation we refer to [1].

Definition 3. Let $j \in C^N$ be a primitive idempotent with defect group Q in N and assume j is G-invariant. A point $\alpha \in A^G$ (a conjugacy class of a primitive idempotent) covers j if there is $i \in \alpha$ and a point $\epsilon \subseteq A^N$ with defect group Q verifying the conditions:

 $ji = ij \neq 0$, if = fi = f and $jf_1 = f_1j = f_1$ for some f and f_1 belonging to ϵ .

On pairs determined by covering points

We continue with a p-permutation G-algebra A, in which the N-interior Galgebra C is a k-summand, for a normal subgroup N of G. Let c be a Ginvariant primitive idempotent of C^N . Let $Q \leq N$ be a defect group of c and consider (Q, f_Q) , a (C, c, G)- Brauer pair such that f_Q is primitive in $C(Q)^{C_N(Q)}$, then we may also consider the sets F_1 and F_2 .

Proposition 3. Let $\alpha \subseteq A^G$ be a point covering c. There is a defect group P of α such that $P \cap N = Q$ and a block f_P in C(P) such that $(P, f_P) \in F_1$.

Isomorphism of fusion subcategories

In this section we keep the assumptions on C, c and f_Q and we further assume that A is G-interior admitting a $G \times G$ -stable k-basis. We also assume that A is projective as an $k[N \times 1]$ -module and as an $k[1 \times N]$ -module. Let $X := \overline{N}_A^{\operatorname{Aut}(Q)}(Q)$ and $Y := \overline{N}_C^{\operatorname{Aut}(Q)}(Q)$ denote the extended Brauer quotients, an $N_G(Q)$ -interior and an $N_N(Q)$ -interior $N_G(Q)$ -algebra, respectively. See [7],[3, Proposition 2.2] and [2, Section 2] for details.

Proposition 4. Any point of H on X with defect group P that covers f_Q determines a point of G on A with defect group P that covers c. Moreover, there is a block f_P of C(P) such that $(Q, f_Q) \leq (P, f_P)$ as $(C(Q), f_Q, H)$ -Brauer pairs and as (C, c, G)-Brauer pairs.

Let $\mathcal{C}(P, f_P)$ denote the full subcategory of \mathcal{C} consisting of Brauer pairs (T, f_T) such that $(T, f_T) \leq (P, f_P)$. Similarly, let $\mathcal{P}(P, f_P)$ denote the full subcategory of $\mathcal{F}_{(U,f_U)}(A(Q), f_Q, H)$ consisting of Brauer pairs (T, f_T) with $(T, f_T) \leq (P, f_P)$.

Theorem 2. The category $C(P, f_P)$ is isomorphic to $\mathcal{P}(P, f_P)$.

References

References

- [1] T. Coconet. Covering points in permutations algebras. Archive *der Mathematik* **100** (2013), 107-113.
- [2] T. Coconet, A. Marcus. Remarks on the extended Brauer quotient. J. Algebra 491 (2017), 78-89.
- [3] T. Coconet, C.-C. Todea. The extended Brauer quotient of Ninterior *G*-algebras. *J. Algebra* **396** (2013), 10–17.
- [4] M. E. Harris. Isomorphisms of subcategories of fusion systems of blocks and Clifford theory *J. of Group Theory* **23** (2020) 925– 930.
- [5] R. Kessar, N. Kunugi, N Mitsuhashi. On saturated fusion systems and Brauer indecomposability J. Algebra 340 (1) (2011) 90–103.
- [6] M.Linckelmann, The Block Theory of Finite Group Algebras. (Volume 2, London Math). Soc.Stud. Texts 92, Cambridge University, Cambridge, 2018.
- [7] L. Puig, Y. Zhou. A local property of basic Morita equivalences.