Brief introduction

The Yang-Baxter equation is a fundamental equation of statistical mechanics. In [3], Drinfel'd posed the question of finding and classifying all set-theoretical solutions of the Yang-Baxter equation. Given a set S, a map $r: S \times S \to S \times S$ is said to be a set theoretical solution of the Yang-Baxter equation, shortly a solution, if the relation

 $(r \times \mathrm{id}_S) (\mathrm{id}_S \times r) (r \times \mathrm{id}_S) = (\mathrm{id}_S \times r) (r \times \mathrm{id}_S) (\mathrm{id}_S \times r)$

is satisfied. Determining all the solutions is still an open problem. One of the most used approach for obtaining solutions is based on braces, algebraic structures introduced by Rump [5] that include the Jacobson radical rings. In particular, any brace gives rise to an involutive solution r, i.e., $r^2 = id$.

The algebraic structure of the *inverse semi-brace* generalizes braces and gives a new research perspective to the problem of finding solutions. Namely, we obtain solutions that are not necessarily bijective, among these new idempotent ones, i.e., solutions r such that $r^2 = r$.

Basics

We recall that a semigroup S is said to be an *inverse semigroup* if, for each $x \in S$, there exists a unique $x^{-1} \in S$ satisfying $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}.$

Definition. [2] Let S be a set with two operations + and \cdot such that (S,+) is a semigroup (not necessarily commutative) and (S,\cdot) is an inverse semigroup. Then, $(S, +, \cdot)$ is *a (left) inverse semi-brace* if

$$a(b+c) = ab + a(a^{-1} + c)$$

holds, for all $a, b, c \in S$.

Semi-braces [1], [4] and braces [5] are instances of inverse of inverse semi-braces where, in particular, (S, \cdot) is a group.

One can easily obtain examples of inverse semi-braces starting from an arbitrary inverse semigroup.

Example 1. If (S, \cdot) is an inverse semigroup and (S, +) is a right zero semigroup or a left zero semigroup, then S is an inverse semi-brace, which we call *trivial inverse semi-brace*. Clearly, if |S| > 1, then such inverse semi-braces are not isomorphic.

Example 2. Let (S, \cdot) be an inverse semigroup and set $a + b = aa^{-1}b$, for all $a, b \in S$. Then, S is an inverse semi-brace. Similarly, the same is true if we consider the opposite sum, i.e., $a + b = bb^{-1}a$, for all $a, b \in S$.

Paola Stefanelli

Università del Salento - ISCHIA GROUP THEORY 2020/2021

(1)

Solutions associated to inverse semi-braces

Let S be an inverse semi-brace, $\lambda : S \rightarrow \operatorname{End}(S, +), a \vdash$ $\rho: S \to S^S, b \mapsto \rho_b$ the maps respectively defined by $\lambda_a(b) = a(a^{-1} + b)$ $\rho_b(a) = (a^{-1} + b)^{-1}b,$ for all $a, b \in S$. Then, we call the map $r_S : S \times S \to S \times S$ $r_{S}(a,b) = (\lambda_{a}(b), \rho_{b}(a)),$ for all $a, b \in S$, the map associated to the left inverse semi-k The following are sufficient conditions to obtain solutions th verse semi-braces.

Theorem 1 [2] Let $(S, +, \cdot)$ be an inverse semi-brace an map associated to S. If the following are satisfied

1.
$$(a + b) (a + b)^{-1} (a + bc) = a + bc$$

2. $(b)^{-1} + b + (a) = b + (b)^{-1} + b$

2.
$$\lambda_a(b)^{-1} + \lambda_{\rho_b(a)}(c) = \lambda_a(b)^{-1} + \lambda_{(a^{-1}+b)^{-1}}\lambda_b(c)$$

3. $\rho_b(a)^{-1} + c = (b^{-1} + c) \left(\rho_{\lambda_b(c)}(a)^{-1} + \rho_c(b) \right),$

for all $a, b, c \in S$, then the map r_S is a solution.

In general, solutions associated to inverse semi-braces are tive.

The previous examples of inverse semi-braces satisfy the c of Theorem 1.

Examples i) The map r_S associated to S in Example 1 with right zero semigroup is given by

$$r_S(a,b) = (ab, b^{-1}b)$$

and is an idempotent solution. Similarly, if (S, +) a left zero group, we get the idempotent solution

$$r_S(a,b) = \left(aa^{-1},ab
ight).$$

Note that if |S| > 1 such solutions are not isomorphic. In it is clear that the number of inverse semigroups determine bound for idempotent solutions.

ii) The map r_S associated to S in Example 2 with a + b = cthe map t_S associated to S with $a + b = aa^{-1}b$ are respectively by

$$r_{S}(a,b) = \left(ab, ab \left(ab\right)^{-1}\right) \qquad t_{S}(a,b) = \left(ab \left(ab\right)^{-1}, ab\right),$$

and are idempotent solutions. Denoted by τ the twist map, it holds that $t_S = \tau r_S$, hence these two solutions are not isomorphic.

Contact Information

paola.stefanelli@unisalento.it

The double semidirect product of inverse semi-braces

$\rightarrow \lambda_a$ and	Theorem 2 Let <i>S</i> and <i>T</i> be two inverse semi-braces, homomorphism from (T, \cdot) into the automorphism group semi-brace <i>S</i> , and $\delta : S \to \text{End}(T)$ an anti-homomor into the endomorphism semigroup of $(T, +)$. Set ^{<i>u</i>}
given by	$u^a := \delta(a)(u)$, for all $a \in S$ and $u \in T$, if it holds
brace S.	$(uv)^{\lambda_a(^ub)} + u\left(\left(u^{-1}\right)^b + w\right) = u\left(v^b + u^{-1}\right)^b + u^{-1}\right)$
hrough in-	then $B := S \times T$ with respect to the operations
n e a gri m	$(a, u) + (b, v) := (a + b, u^b + v)$ $(a, u) (b, v) :$
and r_S the	is an inverse semi-brace. We call such an inverse double semidirect product of S and T via σ and δ .
	Set $\ \Omega^a_{u,v}:= ig(u^{-1}ig)^a + v$, for all $a\in S$, $u,v\in T$, the map B is given by
	$r_B\left(\left(a,u\right),\left(b,v\right)\right) = \left(\left(\lambda_a\left({}^{u}b\right), u\Omega_{u,v}^{b}\right), \left(\left({}^{\Omega_{u,v}^{b}}\right)^{-1}u^{-1}\rho_{ub}\left(a,u\right)\right)\right) = \left(\left(\lambda_a\left({}^{u}b\right), u\Omega_{u,v}^{b}\right)\right) + \left(\left({}^{\Omega_{u,v}^{b}}\right)^{-1}u^{-1}\rho_{ub}\left(a,u\right)\right) + \left($
not bijec-	Under mild assumptions, the map associated to the product of two arbitrary semi-braces is a solution.
conditions	Theorem 3 Let S, T be semi-braces and B the doubl uct of S and T via σ and δ . If r_S and r_T are solution
th $(S, +)$ a	and T, respectively, and the following are satisfied 1. $(u^1)^a = u^a$,
	2. $1^a + u = 1 + u$,
ero semi-	for all $a \in S$ and $u \in T$, then the map r_B associated t
	References
n addition,	[1] Cating I Calazza and D Stafanalli Cami braa
es a lower	[1] F. Catino, I. Colazzo, and P. Stefanelli. Semi-brac Baxter equation. <i>J. Algebra</i> , 483:163–187, 2017.
$aa^{-1}b$ and	[2] F. Catino, M. Mazzotta, and P. Stefanelli. Inverse
vely given	the Yang-Baxter equation. J. Algebra, 573:576–61

[3] V. G. Drinfel' d. On some unsolved problems in quantum group theory. In Quantum groups (Leningrad, 1990), volume 1510 of Lecture *Notes in Math.*, pages 1–8. Springer, Berlin, 1992.

[4] A. Jespers, E.and Van Antwerpen. Left semi-braces and solutions of the Yang-Baxter equation. Forum Math., 31(1):241–263, 2019.

[5] W. Rump. Braces, radical rings, and the quantum Yang-Baxter equation. *J. Algebra*, 307(1):153–170, 2007.

 $\sigma: T \to \operatorname{Aut}(S)$ a roup of the inverse rphism from (S, +) $^{\iota}a := \sigma(u)(a)$ and

(2)w),

 $:= (a^{u}b, uv),$ semi-brace B the

 r_B associated to

 $(a), \left(\Omega_{u,v}^b\right)^{-1}v\right)$.

double semidirect

le semidirect prodhs associated to S

to B is a solution.

ces and the Yangsemi-braces and 9, 2021.