An approach to skew left braces via triply factorised groups

Adolfo Ballester-Bolinches and Ramón Esteban-Romero

Departament de Matemàtiques, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain, Adolfo.Ballester@uv.es, Ramon.Esteban@uv.es

Skew left braces

Definition. A skew left brace is a triple $(B, +, \cdot)$ with

- (B, +) and (B, \cdot) groups,
- $a \cdot (b+c) = (a \cdot b) a + (a \cdot c)$ for $a, b, b \in \mathbb{R}$ $c \in B$.

If, in addition, (B, +) is abelian, we obtain Rump's braces (skew braces of abelian type).

We use *ab* for $a \cdot b$ and the usual hierarchy for \cdot and +.

Skew left braces and derivations

Notation. • $K = (B, +), C = (B, \cdot)$

- $\lambda: C \longrightarrow Aut(G), \lambda_a(b) = -a + ab$ is a group action.
- The identity map $\delta: C \longrightarrow K$ is a derivation or 1-cocycle with respect to λ $(\delta(ce) = \delta(c) + \lambda_c(\delta(e)) \text{ for } c, e \in C).$

Lemma. Let $\lambda: (B, \cdot) \longrightarrow \operatorname{Aut}(A, +)$ be a group action and $\delta: (B, \cdot) \longrightarrow (A, +)$ a bijective derivation with respect to λ . Then we can define an addition on B via b + c = $\delta^{-1}(\delta(b) + \delta(c))$ and $(B, +, \cdot)$ becomes a skew left brace.

Lemma. Suppose that $\delta: C \longrightarrow K$ is a derivation associated to an action λ of C on K and that L is a C-invariant subgroup of K (for instance, this happens when L is a characteristic subgroup of K). Then $\delta^{-1}(L) \leq C$.

References

- [1] E. Acri, R. Lutowski, L. Vendramin. Int. J. Algebra Comput., 30(01):91-115, 2020.
- [2] F. Cedó, A. Smoktunowicz, L. Ven-

Bijective derivations and trifactorised

groups

Notation. • $G = [K]C = K \rtimes C$, with operation $(k_1, c_1)(k_2, c_2) =$ $(k_1 + \lambda_{c_1}(k_2), c_1c_2), k_1, k_2 \in K, c_1, c_2 \in C.$

- According to our interest, we consider the elements of B as in K or C.
- We pass from C to K or vice versa by means of the derivation δ .

Lemma. Let $D = \{(\delta(c), c) \mid c \in C\}$. Then $D \leq G$, G = KD = DC, and $K \cap D = D \cap C = \{(0, 1)\}.$

Lemma. Suppose that G = [K]C = KD = DC and $K \cap D = D \cap C =$ $\{(0,1)\}$. Then there exists a bijective derivation $\delta: C \longrightarrow K$ associated with the action of C on K such that $D = \{(\delta(c), c) \mid c \in C\}$.

Lemma. Let G = [K]C = KD = DC with $K \cap D = D \cap C = \{(0, 1)\}$.

1. If $L \subseteq K$, then $\delta^{-1}(L) = (-L)D \cap C$.

2. If $E \subset C$, then $\delta(E) = DE^{-1} \cap K$.

Relevant commutator relations

We use now multiplicative notation for G. Let G = [K]C = KD = DC with $D \leq G, K \cap D = D \cap C = \{1\}$ and let $\delta: C \longrightarrow K$ be the corresponding derivation.

Lemma. Let $k, l \in K$ and $c, e \in C$. Then

$$[kc, le] = \underbrace{[k, e]^c[k, l]^{ec}[c, l]^{c^{-1}ec}[c, e]}_{\in \mathcal{K}}.$$

If $k = \delta(c)$, $l = \delta(e)$, then $\delta([c, e]) = [k, e]^{c} [k, l]^{ec} [c, l]^{c^{-1}ec}$. In particular, if $H \leq K$, $C \leq N_G(H)$, and three of the elements [k, e], [k, I], [c, I], $\delta([c, e])$ belong to H, then so does the other one.

Lemma. Suppose that $E \leq C$ and that $L = \delta(E)$ is a normal subgroup of G. Then $E \leq C \iff [E, C] \subseteq E \iff [K, E] \subseteq L$

dramin. Proc. London Math. Soc., 118(6):1367-1392, 2019.

- [3] A. Ballester-Bolinches, R. Esteban-Romero. Triply factorised groups and the structure of skew left braces. Commun. Math. Stat., in press.
- [4] L. Guarnieri, L. Vendramin. Math. Comp., 86(307):2519-2534, 2017.

[6] H. Meng, A. Ballester-Bolinches, R. Esteban-Romero. Proc. Edinburgh Math. Soc., 62(2):595-608, 2019.

Concept	Skew brace language	Trifactorised group language
left ideal	$\lambda_a(I) \subseteq I$ for all $a \in B$ (equivalently, $B * I \subseteq I$)	$[L, C] \subseteq L$
strong left ideal	$\lambda_{a}(I) \subseteq I$ for all $a \in B$ and $I \trianglelefteq K$	$[L,G]\subseteq L\ (L \lessdot G)$
ideal	$a + I = I + a$, $aI = Ia$ for all $a \in B$	LE ⊲ G
quotient by an ideal	A/1	$KC/LE \cong [K/L](C/E)$
left nilpotency series	$L_0(X, Y) = Y,$ $L_n(X, Y) = X * L_{n-1}(X, Y)$ (for $X = Y = B$, Rump's B^n)	[[[H, E],], E]
left π -nilpotent left brace	$L_n(B, B_\pi) = 0$ for some n	$C \ \pi$ -nilpotent ($C \ p$ -nilpotent for all $p \in \pi$)
socle	$Soc(B) = \{a \in B \mid ab = a + b, \\ b + a = a + b \\ for all \ b \in B\} \\ = Ker \lambda \cap Z(B, +)$	$C_{C}(K) \cap \delta^{-1}(Z(K)) = C_{C}(K) \cap Z(K)D \leqslant C$
right nilpotency series	$R_0(X, Y) = X,$ $R_n(X, Y) = R_{n-1}(X, Y) * Y$ (for $X = Y = B$, Rump's $B^{(n)}$)	$\delta^{-1}([\cdots [\delta^{-1}([E, H]), H], \dots, H])$
right π -nilpotent left brace	$R_n(B_{\pi}, B) = 0$ for some n	$\delta^{-1}([\cdots [\delta^{-1}([E_{\pi}, K]), K], \dots, K]) = 1$

Theorem. Suppose that a skew left brace of abelian type B can be descomposed as the sum of two ideals that are left nilpotent as left braces. Then B is left nilpotent.

Theorem. Let B be a skew left brace of abelian type that can be factorised as the product of an ideal I_1 that is trivial as a left brace and a strong left ideal I_2 that is right nilpotent as a left brace. Then B is right nilpotent.

Open guestion. Is it true that a skew left brace of abelian type that can be factorised as a product of two ideals that are right nilpotent as left braces must be right nilpotent?

Other results about factorisations are recovered with trifactorised groups.

[7] M. Numata. 8(3):447-451, 1971.

- [8] W. Rump. J. Algebra, 307:153-170, 2007.
- [9] Y. P. Sysak. In F. de Giovanni et al., editors, Infinite groups 1994, pages 257-269, Berlin, 1996. Walter de Gruyter.

Osaka J. Math., [10] Y. P. Sysak. Products of groups and quantum Yang-Baxter equation. Notes of a talk in Advances in Group Theory and Applications, Porto Cesareo, Lecce, Italy, 2011.

A "dictionary"

Factorisations: a Fitting-like ideal

Supported by Grants PGC2018-095140-B-I00 (MICINN, AEI, Spain; and FEDER, EU) and PROMETEO/2017/057 (Generalitat, Valencian Community, Spain).