ON NON ABELIAN TENSOR ANALOGUES OF 4-ENGEL GROUPS

AMINA DAOUI

Abstract

In this paper we study some properties of 4 \otimes -Engel elements of groups. In particular, we prove that G is a 4 \otimes -Engel group if and only if the normal closer of every element in G is a 3 \otimes -Engel group.

1. Introduction.

For any group G, the nonabelian tensor square $G \otimes G$ is a group generated by the symbols g \otimes h, subject to the relations:

 $gg \otimes h = (g^g \otimes h^g)(g \otimes h)$ and

 $g \otimes hh = (g \otimes h)(g^h \otimes h^h)$, where g, g, h, h \in G and $g^h = h^{-1}gh$.

The more general concept of nonabelian tensor product of groups acting on each other in certain compatible way was introduced by R. Brown and J.-L. Loday in [5], following the ideas of R. K. Dennis [6]. Also, tensor analogues of right n-Engel elements have been defined. Recall that the set of right n-Engel elements of a group G is defined by $R_n(G) = \{a \in G : [a, nx] = 1, for all x \in G\}$. Here [a, nx] stands for the commutator $[\cdots [[a, x], x], \cdots]$ with n copies of x. It is well-known that $R_1(G) = Z(G)$ and that $R_2(G)$ is a subgroup of G. The set of right (left) n_{\omega}-Engel elements of a group G is then defined as $R_n^{\otimes}(G) = \{a \in G : [a, n - 1x] \otimes x = 1_{\otimes} for all x \in G\}$. and $Ln^{\otimes}(G) = \{a \in G : [x, n - 1a] \otimes a = 1_{\otimes} for all x \in G\}$ respectively.

2. Results.

Lemma 2.1 Let g, g', h, h' $\in G$. The following relations hold in $G \otimes G$

- a) $(g^{-1} \otimes h)^g = (g \otimes h)^{-1} = (g \otimes h^{-1})^h$.
- b) $(\boldsymbol{g'} \otimes \boldsymbol{h'})^{\boldsymbol{g} \otimes \boldsymbol{h}} = (\boldsymbol{g'} \otimes \boldsymbol{h'})^{[\boldsymbol{g},\boldsymbol{h}]}.$
- c) $[g,h] \otimes g' = (g \otimes h)^{-1} (g \otimes h)^{g'}$.
- d) $\mathbf{g'} \otimes [\mathbf{g}, \mathbf{h}] = (\mathbf{g} \otimes \mathbf{h})^{-\mathbf{g'}} (\mathbf{g} \otimes \mathbf{h}).$
- e) $[g,h] \otimes [g',h'] = [g \otimes h,g' \otimes h'].$

Note here that G acts on $G \otimes G$ by $(g \otimes h)^{g'} = g^{g'} \otimes h^{g'}$.

Proposition 2.2 For a given group G there exists a homomorphism k: $G \otimes G \rightarrow G$ such that k: $g \otimes h \rightarrow [g, h]$ Moreover, ker $k \leq Z(G \otimes G)$ and G acts trivially on ker k

Theorem 2.3. Let G be any group, then we have $R_4^{\otimes}(G) \subseteq R_4(G)$ and $L_4^{\otimes}(G) \subseteq L_4(G)$. More generally $R_n^{\otimes}(G) \subseteq R_n(G)$ and $L_n^{\otimes}(G) \subseteq L_n(G)$ for all $n \in \mathbb{N}^*$

Theorem 2.4. A group G is a 3&-Engel groupe if and only if the normal closer of every element in G is a 2&-Engel group.

Theorem 2.5. A group G is a 4&-Engel groupe if and only if the normal closer of every element in G is a 3&-Engel group.