A NOTE ON NON-INNER AUTOMORPHISM CONJECTURE

Introduction

Let p be a prime, and G be a finite nonabelian p-group. By a celebrated theorem of Gaschütz [7], G admits a non-inner automorphism of p-power order. In 1973, Berkovich [9] proposed that every finite nonabelian *p*-group has a non-inner automorphism of order p. Using a cohomological result of P. Schmid [11], and [6] every finite nonabelian regular p-group has a non-inner automorphism of order p. In [6] Deaconescu and Silberberg proved the conjecture for groups satisfying the condition $C_G(Z(\Phi(G)) \neq \Phi(G))$. The conjecture was also proved for finite p-groups with G/Z(G) is powerful, and for *p*-groups of maximal class by Adbollahi [2], for finite *p*-groups of class 3, and for finite p-groups of coclass 2 by Abdollahi et.al [3], [4], for finite p-groups of coclass 3 with the exception of p = 3 by Ruscitti et.al [10], and for odd order p-groups G with (G, Z(G)) is a Camina pair by Ghoraishi [8]. In this paper we prove this conjecture for 2-generator finite p-groups $(p \ge 5)$, and as an application we prove this conjecture for finite p-groups of coclass 4 and 5. We achieve this using the notion of Camina triples.

Camina triples

Let $1 < M \leq N$ be two proper normal subgroups of a finite group G. Then (G, N, M) is called a Camina triple if for every $g \in G \setminus N$, $1 \neq m \in M \exists t \in G$ such that [g,t] = m, and (G,N,M) is called a Frobenius triple if $C_G(x) \leq N$ for every $1 \neq x \in M$. The following theorem appeared in [5].

Let (G, N, M) be a Camina triple. The following are equivalent: (i)(G, N, M) is a Frobenius triple. (ii) ([G : N], |M|) = 1. (iii) There exists a subgroup $H \leq G$ such that G = HN, $H \cap M = 1$.

Groups with non-cyclic center

Let m be a maximal subgroup of G. Let $z_1, z_2 \in \Omega_1(Z(G))$ such that $\langle z_1 \rangle \cap \langle z_2 \rangle = 1$, and $g \in G \setminus m$. We assume $Z(G) \leq Z(m) = C_G(m)$. Then $\exists \alpha_i \in Aut(G)$ of order p such that $\alpha_i(g) = gz_i$, i = i, 2. If α_i is inner, $\exists t_i \in Z(m) \cap Z_2(G)$ such that $[g, t_i] = z_i$. Then we show $(G, m, \langle z_i \rangle)$ is a Camina triple. Set $H = \langle g \rangle$, we have G = Hm. Noting $(G, m, \langle z_i \rangle)$ is not a Frobenius triple, we get $H \cap \langle z_i \rangle = \langle z_i \rangle$, i = 1, 2. This yields $\langle z_1 \rangle = \langle z_2 \rangle$, a contradiction. This reduces the verification of the conjecture for groups having cyclic center.

P.Komma

Indian Institute of Science Education and Research Thiruvananthapuram

Two-generator finite *p*-groups, $p \ge 5$

We assume $|\Omega_1(Z(G))| = p$, and $|\Omega_1(Z_2(G))| = p^2$ or p^3 . The conjecture for 2generator groups was studied in [1]. Accordingly $Z(\Phi(G)) \leq Z(G^p\gamma_3(G)) =$ $C_G(G^p\gamma_3(G))$, and

 $|\Omega_1(Z_2(G))|^2 \le \frac{|Z(G^p\gamma_3(G)) \cap Z_3(G)|}{|Z(G)|} \le |\Omega_1(Z(G^p\gamma_3(G)) \cap Z_3(G))|.$ (1)

• We have $\left|\frac{G}{G^{p}\gamma_{2}(G)}\right|$ = p^{3} , and has a presentation $\langle x, y \mid x^p, y^p, [y, x, x], [y, x, y] \rangle$. Consider $\psi : \Omega_1(Z(G^p\gamma_3(G)) \cap Z_3(G)) \times$ $\Omega_1(Z(G^p\gamma_3(G))) \cap Z_3(G)) \to \Omega_1(Z(G)) \times \Omega_1(Z(G))$

 $(a,b) \mapsto ([b,x,x][y,a,x][y,x,a], [b,x,y][y,a,y][y,x,b]).$ For every $(a,b) \in \ker(\psi)$, we show $a,b \in Z(G^p\gamma_4(G))$, $[y,a][x,b] \in$ $\Omega_1(Z(G))$, and $a, b \in Z(\Phi(G))$.

- Let $|\Omega_1(Z_2(G))| = p^2$. Then $\Omega_1(Z_2(G))$ commutes with y. We deduce $|\ker(\psi)| \le p^5$. Then $|\Omega_1(Z(G^p\gamma_3(G)) \cap Z_3(G))|^2 \le p^7$, contradicts (1).
- Let $[G : G^p \gamma_4(G)] = p^5$, and G has a presentation F/R. Then $R \leq 1$ $F^p\gamma_4(F)$. Consider $\psi_1: \Omega_1(Z(G^p\gamma_3(G)) \cap Z_3(G)) \to \Omega_1(Z(G)) \times \Omega_1(Z(G)),$ $a \mapsto ([y, a, x][y, x, a], [y, a, y]).$

Let $a \in \ker(\psi_1)$. By Von dyck's theorem, $\exists \alpha_{1a} |_{y \mapsto ya}^{x \mapsto xa} \in Aut(G)$. We show α_{1a} has order p. If α_{1a} is inner $\forall a \in \ker(\psi_1)$, we obtain $|\Omega_1(Z_2(G))| = p^2$.

• If $[G : G^p \gamma_4(G)] = p^4$, then $\frac{G}{G^p \gamma_4(G)}$ is of maximal class, and has a presentation $\langle s, s_1 | s^p, s_1^p, [s_1, s, s_1], [s_1, s, s, s_1], [s_1, s, s, s_1] \rangle$ [10, Theorem 2.14]. Consider $\psi_2 : \Omega_1(Z(G^p\gamma_3(G)) \cap Z_3(G)) \to \Omega_1(Z(G)) \times \Omega_1(Z(G))$

 $a \mapsto ([s_1, a, s][s_1, s, a], [s_1, a, s_1]).$

We show that $\ker(\psi_2) \in \Omega_1(Z_2(G))$, and deduce $|\Omega_1(Z_2(G))| = p^2$.

• Note that $[G^p\gamma_3(G) : G^p\gamma_4(G)] \leq p^2$. If $G^p\gamma_3(G) = G^p\gamma_4(G)$, we have $\gamma_3(G) \leq G^p$. Then G is potent, hence $|\Omega_1(G)| = [G : G^p] = p^3$. Now the conjecture holds for G by (1).

Groups with small cocalss

Let $p \geq 3$, and G be a finite nonabelian p-group of coclass c. If $c \leq \binom{d(G)+1}{2}$, then G has a non-inner automorphism of order p [12, Proposition 3.3]. Thus if G is of coclass 4 or coclass 5 then the verification of the conjecture reduces to d(G) = 2. Hence the conjecture holds for p-groups of coclass 4, 5 when $p \ge 5$.

Acknowledgements

I would like to thank my advisor Viji Z Thomas for valuable suggestions and constant support.

References

References

- [1] A. Abdollahi and S. M. Ghoraishi, *On noninner automorphisms* of 2-generator finite *p*-groups, Comm. Algebra **45** (2017), no. 8, 3636–3642.
- [2] Alireza Abdollahi, *Powerful p-groups have non-inner automor*phisms of order p and some cohomology, J. Algebra 323 (2010), no. 3, 779–789.
- [3] Alireza Abdollahi, Mohsen Ghoraishi, and Bettina Wilkens, Finite *p*-groups of class 3 have noninner automorphisms of order *p*, Beitr. Algebra Geom. **54** (2013), no. 1, 363–381.
- [4] Alireza Abdollahi, Seyed Mohsen Ghoraishi, Yassine Guerboussa, Miloud Reguiat, and Bettina Wilkens, Noninner auto*morphisms of order p for finite p-groups of coclass 2*, J. Group Theory **17** (2014), no. 2, 267–272.
- [5] Shawn T. Burkett and Mark L. Lewis, *A Frobenius group analog* for Camina triples, J. Algebra 568 (2021), 160–180.
- [6] Marian Deaconescu and Gheorghe Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra **250** (2002), no. 1, 283–287.
- [7] Wolfgang Gaschütz, Nichtabelsche p-Gruppen besitzen *äussere p-Automorphismen*, J. Algebra 4 (1966), 1–2.
- [8] S. Mohsen Ghoraishi, A note on automorphisms of finite pgroups, Bull. Aust. Math. Soc. 87 (2013), no.1, 24–26.
- [9] V. D. Mazurov and E. I. Khukhro (eds.), Unsolved problems in group theory. The Kourovka notebook, augmented ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 1995.
- [10] Marco Ruscitti, Leire Legarreta, and Manoj K. Yadav, Noninner automorphisms of order p in finite p-groups of coclass 3, Monatsh. Math. 183 (2017), no.4, 679–697.
- [11] Peter Schmid, A cohomological property of regular p-groups, Math. Z **175** (1980), no.1, 1–3.
- [12] P. Komma, A note on non-inner automorphism conjecture, arXiv:2103.08320.

