HAUSDORFF DIMENSION IN PROFINITE GROUPS

Iker de las Heras - Heinrich-Heine-Universität Düsseldorf and University of the Basque Country Joint work with Benjamin Klopsch (Heinrich-Heine-Universität Düsseldorf) and Anitha Thillaisundaram (University of Lincoln) iker.delasheras@hhu.de

Introduction

Let G be a profinite group and let \mathcal{S} be a filtration series of G, that is, a descending chain of open normal subgroups $G = G_0 \ge G_1 \ge G_2 \ge \cdots$ such that $\bigcap_{i>1} G_i = 1$. This filtration induces a translation-invariant metric $d^{\mathcal{S}}$ on G defined as

$$d^{\mathcal{S}}(x,y) = \inf\{|G:G_n|^{-1} \mid xy^{-1} \in G_n\},\$$

where $x, y \in G$. This metric, in turns, defines the Hausdorff dimension function $\operatorname{hdim}_{G}^{\mathcal{S}}(X)$ for any subset $X \subseteq G$ with respect to the filtration series \mathcal{S} .

Explicit formula for the Hausdorff dimension of closed subgroups

Theorem (Y. Barnea, A. Shalev [1]). The Hausdorff dimension of a closed subgroup H of G with respect to \mathcal{S} is given by

$$\operatorname{hdim}_{G}^{\mathcal{S}}(H) = \liminf_{n \to \infty} \frac{\log |HG_n : G_n|}{\log |G : G_n|} \in [0, 1]$$

The Hausdorff spectrum of G with respect to the filtration series \mathcal{S} is

hspec^S(G) = {hdim_G^S(H) |
$$H \leq_{c} G$$
} $\subseteq [0, 1].$

The Hausdorff dimension function, and hence the Hausdorff the filtration
$$\mathcal{S}$$
, as shown in the next examples.

Examples

Let $G = \mathbb{Z}_p \oplus \mathbb{Z}_p$ and $H = \mathbb{Z}_p \oplus \{0\}$. Then: • If $\mathcal{S}: G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^i, 0), (0, p^i) \rangle$ for every $i \geq 0$, then

 $\operatorname{hdim}_{G}^{\mathcal{S}}(H) = 1/2 \text{ and } \operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1/2, 1\}$

(see the diagram at the top).

• If $\mathcal{S}: G = G_0 \ge G_1 \ge \cdots$ such that $G_i = \langle (p^{2^i}, 0), (0, p^i) \rangle$ for every $i \ge 0$, then

$$\operatorname{hdim}_{G}^{\mathcal{S}}(H) = 1$$
 and $\operatorname{hspec}^{\mathcal{S}}(G) = \{0, 1\}$

(see the diagram at the bottom).

Some research lines

Normal Hausdorff spectra

Let G be a profinite group and \mathcal{S} a filtration series of G. The normal Hausdorff spectrum of G is defined as

$$\operatorname{hspec}_{\trianglelefteq}^{\mathcal{S}}(G) = \{\operatorname{hdim}_{G}^{\mathcal{S}}(H) \mid H \trianglelefteq_{\operatorname{c}} G\} \subseteq [0, 1].$$

Does there exist a finitely generated pro-p group G with full normal Hausdorff spectrum with respect to one or several standard filtration series,

for some $\mathcal{S} \in {\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{P}^*, \mathcal{F}}$?

Problem

that is, such that

An affirmative answer to the problem

$$\operatorname{hdim}_{\leq}^{\mathfrak{S}}(\mathfrak{G}(p)) = [0,1]$$

The construction of such a group, for p odd, is given in the diagram in the right. In the diagram, $W = C_p \wr \mathbb{Z}_p = \langle \dot{x}, \dot{y} \rangle$ and $F = \langle \tilde{x}, \tilde{y} \rangle$ is the free pro-*p* group on 2 generators. Also, φ is the homomorphism from F to W such that $\varphi(\tilde{x}) = \dot{x}$ and $\varphi(\tilde{y}) = \dot{y}$.

References

Y. Barnea and A. Shalev, Hausdorff dimension, pro-p groups, and Kac-Moody algebras, Trans. Amer. Math. Soc. 349 (1997), 5073–5091.

I. de las Heras, B. Klopsch, A pro-p group with full normal Hausdorff spectra, Math. Nachr., to appear.

I. de las Heras, A. Thillaisundaram, A pro-2 group with full normal Hausdorff spectra, arXiv:2102.02117.

B. Klopsch, A. Thillaisundaram, and A. Zugadi-Reizabal, Hausdorff dimensions in *p*-adic analytic groups, *Israel J. Math.* 231 (2019), 1–23.

ff spectrum, is sensitive to the choice of

For a finitely generated pro-p group G, however, there are natural choices for \mathcal{S} that encapsulate group-theoretic properties of G. These are:

• The lower p-series \mathcal{L} : $P_1(G) = G$ and
$P_i(G) = P_{i-1}(G)^p[P_{i-1}(G), G] \text{ for } i \ge 2,$
• The dimension subgroup series \mathcal{D} : $D_1(G) = G$ and
$D_i(G) = D_{\lceil i/p \rceil}(G)^p \prod_{1 \le j < i} [D_j(G), D_{i-j}(G)] \text{ for } i \ge 2$
• The <i>p</i> -power series \mathcal{P} :
$\pi_i(G) = G^{p^i} = \langle g^{p^i} \mid g \in G \rangle \text{ for } i \ge 0.$
• The iterated p-power series \mathcal{P}^* : $\pi_0^*(G) = G$ and
$\pi_i^*(G) = \pi_{i-1}^*(G)^p \text{ for } i \ge 1,$
• The Frattini series \mathcal{F} : $\Phi_0(G) = G$ and
$\Phi_i(G) = \Phi_{i-1}(G)^p[\Phi_{i-1}(G), \Phi_{i-1}(G)] \text{ for } i \ge 1.$

Finite Hausdorff spectra (work in progress)

The main problem concerning Hausdorff dimension in the context of profinite groups is characterising p-adic analytic pro-p groups in terms of the finiteness of the Hausdorff spectra. Let us focus on one of the directions of this characterisation, namely, that *p*-adic analytic implies finite Hausdorff spectra.

Finiteness of the Hausdorff spectra for $\mathcal{D}, \mathcal{P}, \mathcal{P}^*$ and \mathcal{F} .

Theorem (Y. Barnea, A. Shalev [1]; B. Klopsch, A. Thillaisundaram, A. Zugadi-Reizabal [4]). Let G be a p-adic analytic pro-p group and H a closed subgroup of G. Then, for $\mathcal{S} \in \{\mathcal{D}, \mathcal{P}, \mathcal{P}^*, \mathcal{F}\}$, we have $\operatorname{hdim}_G^{\mathcal{S}}(H) = \operatorname{dim}(H) / \operatorname{dim}(G)$, where $\operatorname{dim}(H)$ and $\operatorname{dim}(G)$ stand for the analytic dimension of H and G respectively. In particular hspec^S(G) is finite.

Let G be a finitely generated pro-p group and let $\mathcal{S} = \mathcal{L}$. If G is p-adic analytic, does it follow that hspec^S(G) is finite?

Theorem (IH, B. Klopsch). Let G be a p-adic analytic pro-p group and let U be an open uniform subgroup of G. Write L for the free \mathbb{Z}_p -Lie algebra (and G-module) associated to U. If the action of G is simple or nilpotent in each indecomposable component of an indecomposable decomposition of L, then hspec^{\mathcal{L}}(G) is finite. In particular, hspec^{\mathcal{L}}(G) is finite if one of the following follows:

• L is a semisimple G-module.