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Section

Restricted Burnside Problem- RBP
(formulated in the 1930s)
Is it true that for each m,n there are only finitely many finite
m−generated groups of exponent n?
In the case of the prime exponent p, this problem was positevely
proved by A. I. Kostrikin during the 1950s. Using Hall-Higman Re-
duction Theorem (1956) and the classification of simple groups the
case of arbitrary exponent has been completely settled in the affir-
mative by Efim Zelmanov, [2],[3] who was awarded the Fields Medal
in 1994 for his work.
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Let L be a set endowed with a binary operation ·.
(L, ·) is a quasigroup if the mappings La, Rb are bijections, ∀a, b ∈ L
left multiplication Lax = ax right multiplication Rby = yb
multiplication group Mult(L) - group generated by {La, Rb}a,b∈L
The quasigroup (L, ·, 1) is a loop if there exists a two-sided neutral
element 1.
inner mapping group Int(L) = {φ ∈Mult(L) | φ(1) = 1}
As common a normal subloop is the kernel of loop homomorphism.
A subloop is normal if and only if it is invariant under inner map-
pings.
A loop L is called automorphic if Int(L) ≤ Aut(L) and L is called
left automorphic if the mappings L−1xy ◦ Lx ◦ Ly are automorphisms

of L.

nuclei of loop L
N(L) = {x ∈ L | (x, a, b) = (a, x, b) = (a, b, x) = 1∀a, b,∈ L},
where (ab)c = a(bc)(a, b, c), and center of loop L
C(L) = {x ∈ N(L) | [x, a] = 1∀a,∈ L}, where ab = ba[a, b]

By definition abelian group is centrally nilpotent of class 1.
A loop L is centrally nilpotent of class n, if L/C(L) is centrally
nilpotent of class n− 1.
Analogously, one can define the nuclear nilpotency for loop L.
A loop U is called a Moufang loop if it satisfies the following
identities:

(xy)(zx) = x(yz)x

A (nonassociative) algebra is called a Malcev algebra if it satisfies
the identities

xy = −yx, (xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y
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As the first result on RBP for Moufang loops one can consider the following
Theorem(R.H. Bruck) (1958)
For commutative Moufang loops the RBP has a positive solution.
More precisely, R.H.Bruck proved, that the index of central nilpotency of any
commutative Moufang loop with n generators does not exceed n− 1.
For Moufang loops of prime exponent the positive solution of RBP was
proved by A. Grishkov (1987) (if p 6= 3) and G. Nagy (2001) (if p = 3).
It is analogue of Theorem of A.I.Kostrikin for groups.
Theorem(P.Plaumann, LS)(2008)
For automorphic Moufang loops the RBP has a positive solution.
This theorem generalizes Bruck Theorem. More general, the class of nucle-
arly nilpotent loops, which have the positive solution for RBP was described.
Conjecture
For left automorphic Moufang loops the RBP has a positive solution.
Main Theorem (A.Grishkov, LS, E.Zelmanov) (2020)[1]
There is a finite number of finite Moufang loops M of m generators, such
that xn = 1, x ∈M, n = pk, p is a prime > 3.
Sketch of proof:
Moufang loops⇒Groups with triality⇒Lie algebras with triality⇒ Mal-
cev algebras⇒Filippov result + Zelmanov results⇒Main Theorem
A group G with automorphisms ρ and σ is called a group with triality if
ρ3 = σ2 = (ρσ)2 = 1 and

[x, σ][x, σ]ρ[x, σ]ρ
2

= 1

for every x ∈ G, where [x, σ] = x−1xσ. [1]
Let G be a group with triality. Let U = {[x, σ]|x ∈ G}. Then the subset U
endowed with the multiplication

a · b = (a−1)ρb(a−1)ρ
2

; a, b ∈ U
becomes a Moufang loop.Every Moufang loop U can be obtained in this way
from a suitable group with triality, which is finite if U is finite. Moreover, if p is
a prime number, then a finite Moufang p-loop can be obtained from a finite
p-group with triality
Let Fp be a field of order p, let G be a group. Zassenhaus filtration of a group
G leads to a Lie p-algebra Lp(G).
We call a Lie algebra (resp. Lie p-algebra) L with automorphisms ρ, σ a
Lie algebra with triality if ρ3 = σ2 = (ρσ)2 = 1 and for an arbitrary element
x ∈ L we have

(xσ − x) + (xσ − x)ρ + (xσ − x)ρ2 = 0.
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Lie algebras with triality and Malcev algebras
Lemma
Let G be a group with triality and let p be a prime number. Then
Lp(G) is a Lie p-algebra with triality.

Lemma
Let L be a Lie algebra with triality over a field of characteristic 6=
2, 3. Let H = {x ∈ L|xσ = −x}. Then H is a Malcev algebra with
multiplication

a ∗ b = [a + 2aρ, b] = [aα, b],

where a, b ∈ H, α = 1 + 2ρ.
Lemma(V.T. Filippov) A finitely generated solvable Malcev algebra
over a field of characteristic > 3 is nilpotent if and only if each of its
Lie homomorphic images is nilpotent.
Using this lemma and the technique developed by E.Zelmanov
[2],[3] we get the Main Theorem

Acknowledgements

Our thanks go to UCMEXUS programm, grant FAPESP and apoyo
PRODEP-UAEM-35a-2020.

References

References

[1] A.Grishkov, L.Sabinina, E.Zelmanov Restricted Burnside
Problem for Moufang Loop arXiv:2005.11824(2020)

[2] E.I. Zelmanov, Solution of the restricted Burnside problem for
groups of odd exponent, Izv. Akad. Nauk SSSR Ser. Mat. 54
(1990), no. 1, 42-59,221
.

[3] E. I. Zelmanov, Solution of the restricted Burnside problem for
2-groups, Mat. Sb. 182 (1991), no. 4, 568-592


