DIFFERENCE SETS DISJOINT FROM A SUBGROUP: GROUPS OF ORDER $4 p^{2}$

Stephen P. Humphries and Nathan L. Nicholson
Brigham Young University, Provo, Ut, USA

Abstract

We study finite groups G having a normal subgroup H and $D \subset$ $G \backslash H, D \cap D^{-1}=\emptyset$, such that the multiset $\left\{x y^{-1}: x, y \in D\right\}$ has every non-identity element occur the same number of times (such a D is called a DRAD difference set). We show that there are no such groups of order $4 p^{2}$, where p is an odd prime.

Definitions and background

For a group G we will identify a finite subset $X \subseteq G$ with the element $\sum_{x \in X} x \in \mathbb{Q} G$ of the group algebra. We also let $X^{-1}=\left\{x^{-1}: x \in\right.$ $X\}$. Write \mathcal{C}_{n} for the cyclic group of order n.
A (v, k, λ) difference set is a subset $D \subset G,|D|=k$, such that every element $1 \neq g \in G$ occurs λ times in the multiset $\left\{x y^{-1}: x, y \in D\right\}$. Here $|G|=v$.
Then [1, 4] a (v, k, λ) difference set is a (v, k, λ) DRAD difference set (with subgroup H and difference set D) if it also satisfies the conditions: there is a subgroup $1 \neq H \triangleleft G$ such that
(1) $D \cap D^{-1}=\emptyset$;
(2) $G \backslash\left(D \cup D^{-1}\right)=H$.

A group G will be called a DRAD difference set group if there is a DRAD difference set over G. DRAD difference sets are examples of Hadamard (or Menon) difference sets Let

$$
h=|H|, \quad u=|G: H| .
$$

Prior result

Previous Theorem [2] Let G be a (v, k, λ) DRAD difference set group with subgroup H and difference set D. Then
(i) $u=h \geq 4$ is even, $v=|G|=h^{2}$, and

$$
\lambda=\frac{1}{4} h(h-2), \quad k=\frac{1}{2} h(h-1) ;
$$

(ii) each non-trivial coset $H g \neq H$ meets D in $h / 2$ points;
(iii) H contains the subgroup generated by all the involutions in G; (iv) any abelian (v, k, λ) DRAD difference set group is a 2-group.

Main Result

Main Theorem There are no (v, k, λ) DRAD difference set groups of order $4 p^{2}$, for an odd prime p.

Method of proof

There are at most 16 isomorphism classes of groups of order $4 p^{2}$
For the the proof of the Main Theorem we make use of a result of liams [3], who showed that any group of order $4 p^{2}$ (where $p>3$ is a prime) that has $\mathcal{C}_{p} \times \mathcal{C}_{2}^{2}$ as a factor group, does not have a $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ difference set. This leaves six groups.
We then consider each group individually, showing that none of these six groups can be a DRAD group
The techniques used are:

1. Find restrictions on the subgroup H. For example, since all involutions are in H, we check to see if the subgroup generated by the involutions has size greater than $h=2 p$. For example in some of the six groups the subgroup generated by the involutions has size $2 p^{2}>h$.
2. Once we have found normal subgroups H we eliminate some groups using the following result which is easy to check:
Lemma Suppose that G has a non-principal linear character χ.
If $\chi(H)=0$ and χ takes values in a field K where $i=\sqrt{-1} \notin K$, then G is not a DRAD group with subgroup H.
3. For the remaining three groups we do the following:

Let $D=\sum_{g \in G} \varepsilon_{g} g$ where $\varepsilon \in\{0,1\}$. Then we know:

$$
\begin{equation*}
\varepsilon_{g}^{2}=\varepsilon_{g}, \quad \varepsilon_{g}+\varepsilon_{g^{-1}}=1, \text { for } g \notin H, \quad \varepsilon_{g}=0 \text { for } g \in H \tag{1}
\end{equation*}
$$

Let $\mathbb{Z}\left[\varepsilon_{q}\right]_{g \in G}$ be the polynomial ring
Let \mathcal{I} denote the ideal of $\mathbb{Z}\left[\varepsilon_{g}\right]_{g \in G}$ generated by the relations in (1) and $2 \mathbb{Z}$. Let

$$
E=D D^{-1}-(\lambda(G-1)+k) \in \mathbb{Z}\left[\varepsilon_{g}\right]_{g \in G}
$$

and for $k \in G$ let E_{k} denote the coefficient of k in E. Then for $k \in G, k \neq 1$, we have $E_{k} \in \mathbb{Z}\left[\varepsilon_{g}\right]_{g \in G}$.

Proof ctd

We define

$$
Z_{k}=\sum_{i=0}^{p-1} E_{y^{i} k}=\sum_{i=0}^{p-1} \sum_{h \in G} \varepsilon_{y^{i} k h} \varepsilon_{h} \in \mathbb{Z}\left[\varepsilon_{g}\right] .
$$

The result then follows from showing that

$$
\mathbb{Z}\left[\varepsilon_{g}\right]_{g \in G} /\left\langle\mathcal{I},\left\{Z_{k}: k \in G \backslash H\right\}\right\rangle
$$

is the trivial ring
More specifically: we show that there are $a, b, c \in G \backslash H$ such that $Z_{a}+Z_{b}+Z_{c} \equiv 1 \quad \bmod \mathcal{I}$.

What is a DRAD?

DRAD stands for: Doubly regular asymmetric digraph: $D=(V, E)$:

1. $D($ or $E)$ is symmetric.
2. D is regular of valency k.
3. D is doubly regular of valency λ (for distinct $v_{1}, v_{2} \in V$ there are
λ vertices $v_{3} \in V$ such that $\left.\left(v_{i}, v_{3}\right) \in E, i=1,2\right)$.

References

References

[1] Davis, James A.; Polhill, John Difference set constructions of DRADs and association schemes. J. Combin. Theory Ser. A 117 (2010), no. 5, 598-605
[2] Courtney Hoagland, Stephen P. Humphries, Nathan Nicholson, Seth Poulsen, Difference Sets Disjoint from a Subgroup, Graphs and Combinatorics (2019) 35, 579-597
[3] liams, J., On difference sets in groups of order $4 p^{2}$, Journal of Comb. Theory A, (1996), 256-276
[4] Ito, Noboru Automorphism groups of DRADs. Group theory (Singapore, 1987), 151-170, de Gruyter, Berlin, (1989).

