Covering groups

A covering group of an elementary abelian group of order $p^{(n)}$ is a group G of order $p^{n+\binom{n}{2}}$ consisting of the following data:

- G has generators x_1, \ldots, x_n
- The commutator subgroup of G is equal to the center and is an elementary abelian group of order $p^{\binom{n}{2}}$ or rank $\binom{n}{2}$ generated by) simple commutators $[x_i, x_j]$
- G/Z(G) is an elementary abelian group of order $p^{(n)}$, generated by $\bar{x}_1, \ldots, \bar{x}_n$, where \bar{x} denotes the coset xZ of Z in G.

Uniform covering group

Definition 1. A covering group G of C_2^n is uniform if it has a generating set consisting of n elements all having the same square. Such a generating set is called a uniform basis.[1]

Let G be a uniform covering group of C_2^n with uniform basis $\{x_1, \ldots, x_n\}$. Then $x_t^2 = r$ for each t, and r may be represented as a simple graph on vertices labelled by x_1, \ldots, x_n , where two vertices are adjacent if and only if the corresponding commutator appears in

Theorem 1. The above description determines a bijective correspondence between the isomorphism types of uniform covering groups of C_2^n and the isomorphism types of simple graphs of order n.**[2]**

The 2-uniform case

Definition 2. A covering group of C_2^n is called 2-uniform if it is not uniform, and it possesses a generating set with n elements having two distinct squares.

Let G be a 2-uniform covering group of $C_2^{(n)}$. A 2-uniform basis of G is a generating set $\{x_1, \ldots, x_k, x_{k+1}, \ldots, x_n\}$, where

• x_i in G for $i = 1, \ldots, k$: where $x_i^2 = r$, and x_j , for $j = k + 1, \ldots, n$: where $x_i^2 = s \neq r$, and

COVERING GROUPS OF ELEMENTARY ABELIAN GROUPS **Dana Saleh¹** and **Dr. Rachel Quinlan²**

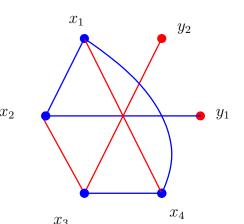
¹Zayed University, Dubai ²National University of Ireland, Galway

- $k \geq \frac{n}{2}$, and
- No element of G is the square of elements from more than k distinct cosets of G' in G.

We may associate graphs (with two colours on both the vertices and edges) with 2-uniform covering groups as in the following example.

Example 1. Let $G = \langle x_1, x_2, x_3, x_4, y_1, y_2 \rangle$, where

- $x_1^2 = x_2^2 = x_3^2 = x_4^2 = r = [x_1, x_2][x_1, x_4][x_2, y_1][x_3, x_4]$,
- $y_1^2 = y_2^2 = s = [x_2, x_3][x_1, x_4][x_3, y_2].$



Theorem 2. If $n - k \ge 4$, and neither r nor s is described by a complete subgraph of even order with respect to a 2-uniform basis, then the correspondence between isomorphism types of groups and graphs is one-to-one.

The situation is more complicated when $n - k \leq 3$, where we may have multiple choices for the element s

Example 2. n = 7, k = 5, $G = \langle x_1, x_2, \dots, x_5, x_6, x_7 \rangle$ is a 2-uniform covering group, and $\mathcal{B}_1 = \{x_1, \ldots, x_7\}$ is a 2-uniform basis of G where: • $x_i^2 = [x_5, x_6][x_1, x_4][x_1, x_7][x_4, x_7] = r$ for $i = 1, \dots, 5$

- $x_6^2 = x_7^2 = s = [x_2, x_3][x_1, x_4][x_2, x_4][x_5, x_7].$
- We write $C_1 = [x_5, x_6]$, corresponding to the complete graph on the vertices x_5 and x_6 .
- We write $C_2 = [x_1, x_4][x_1, x_7][x_4, x_7]$, corresponding to the complete graph on x_1, x_4, x_7 .

Write $y_6 = x_5 x_6$ and $y_7 = x_1 x_4 x_7$. Then

 $y_6^2 = x_5^2 x_6^2 [x_5, x_6] = rsC_1 = sC_2$

and

$$y_7^2 = x_1^2 x_4^2 x_7^2 [x_1, x_4] [x_1, x_7] [x_4, x_7] = sC_2$$

so $y_6^2 = y_7^2 = s' \neq s$ and $\mathcal{B}_2 = \{x_1, \ldots, y_6, y_7\}$ is another 2-uniform basis of G_{\bullet}

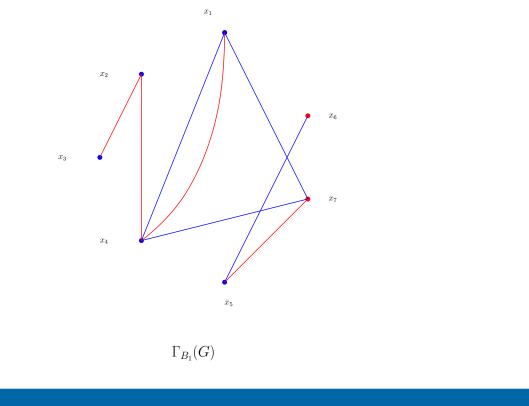
The expression for s' in terms of the basis elements of \mathcal{B}_2 is given by

 $s' = sC_2$

 $= [x_2, x_3][x_1, x_4][x_2, x_4][x_5, x_7][x_1, x_4][x_1, x_7][x_4, x_7]$ $= [x_2, x_3][x_2, x_4][x_5, x_1x_4y_7][x_1, x_1x_4y_7][x_4, x_1x_4y_7]$

 $= [x_2, x_3][x_2, x_4][x_1, x_5][x_4, x_5][x_5, y_7][x_1, y_7][x_4, y_7].$

The graphs of G with respect to \mathcal{B}_1 and \mathcal{B}_2 are shown below. They are clearly not isomorphic as graphs, yet they represent the same 2-uniform covering group of C_2^7 .



Next steps

The immediate goal is to identify a class of graphs that correspond exactly to the isomorphism classes of 2-uniform covering groups of C_2^n . This task is almost completed but requires careful analysis of special cases such as that in Example 2 above.

References

References

- [1] R. Gow and R. Quinlan, Covering groups of rank 1 of ele*mentary abelian groups*, Common. Algebra, **34(4):1419–1433** (2006).
- [2] R. Quinlan, *Real elements and real-valued characters of cover*ing groups of elementary abelian 2-groups, Common. Algebra, **275(1):191–211** (2004).

