The classic case: \wp as an exp

The present poster collects a couple of remarks that I happened to make in the past years on the Weierstrass elliptic functions $\sigma(t)$, $\zeta(t)=\frac{d}{d t} \ln (\sigma(t))$, and $\wp(t)=\frac{d}{d t} \zeta(t)$, and that, in my opinion, are worth being pointed out to the reader's attention.
I cannot but begin from a milestone, at the crossroad of Algebra, Geometry and Complex analysis, that is, the property that

$$
t_{1}+t_{2}+t_{3}=0 \Longleftrightarrow\left|\begin{array}{lll}
1 & \wp\left(t_{1}\right) & \wp^{\prime}\left(t_{1}\right) \\
1 & \wp\left(t_{2}\right) & \wp^{\prime}\left(t_{2}\right) \\
1 & \wp\left(t_{3}\right) & \wp^{\prime}\left(t_{3}\right)
\end{array}\right|=0
$$

which makes the map $t \mapsto P(t)=\left(\wp(t), \wp^{\prime}(t)\right)$ a group homomorphism from the additive group of \mathbb{C} to the Jacobian $\mathfrak{J}(\mathcal{C})$ of the elliptic curve associated to the doubly-periodic Wierstrass elliptic function \wp, with period lattice $\Lambda=\langle 1, \widehat{\tau}\rangle$, thus giving in turn a geometric representation of the quotient group \mathbb{C} / Λ.

Fig. 1: $P_{1}+P_{2}+P_{3}=0$
The above identity makes the divisor $P_{1}+P_{2}-2 \Omega$ linearly equivalent to the divisor $Q-\Omega$ (where Q is the point marked with $P_{1}+P_{2}$ in the above picture), by means of the function

$$
f(x, y)=\frac{\left|\begin{array}{ccc}
1 & \wp\left(t_{1}\right) & \wp^{\prime}\left(t_{1}\right) \\
1 & \wp\left(t_{2}\right) & \wp^{\prime}\left(t_{2}\right) \\
1 & x & y
\end{array}\right|}{\left|\begin{array}{cc}
1 & \wp\left(t_{3}\right) \\
1 & x
\end{array}\right|}
$$

In fact, we see directly that
$\operatorname{div}(f)=\left(P_{1}+P_{2}+P_{3}-3 \Omega\right)-\left(P_{3}+Q-2 \Omega\right)=\left(P_{1}+P_{2}\right)-Q-\Omega$, thus

$$
\left(P_{1}-\Omega\right)+\left(P_{2}-\Omega\right)=Q-\Omega+\operatorname{div}(f) \equiv Q-\Omega
$$

Toroidal groups: σ as a 2-cocycle

Similarly, a complex periodic function of two variables, whose period lattice $\Lambda=\langle(1,0),(0,1),(\widehat{\tau}, \widetilde{\tau})\rangle$ has real rank 3 , defines a toroidal group \mathbb{C}^{2} / Λ. This (non-compact) group is isomorphic to the generalized Jacobian \mathfrak{J}_{L} of an elliptic curve \mathcal{C}, where a divisor $L=M+N$ has been fixed, say $M=$ $\left(\wp\left(t_{M}\right), \wp^{\prime}\left(t_{M}\right)\right)$ and $N=\left(\wp\left(t_{N}\right), \wp^{\prime}\left(t_{N}\right)\right)$, and where now any two divisors are equivalent if they again differ by $\operatorname{div}(f)$, but for a function $f(x, y)$ such that $v_{M}(1-f) \geq 1$ and $v_{N}(1-f) \geq 1$, where v_{P} is the discrete valuation of the local ring \mathcal{O}_{P} of the rational functions of \mathcal{C} that are regular in P.
The generalized Jacobian \mathfrak{J}_{L} can be described by the short exact sequence

$$
1 \longrightarrow \mathbb{C}^{*} \longrightarrow \mathfrak{J}_{L} \longrightarrow \mathfrak{J}(\mathcal{C}) \longrightarrow \Omega
$$

and by a corresponding (non-regular) 2-cocycle $c_{L}: \mathfrak{J}(\mathcal{C}) \times \mathfrak{J}(\mathcal{C}) \rightarrow \mathbb{C}^{*}$. Note that the non trivial cocycle c_{L} induces a cocycle $c_{L} P: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{*}$, as well, with $\left(x_{1}, x_{2}\right) \mapsto c_{L}\left(P\left(x_{1}\right), P\left(x_{2}\right)\right)$. But, since every commutative Lie group extension of \mathbb{C}^{*} by \mathbb{C} is splitting, $c_{L} P$ turns out indeed to be a coboundary $\delta^{1}(g P): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{*}$, where $g P: \mathbb{C} \rightarrow \mathbb{C}^{*}$ is a section (cf. [1]) defined by

$$
g P(t)=\exp \left(-2 \eta_{1} \widetilde{\tau} t\right) \frac{\sigma\left(t_{M}\right)}{\sigma\left(t_{N}\right)} \frac{\sigma\left(t-t_{N}\right)}{\sigma\left(t-t_{M}\right)} .
$$

How to describe $\delta^{1}(g P): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{*}$ as $\delta^{1}(g): \mathfrak{J}(\mathcal{C}) \times \mathfrak{J}(\mathcal{C}) \rightarrow \mathbb{C}^{*}$ gives an algebraic meaning to the following two well-known properties of σ :

$$
\frac{\sigma\left(t_{1}+t_{2}-t_{N}\right) \sigma\left(t_{1}+t_{N}\right) \sigma\left(t_{2}+t_{N}\right) \sigma\left(t_{1}-t_{2}\right)}{\sigma\left(t_{1}\right)^{3} \sigma\left(t_{2}\right)^{3} \sigma\left(-t_{N}\right)^{3}}=-\frac{1}{2}\left|\begin{array}{ccc}
1 & \wp\left(t_{1}\right) & \wp^{\prime}\left(t_{1}\right) \\
1 & \wp\left(t_{2}\right) & \wp^{\prime}\left(t_{2}\right) \\
1 & \wp\left(-t_{N}\right) & \wp^{\prime}\left(-t_{N}\right)
\end{array}\right|
$$

$$
\frac{\sigma\left(t_{j}+t_{N}\right) \sigma\left(t_{j}-t_{N}\right)}{\sigma\left(t_{j}\right)^{2} \sigma\left(t_{N}\right)^{2}}=\left|\begin{array}{ll}
1 & \wp\left(t_{j}\right) \\
1 & \wp\left(t_{N}\right)
\end{array}\right|
$$

combining which, one obtains
and, dividing this by the one with M instead of N, we unveil the coboundary $\left(c_{L} P\right)\left(t_{1}, t_{2}\right)$ as the cocycle $c_{L}\left(P\left(t_{1}\right), P\left(t_{2}\right)\right)$
$\left(c_{L} P\right)\left(t_{1}, t_{2}\right)=\delta^{1}(g P)\left(t_{1}, t_{2}\right)=\frac{\sigma\left(t_{1}+t_{2}-t_{N}\right) \sigma\left(t_{N}\right)}{\sigma\left(t_{1}-t_{M}\right) \sigma\left(t_{2}-t_{M}\right)} \frac{\sigma\left(t_{1}-t_{M}\right) \sigma\left(t_{2}-t_{M}\right)}{\sigma\left(t_{1}+t_{2}-t_{M}\right) \sigma\left(t_{M}\right)}=$

$$
\frac{\left|\begin{array}{ccc}
1 & \wp\left(t_{1}\right) & \wp^{\prime}\left(t_{1}\right) \\
1 & \wp\left(t_{2}\right) & \wp^{\prime}\left(t_{2}\right) \\
1 & \wp\left(-t_{N}\right) & \wp^{\prime}\left(-t_{N}\right)
\end{array}\right|}{\left|\begin{array}{ll}
1 & \wp\left(t_{1}\right) \\
1 & \wp\left(t_{N}\right)
\end{array}\right| \cdot\left|\begin{array}{ll}
1 & \wp\left(t_{2}\right) \\
1 & \wp\left(t_{N}\right)
\end{array}\right|} \cdot \frac{\left|\begin{array}{cc}
1 & \wp\left(t_{1}\right) \\
1 & \wp\left(t_{M}\right)
\end{array}\right| \cdot\left|\begin{array}{ll}
1 & \wp\left(t_{2}\right) \\
1 & \wp\left(t_{M}\right)
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \wp\left(t_{1}\right) & \wp^{\prime}\left(t_{1}\right) \\
1 & \wp\left(t_{2}\right) & \wp^{\prime}\left(t_{2}\right) \\
1 & \wp\left(-t_{M}\right) & \wp^{\prime}\left(-t_{M}\right)
\end{array}\right|}=c_{L}\left(P\left(t_{1}\right), P\left(t_{2}\right)\right) \text {. }
$$

Liftings: ζ as a section

Since ζ is quasi-periodic, there is no way of expressing $\zeta(t)$ in algebraic terms of $\wp(t)$ and $\wp^{\prime}(t)$. In this direction, the simplest results are probably the well-known addition formulas

$$
\begin{gather*}
\zeta(z+w)-\zeta(z)-\zeta(w)=\frac{1}{2} \frac{\wp^{\prime}(z)-\wp^{\prime}(w)}{\wp(z)-\wp(w)} \tag{1}\\
\zeta(2 z)-2 \zeta(z)=\frac{3 \wp^{2}(z)}{\wp^{\prime}(z)}-\frac{g_{2}}{4 \wp^{\prime}(z)} .
\end{gather*}
$$

Notice, however, that the first formula gives exactly $\delta^{1}(\zeta)$, a fact that, again, we are going to unveil as non-accidental.
Indeed, if \mathcal{C} is defined over \mathbb{Q}_{p} and has good reduction modulo p, that is, the reduction $\bmod p$ is not singular, then for the group $\mathfrak{J}_{\mathbb{Q}_{n}}$ we obtain the short exact sequence (cf. [2, Ch. VII])

$$
\begin{equation*}
1 \longrightarrow p \mathbb{Z}_{p} \xrightarrow{\exp } \mathfrak{J}_{\mathbb{Q}_{p}} \xrightarrow{\bmod } \mathfrak{J}_{\mathrm{GF}(\mathrm{p})} \longrightarrow \Omega \tag{2}
\end{equation*}
$$

Note that $\exp (p t)=\left(\wp(p t), \wp^{\prime}(p t)\right)-\Omega$ is convergent on $p \mathbb{Z}_{p}$. Writing the points in the reduced curve as

$$
P(z)=\bmod \exp (z)=\left(\bmod \wp(z), \bmod \wp^{\prime}(z)\right)
$$

adapting the arguments in [1], one formally finds a section

$$
\psi(P(z))=\int_{\Omega}^{z}-\wp(t) d t=\zeta(z)
$$

that is, $\psi P=\zeta$.
Again, the possibility of expressing the 2-cocycle

$$
\Psi\left(P\left(t_{1}\right), P\left(t_{2}\right)\right)=\delta^{1}(\psi)\left(P\left(t_{1}\right), P\left(t_{2}\right)\right)
$$

of the extension (2) as $\delta^{1}(\zeta)\left(t_{1}, t_{2}\right)$ relies on the formulas in (1): for any two given points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$,

$$
\Psi\left(P_{1}, P_{2}\right)=\delta^{1}(\psi)\left(P_{1}, P_{2}\right)=\frac{1}{2} \frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

and

$$
\Psi\left(P_{1}, P_{1}\right)=\frac{3 x_{1}^{2}}{y_{1}}-\frac{g_{2}}{4 y_{1}} .
$$

References

References

[1] Di Bartolo A.; Falcone, G., The periods of the generalized Jacobian of a complex elliptic curve, Adv. Geom. (2015)
[2] Silverman J. H., The arithmetic of elliptic curves, Springer GTM 106, 1986.

