

Abstract

We study finite groups G having a normal subgroup H and $D \subset$ **Main Theorem** There are no (v, k, λ) DRAD difference set groups of order $G \setminus H, D \cap D^{-1} = \emptyset$, such that the multiset $\{xy^{-1} : x, y \in D\}$ has $4p^2$, for an odd prime p. every non-identity element occur the same number of times (such a D is called a DRAD difference set). We show that there are no such groups of order $4p^2$, where p is an odd prime. Method of proof **Definitions and background** There are at most 16 isomorphism classes of groups of order $4p^2$. For the the proof of the Main Theorem we make use of a result of liams [3], For a group G we will identify a finite subset $X \subseteq G$ with the element who showed that any group of order $4p^2$ (where p > 3 is a prime) that has $\sum_{x \in X} x \in \mathbb{Q}G$ of the group algebra. We also let $X^{-1} = \{x^{-1} : x \in \mathbb{Q}\}$ $\mathcal{C}_p \times \mathcal{C}_2^2$ as a factor group, does not have a $(4p^2, 2p^2 - p, p^2 - p)$ difference set. X}. Write C_n for the cyclic group of order n. A (v, k, λ) difference set is a subset $D \subset G, |D| = k$, such that every This leaves six groups. element $1 \neq g \in G$ occurs λ times in the multiset $\{xy^{-1} : x, y \in D\}$. We then consider each group individually, showing that none of these six Here |G| = v. groups can be a DRAD group. Then [1, 4] a (v, k, λ) difference set is a (v, k, λ) DRAD difference The techniques used are: set (with subgroup H and difference set D) if it also satisfies the 1. Find restrictions on the subgroup H. For example, since all involutions are conditions: there is a subgroup $1 \neq H \triangleleft G$ such that in H, we check to see if the subgroup generated by the involutions has size (1) $D \cap D^{-1} = \emptyset;$ greater than h = 2p. For example in some of the six groups the subgroup (2) $G \setminus (D \cup D^{-1}) = H$. generated by the involutions has size $2p^2 > h$. A group G will be called a DRAD difference set group if there is a 2. Once we have found normal subgroups H we eliminate some groups DRAD difference set over G. DRAD difference sets are examples of using the following result which is easy to check: Hadamard (or Menon) difference sets Let **Lemma** Suppose that G has a non-principal linear character $h = |H|, \quad u = |G:H|.$ If $\chi(H) = 0$ and χ takes values in a field K where $i = \sqrt{-1}$ not a DRAD group with subgroup H. **Prior result** 3. For the remaining three groups we do the following: Let $D = \sum_{g \in G} \varepsilon_g g$ where $\varepsilon \in \{0, 1\}$. Then we know: **Previous Theorem** [2] Let G be a (v, k, λ) DRAD difference set $\varepsilon_q^2 = \varepsilon_q, \quad \varepsilon_q + \varepsilon_{q^{-1}} = 1, \text{ for } g \notin H, \quad \varepsilon_q = 0 \text{ for } g \in G$ group with subgroup H and difference set D. Then Let $\mathbb{Z}[\varepsilon_q]_{q\in G}$ be the polynomial ring. (i) $u = h \ge 4$ is even, $v = |G| = h^2$, and Let \mathcal{I} denote the ideal of $\mathbb{Z}[\varepsilon_q]_{q\in G}$ generated by the relations in (1) and $2\mathbb{Z}$. Let

$$\lambda = \frac{1}{4}h(h-2), \quad k = \frac{1}{2}h(h-1);$$

(ii) each non-trivial coset $Hg \neq H$ meets D in h/2 points;

(iii) H contains the subgroup generated by all the involutions in G; (iv) any abelian (v, k, λ) DRAD difference set group is a 2-group.

DIFFERENCE SETS DISJOINT FROM A SUBGROUP: GROUPS OF ORDER $4p^2$ Stephen P. Humphries and Nathan L. Nicholson Brigham Young University, Provo, Ut, USA

Main Result

 $E = DD^{-1} - (\lambda(G-1) + k) \in \mathbb{Z}[\varepsilon_q]_{q \in G}$

and for $k \in G$ let E_k denote the coefficient of k in E. Then for $k \in G, k \neq 1$, we have $E_k \in \mathbb{Z}[\varepsilon_q]_{q \in G}$.

$$\chi$$
.
 $\notin K$, then *G* is

We define:

$$Z_k = \sum_{i=0}^{p-1} E_{y^i k} = \sum_{i=0}^{p-1} \sum_{h \in G} \varepsilon_{y^i k h} \varepsilon_h \in Z$$

Proof ctd

The result then follows from showing that $\mathbb{Z}[\varepsilon_q]_{q\in G}/\langle \mathcal{I}, \{Z_k : k \in G \setminus H\}\rangle$

is the trivial ring.

More specifically: we show that there are $a, b, c \in G \setminus H$ such that $Z_a + Z_b + Z_c \equiv 1 \mod \mathcal{I}.$

What is a DRAD?

DRAD stands for: Doubly regular asymmetric digraph: D=(V,E): **1**. D (or E) is symmetric.

- 2. D is regular of valency k.
- 3. *D* is doubly regular of valency λ (for distinct $v_1, v_2 \in V$ there are
- λ vertices $v_3 \in V$ such that $(v_i, v_3) \in E, i = 1, 2$).

References

References

- [1] Davis, James A.; Polhill, John Difference set constructions of DRADs and association schemes. J. Combin. Theory Ser. A 117 (2010), no. 5, 598–605.
- [2] Courtney Hoagland, Stephen P. Humphries, Nathan Nicholson, Seth Poulsen, Difference Sets Disjoint from a Subgroup, Graphs and Combinatorics (2019) 35, 579–597
- [3] liams, J., On difference sets in groups of order $4p^2$, Journal of Comb. Theory A, (1996), 256–276.
- [4] Ito, Noboru Automorphism groups of DRADs. Group theory (Singapore, 1987), 151–170, de Gruyter, Berlin, (1989).

