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Covering groups

A covering group of an elementary abelian group of order p(n) is a
group G of order pn+(n2) consisting of the following data:
•G has generators x1, . . . , xn

•The commutator subgroup of G is equal to the center and is an
elementary abelian group of order p(n2) or rank

(
n
2

)
generated by(

n
2

)
simple commutators [xi, xj]

•G/Z(G) is an elementary abelian group of order p(n), generated
by x̄1, . . . , x̄n, where x̄ denotes the coset xZ of Z in G.

Uniform covering group

Definition 1. A covering group G of Cn
2 is uniform if it has a gener-

ating set consisting of n elements all having the same square. Such
a generating set is called a uniform basis.[1]

Let G be a uniform covering group of Cn
2 with uniform basis

{x1, . . . , xn}. Then x2
t = r for each t, and r may be represented as a

simple graph on vertices labelled by x1, . . . , xn, where two vertices
are adjacent if and only if the corresponding commutator appears in
r.

Theorem 1. The above description determines a bijective corre-
spondence between the isomorphism types of uniform covering
groups of Cn

2 and the isomorphism types of simple graphs of order
n.[2]

The 2-uniform case

Definition 2. A covering group of Cn
2 is called 2-uniform if it is not

uniform, and it possesses a generating set with n elements having
two distinct squares.

Let G be a 2-uniform covering group of C(n)
2 . A 2-uniform basis of G

is a generating set {x1, . . . , xk, xk+1, . . . , xn}, where

• xi in G for i = 1, . . . , k: where x2
i = r, and xj, for j = k + 1, . . . , n:

where x2
j = s 6= r, and

• k ≥ n
2 , and

•No element of G is the square of elements from more than k distinct cosets
of G′ in G.

We may associate graphs (with two colours on both the vertices and edges)
with 2-uniform covering groups as in the following example.

Example 1. Let G = 〈x1, x2, x3, x4, y1, y2〉, where

• x2
1 = x2

2 = x2
3 = x2

4 = r = [x1, x2][x1, x4][x2, y1][x3, x4],

• y2
1 = y2

2 = s = [x2, x3][x1, x4][x3, y2].
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Theorem 2. If n − k ≥ 4, and neither r nor s is described by a complete
subgraph of even order with respect to a 2-uniform basis, then the corre-
spondence between isomorphism types of groups and graphs is one-to-one.

The situation is more complicated when n − k ≤ 3, where we may have
multiple choices for the element s

Example 2.n = 7, k = 5, G =< x1, x2, . . . , x5, x6, x7 > is a 2-uniform cover-
ing group, and B1 = {x1, . . . , x7} is a 2-uniform basis of G where:

• x2
i = [x5, x6][x1, x4][x1, x7][x4, x7] = r for i = 1, . . . , 5

• x2
6 = x2

7 = s = [x2, x3][x1, x4][x2, x4][x5, x7].

•We write C1 = [x5, x6], corresponding to the complete graph on the vertices
x5 and x6.

•We write C2 = [x1, x4][x1, x7][x4, x7], corresponding to the complete graph
on x1, x4, x7.

Write y6 = x5x6 and y7 = x1x4x7. Then

y2
6 = x2

5x
2
6[x5, x6] = rsC1 = sC2

and
y2

7 = x2
1x

2
4x

2
7[x1, x4][x1, x7][x4, x7] = sC2

so y2
6 = y2

7 = s′ 6= s and B2 = {x1, . . . , y6, y7} is another 2-uniform basis of
G.

The expression for s′ in terms of the basis elements of B2 is given
by

s′ = sC2

= [x2, x3][x1, x4][x2, x4][x5, x7][x1, x4][x1, x7][x4, x7]

= [x2, x3][x2, x4][x5, x1x4y7][x1, x1x4y7][x4, x1x4y7]

= [x2, x3][x2, x4][x1, x5][x4, x5][x5, y7][x1, y7][x4, y7].

The graphs of G with respect to B1 and B2 are shown below. They
are clearly not isomorphic as graphs, yet they represent the same
2-uniform covering group of C7

2 .
x1

x2

x3

x4

x5

x6

x7

x1

x2

x3

x4

x5

y6

y7

ΓB2
(G)ΓB1

(G)

Next steps

The immediate goal is to identify a class of graphs that correspond
exactly to the isomorphism classes of 2-uniform covering groups
of Cn

2 . This task is almost completed but requires careful analysis
of special cases such as that in Example 2 above.
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