Co-prime Graph of Finite Groups

Abstract

Let G be a finite group. The coprime graph Γ_{G} is define by for any two distinct vertices v_{i} and v_{j} of the vertex set are join if and only if $\operatorname{gcd}\left(\left|v_{i}\right|,\left|v_{j}\right|\right)=1$. In the paper, we discussed the computing of the numbe $g c a\left(\left|v_{i}\right|, v_{j} \mid\right)=1$. In the paper, we discussed the computing of the number
edges of some of the finite group Cyclic group C_{n}, Dihedral Group $D_{2 n}$ and Dicyclic group $T_{4 n}$.

Introduction

Let Γ be a simple graph. The degree of $v \in V(\Gamma)$ is denoted by $\operatorname{deg}(v)$. The set of vertices which are adjacent to v is denoted by $N(\Gamma(v))$ and the set of edges denoted by $E(\Gamma)=\{(x, y) \mid$ $\operatorname{gcd}(|x|,|y|)=1\}$

The Coprime Graph of a finite group G denoted by Γ_{G} was introduced by Ma et. all in [9] in the year 2014. The graph Γ_{G} has vertex set as elements of the group G and any two vertices v_{i} and v_{j} are adjacent in Γ_{G} if and only if $\operatorname{gcd}\left(o\left(v_{i}\right), o\left(v_{j}\right)\right)=1$ where $o\left(v_{i}\right), o\left(v_{j}\right)$ denote the order of the elements v_{i} and v_{j} respectively. They studied various graph theoretic properties of Γ_{G} namely number of edges and vertices degree sequences of Γ_{G}. Also several properties of the graph Γ_{G} when G is the cyclic group and dihedral group when n is prime number was studied by the authors. In [6], Dorbidi extended the results obtained in [7]. For more graphs, see [1], [2], [3], [4], [5] and [8].For example, Fig. 1 is the coprime graph of C_{6}, D_{6} and T_{8} denoted by $\Gamma_{C_{6}}, \Gamma_{D_{6}}, \Gamma_{T_{8}}$ respectively. It is easy to see that the coprime graph on G is simple

Main Results

In this section we presented some of the results about co-prime graph of the some of standard groups is define by the following:

$$
\begin{gathered}
C_{n}=\left\langle a \mid a^{n}=e\right\rangle \\
D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=e, b a b=a^{-1}\right\rangle
\end{gathered}
$$

$$
T_{4 n}=\left\langle a, b \mid a^{2 n}=b^{4}=e, a^{n}=b^{2}, b a b^{-1}=a^{-1}\right\rangle
$$

The vertices degree sequences matrix $\triangle\left(\Gamma_{G}\right)$ is the degree sequence of a graph Γ_{G} is just a list of the degrees of each vertex in $V\left(\Gamma_{G}\right)$ is define by

$$
\triangle\left(\Gamma_{G}\right)=\left(\begin{array}{cccc}
\operatorname{deg}\left(v_{1}\right) & \operatorname{deg}\left(v_{2}\right) & \cdots & \operatorname{deg}\left(v_{k}\right) \\
\mu\left(\operatorname{deg}\left(v_{1}\right)\right) & \mu\left(\operatorname{deg}\left(v_{2}\right)\right) & \cdots & \mu\left(\operatorname{deg}\left(v_{k}\right)\right)
\end{array}\right)
$$

where $\operatorname{deg}\left(v_{i}\right)$ is a distinct degree vertices of Γ_{G} and their $\mu\left(\operatorname{deg}\left(v_{i}\right)\right)$ is the multiplicities for $\operatorname{deg}\left(v_{i}\right)$.

Theorem. Let $n=\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$ be integer number, the degree sequences matrix of cyclic group is given by the following:

$$
\triangle\left(\Gamma_{C_{n}}\right)=\left(\begin{array}{ccccc}
1 & p_{i}^{\alpha_{i}}-1 & \left(p_{i}^{\alpha_{i}}-1\right)\left(p_{j}^{\alpha_{j}}-1\right) & \cdots & \prod_{i=1}^{s} p_{i}^{\alpha_{i}}-1 \\
n-1 & \frac{n}{p_{i}^{\alpha_{i}}} & \frac{n}{p_{i}^{\alpha_{i}} p_{j}^{\alpha_{j}}} & \cdots & \frac{n}{p_{i}^{\alpha_{i}} p_{j}^{\alpha_{j}} \ldots p_{s}^{\alpha_{s}}}
\end{array}\right)
$$

Corollary. Let n be a positive integer number, the degree sequences matrix is given by the following:

1. If $n=p^{\alpha}$, then :

$$
\triangle\left(\Gamma_{C_{n}}\right)=\left(\begin{array}{cc}
1 & n-1 \\
n-1 & 1
\end{array}\right)
$$

2. If $n=2^{r} p^{\alpha}$, then :

$$
\triangle\left(\Gamma_{C_{n}}\right)=\left(\begin{array}{cccc}
1 & 2^{r}-1 & p^{\alpha}-1 & \left(2^{r}-1\right)\left(p^{\alpha}-1\right) \\
n-1 & \frac{n}{2^{r}} & \frac{n}{p^{\alpha}} & 1
\end{array}\right)
$$

Theorem.Let $n=p^{\alpha}, p$ be an odd prime number, the degree se quences matrix of co-prime graph of the dihedral group is given by the following:

$$
\triangle\left(\Gamma_{D_{2 p^{\alpha}}}\right)=\left(\begin{array}{ccc}
1 & p^{\alpha} & p^{\alpha}-1 \\
2 p^{\alpha}-1 & p^{\alpha} & p^{\alpha}+1
\end{array}\right)
$$

Corollary.The number of all edges when $n=p^{\alpha}$, podd prime number and $\alpha \geq 1$ of $\Gamma_{D_{2 n}}$ be equal to : $E\left(D_{2 p^{\alpha}}\right)=n^{2}+n-1$ Theorem.Let $n=\prod_{i=1}^{2} p_{i}^{\alpha_{i}}, p_{i}$ be an odd prime number, the degree of sequences is given by the following

$$
\triangle\left(\Gamma_{D_{2 n}}\right)=\left(\begin{array}{ccccc}
1 & n & p_{1}^{\alpha_{1}}-1 & p_{2}^{\alpha_{2}}-1 & p_{1}^{\alpha_{1}}-1 p_{2}^{\alpha_{2}}-1 \\
2 n-1 & n & n+\frac{n}{p_{1}^{\alpha_{1}}} & n+\frac{n}{p_{2}^{\alpha_{2}}} & n+1
\end{array}\right)
$$

Hayder Baqer Shelash \& Mohmad Jasim
Department of Mathematics
Faculty of Comp Sciences and Math
University of Kufa, Iraq
Corollary.The number of all edges when $n=p^{\alpha}$, podd prime number and $\alpha \geq 1$ be equal to

$$
E\left(D_{2 p^{\alpha}}\right)=n^{2}+n-1
$$

Theorem.Let $n=\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$ be integer number, the matrix of degree sequences is given by the following:
$\triangle\left(\Gamma_{D_{2 n}}\right)=\left(\begin{array}{cccccc}1 & n & p_{i}^{\alpha_{i}} & p_{i}^{\alpha_{i}} p_{j}^{\alpha_{j}} & \cdots & p_{i}^{\alpha_{i}} p_{j}^{\alpha_{j}} \cdots p_{s}^{\alpha_{s}} \\ 2 n-1 & n & n+\frac{n}{p_{i}^{\alpha_{i}}} & n+\frac{p^{n}}{p_{i}^{\alpha_{i}}} & \cdots & n+\frac{\alpha^{2}}{p_{i}^{\alpha_{i}} p_{j}^{\alpha_{j}} \ldots p_{s}^{\alpha_{s}}}\end{array}\right)$
The order elements table of group $T_{4 n}$ we can explain by the following table, its clear that for every elements of type $a^{i} b$ in group $T_{4 n}$ has order equal to 4 .

Elements	e	a^{i}	$a^{i} b$
		$1 \leq i \leq 2 n-1$	$1 \leq i \leq 2 n$
Order	1	$\frac{22}{\operatorname{gcd}(2 n, i)}$	4
Number	1	$\varphi\left(\frac{2 n}{i}\right)$	n

Theorem. Let $n=2^{k}$, for some $k \in N$ then the co-prime graph $\Gamma\left(T_{4 n}\right)$ is a complete bipartite graph

$$
\Gamma_{2_{2^{r+2}}}=K_{1,2^{r+2}-1} .
$$

References

[1] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298,(2006), 468-492.
[2] A. Abdollahi and A. M. Hassanabadi, Non-cyclic graph of a group, Comm. Algebra, 35 (2007), 2057-2081
[3] P. Balakrishnan, M. Sattanathan and R. Kala, The center graph of a group, South Asia Math., 1 (2011), 21-28.
4) I. Chakrabarty, S. Ghosh and M. Sen, Undirected power graphs of semignoups, Semigroup Forum, 78 (2009), 410-426.
[5) C. Gary and P. Zhang, Introduction to Graph Theory, Posts and Telecom Press, Beijing, 2006
6] Dorbidi, H.R., A note on the coprime graph of a group. International Journal of Group Theory, 5(4), 2016, pp.17-22.
[7] Liu, H., Lu, M. and Tian, F., On the Laplacian spectral radius of a graph. Linear algebra
and its applications, $376(1-3)$, 2004, pp.135-141.
[8] M. S. Lucido, Prime graph components of finite almost simple groups, Rend. Sem. Mat.
Univ. Padova, 102 (1999), 1-22.
[9] Ma, X.L., Wei, H.Q. and Yang, L.Y.,The coprime graph of a group. International Journal

