Introduction

Let p be a prime, and G be a finite nonabelian p-group. By a celebrated theorem of Gaschütz [7], G admits a non-inner automorphism of p-power order. In 1973, Berkovich [9] proposed that every finite nonabelian p-group has a non-inner automorphism of order p. Using a cohomological result of P. Schmid [11], and [6] every finite nonabelian regular p-group has a non-inner automorphism of order p. In [6] Deaconescu and Silberberg proved the conjecture for groups satisfying the condition $C_{G}(Z(\Phi(G)) \neq \Phi(G)$. The conjecture was also proved for finite p-groups with $G / Z(G)$ is powerful, and for p-groups of maximal class by Adbollahi [2], for finite p-groups of class 3, and for finite p-groups of coclass 2 by Abdollahi et.al [3], [4], for finite p-groups of coclass 3 with the exception of $p=3$ by Ruscitti et.al [10], and for odd order p-groups G with $(G, Z(G))$ is a Camina pair by Ghoraishi [8]. In this paper we prove this conjecture for 2-generator finite p-groups ($p \geq 5$), and as an application we prove this conjecture for finite p-groups of coclass 4 and 5 . We achieve this using the notion of Camina triples.

Camina triples

Let $1<M \leq N$ be two proper normal subgroups of a finite group G. Then (G, N, M) is called a Camina triple if for every $g \in G \backslash N$, $1 \neq m \in M \exists t \in G$ such that $[g, t]=m$, and (G, N, M) is called a Frobenius triple if $C_{G}(x) \leq N$ for every $1 \neq x \in M$. The following theorem appeared in [5].
Let (G, N, M) be a Camina triple. The following are equivalent: (i) (G, N, M) is a Frobenius triple. (ii) $([G: N],|M|)=1$. (iii) There exists a subgroup $H \leq G$ such that $G=H N, H \cap M=1$.

Groups with non-cyclic center

Let m be a maximal subgroup of G. Let $z_{1}, z_{2} \in \Omega_{1}(Z(G))$ such that $\left\langle z_{1}\right\rangle \cap\left\langle z_{2}\right\rangle=1$, and $g \in G \backslash m$. We assume $Z(G) \leq Z(m)=C_{G}(m)$. Then $\exists \alpha_{i} \in \operatorname{Aut}(G)$ of order p such that $\alpha_{i}(g)=g z_{i}, i=i, 2$. If α_{i} is inner, $\exists t_{i} \in Z(m) \cap Z_{2}(G)$ such that $\left[g, t_{i}\right]=z_{i}$. Then we show $\left(G, m,\left\langle z_{i}\right\rangle\right)$ is a Camina triple. Set $H=\langle g\rangle$, we have $G=H m$. Noting ($G, m,\left\langle z_{i}\right\rangle$) is not a Frobenius triple, we get $H \cap\left\langle z_{i}\right\rangle=\left\langle z_{i}\right\rangle$, $i=1,2$. This yields $\left\langle z_{1}\right\rangle=\left\langle z_{2}\right\rangle$, a contradiction. This reduces the verification of the conjecture for groups having cyclic center.

Two-generator finite p-groups, $p \geq 5$

We assume $\left|\Omega_{1}(Z(G))\right|=p$, and $\left|\Omega_{1}\left(Z_{2}(G)\right)\right|=p^{2}$ or p^{3}. The conjecture for 2generator groups was studied in [1]. Accordingly $Z(\Phi(G)) \lesseqgtr Z\left(G^{p} \gamma_{3}(G)\right)=$ $C_{G}\left(G^{p} \gamma_{3}(G)\right)$, and
$\left|\Omega_{1}\left(Z_{2}(G)\right)\right|^{2} \leq \frac{\left|Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right|}{|Z(G)|} \leq\left|\Omega_{1}\left(Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right)\right|$. (1) - We have $\left|\frac{G}{G^{\rho_{2}}(G)}\right|=p^{3}$, and has a presentation $\left\langle x, y \mid x^{p}, y^{p},[y, x, x],[y, x, y]\right\rangle$. Consider $\psi: \Omega_{1}\left(Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right) \times$ $\Omega_{1}\left(Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right) \rightarrow \Omega_{1}(Z(G)) \times \Omega_{1}(Z(G))$
$(a, b) \mapsto([b, x, x][y, a, x][y, x, a],[b, x, y][y, a, y][y, x, b])$.
For every $(a, b) \in \operatorname{ker}(\psi)$, we show $a, b \in Z\left(G^{p} \gamma_{4}(G)\right)$, $[y, a][x, b] \in$ $\Omega_{1}(Z(G))$, and $a, b \in Z(\Phi(G))$.

- Let $\left|\Omega_{1}\left(Z_{2}(G)\right)\right|=p^{2}$. Then $\Omega_{1}\left(Z_{2}(G)\right)$ commutes with y. We deduce $|\operatorname{ker}(\psi)| \leq p^{5}$. Then $\left|\Omega_{1}\left(Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right)\right|^{2} \leq p^{7}$, contradicts (1).
- Let $\left[G: G^{p} \gamma_{4}(G)\right]=p^{5}$, and G has a presentation F / R. Then $R \leq$ $F^{p} \gamma_{4}(F)$. Consider $\psi_{1}: \Omega_{1}\left(Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right) \rightarrow \Omega_{1}(Z(G)) \times \Omega_{1}(Z(G))$,

$$
a \mapsto([y, a, x][y, x, a],[y, a, y]) .
$$

Let $a \in \operatorname{ker}\left(\psi_{1}\right)$. By Von dyck's theorem, $\exists \alpha_{1 a} a_{y \rightarrow y a b}^{x \rightarrow x a} \in \operatorname{Aut}(G)$. We show $\alpha_{1 a}$ has order p. If $\alpha_{1 a}$ is inner $\forall a \in \operatorname{ker}\left(\psi_{1}\right)$, we obtain $\left|\Omega_{1}\left(Z_{2}(G)\right)\right|=p^{2}$.

- If $\left[G: G^{p} \gamma_{4}(G)\right]=p^{4}$, then $\frac{G}{G^{T} \gamma_{4}(G)}$ is of maximal class, and has a presentation $\left\langle s, s_{1} \mid s^{p}, s_{1}^{p},\left[s_{1}, s, s_{1}\right],\left[s_{1}, s, s, s_{1}\right],\left[s_{1}, s, s, s\right]\right\rangle$ [10, Theorem 2.14]. Consider $\psi_{2}: \Omega_{1}\left(Z\left(G^{p} \gamma_{3}(G)\right) \cap Z_{3}(G)\right) \rightarrow \Omega_{1}(Z(G)) \times \Omega_{1}(Z(G))$

$$
a \mapsto\left(\left[s_{1}, a, s\right]\left[s_{1}, s, a\right],\left[s_{1}, a, s_{1}\right]\right) .
$$

We show that $\operatorname{ker}\left(\psi_{2}\right) \in \Omega_{1}\left(Z_{2}(G)\right)$, and deduce $\left|\Omega_{1}\left(Z_{2}(G)\right)\right|=p^{2}$.

- Note that $\left[G^{p} \gamma_{3}(G): G^{p} \gamma_{4}(G)\right] \leq p^{2}$. If $G^{p} \gamma_{3}(G)=G^{p} \gamma_{4}(G)$, we have $\gamma_{3}(G) \leq G^{p}$. Then G is potent, hence $\left|\Omega_{1}(G)\right|=\left[G: G^{p}\right]=p^{3}$. Now the conjecture holds for G by (1).

Groups with small cocalss

Let $p \geq 3$, and G be a finite nonabelian p-group of coclass c. If $c \leq\left(\begin{array}{c}d(G)+1) \text {, } \\ \text { 2 }\end{array}\right.$ then G has a non-inner automorphism of order p [12, Proposition 3.3]. Thus if G is of coclass 4 or coclass 5 then the verification of the conjecture reduces to $d(G)=2$. Hence the conjecture holds for p-groups of coclass 4,5 when $p \geq 5$.

Acknowledgements

I would like to thank my advisor Viji Z Thomas for valuable suggestions and constant support.

References

References

[1] A. Abdollahi and S. M. Ghoraishi, On noninner automorphisms of 2-generator finite p-groups, Comm. Algebra 45 (2017), no. 8, 3636-3642.
[2] Alireza Abdollahi, Powerful p-groups have non-inner automorphisms of order p and some cohomology, J. Algebra 323 (2010), no. 3, 779-789.
[3] Alireza Abdollahi, Mohsen Ghoraishi, and Bettina Wilkens, Finite p-groups of class 3 have noninner automorphisms of order p, Beitr. Algebra Geom. 54 (2013), no. 1, 363-381.
[4] Alireza Abdollahi, Seyed Mohsen Ghoraishi, Yassine Guerboussa, Miloud Reguiat, and Bettina Wilkens, Noninner automorphisms of order p for finite p-groups of coclass 2, J. Group Theory 17 (2014), no. 2, 267-272.
[5] Shawn T. Burkett and Mark L. Lewis, A Frobenius group analog for Camina triples, J. Algebra 568 (2021), 160-180.
[6] Marian Deaconescu and Gheorghe Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra 250 (2002), no. 1, 283-287
[7] Wolfgang Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. Algebra 4 (1966), 1-2.
[8] S. Mohsen Ghoraishi, A note on automorphisms of finite pgroups, Bull. Aust. Math. Soc. 87 (2013), no.1, 24-26.
[9] V. D. Mazurov and E. I. Khukhro (eds.), Unsolved problems in group theory. The Kourovka notebook, augmented ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995.
[10] Marco Ruscitti, Leire Legarreta, and Manoj K. Yadav, Noninner automorphisms of order p in finite p-groups of coclass 3, Monatsh. Math. 183 (2017), no.4, 679-697.
[11] Peter Schmid, A cohomological property of regular p-groups, Math. Z 175 (1980), no.1, 1-3.
[12] P. Komma , A note on non-inner automorphism conjecture, arXiv:2103.08320.

