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Topological space, Hausdorffness, compactness

▶ By a topological space we mean a set X with a subset T of
the power set of X such that ∅,X ∈ T and T is closed under
finite intersection and arbitrary union of its elements. The
members of T are called open sets in X .

▶ A topological space X is called Hausdorff if for every two
distinct points x , y ∈ X there exist disjoint open sets U and V
such that x ∈ U and y ∈ V .

▶ A topological space X is called compact if X =
∪

A∈O A for
some family O of open subsets of X , then X =

∪
A∈F A for

some finite subset F of O.
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Product topology, continuous map, compact group

▶ If X is a topological space, the set consisting of all U × V ,
where U and V are open sets of X is a topology on X × X
called product topology.

▶ A function from a topological space X1 to a topological space
X2 is called continuous if the inverse image of every open set
of X2 is an open set of X1.

▶ By a topological group, we mean a group G endowed with a
topology, where the map from G × G to G defined by
(x , y) 7→ xy−1 is continuous, where G × G is endowed by the
product topology obtained from the topology of G .

▶ By a compact group we mean a topological group which is
Hausdorff and compact.
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Borel Algebra

.
Borel Algebra
..

......

Let X be a topological space. We denote by ΣX the σ-algebra
generated by open subsets of X and is called the Borel algebra of
X , i.e., the smallest set containing X itself which is closed under
complement and under countable unions. Elements of ΣX are
called Borel set.
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Haar Measure

▶ For every compact group G , there exists a unique function
(called the normalized Haar measure of G ) µ : ΣG → [0, 1]
with the following properties

▶ (Probability Measure) µ(G ) = 1.

▶ (Invariant Measure) µ(S) = µ(S−1) = µ(Sg) = µ(gS) for all
S ∈ ΣG and all g ∈ G , where S−1 := {s−1 | s ∈ S},
Sg := {sg | s ∈ S} and gS := {gs | s ∈ S}.

▶ (Countably Additive) µ (
∪∞

n=1 An) =
∑∞

n=1 µ(An), where
An ∈ ΣG for all n ∈ N and An ∩ Am = ∅ whenever n ̸= m.

▶ (Outer Regular) The measure µ is outer regular on Borel sets
S ∈ ΣG , i.e., µ(S) = inf{µ(U) : S ⊆ U,U open}.

▶ (Inner Regular) The measure µ is inner regular on open sets
U ⊆ G , i.e., µ(U) = sup{µ(K ) : K ⊆ U,K compact}.
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Sets with positive Haar measures

▶ Let G be a compact group. We will denote by mG the unique
normalized Haar measure of G .

▶ The unique normalized Haar measure of G [k] := G × · · · × G
(k times) is equal to mG × · · · ×mG on the sets of the form
U1 × · · · × Uk of G [k], where Ui ∈ ΣG , i.e.
mG [k](U1 × · · · × Uk) = mG (U1) · · ·mG (Uk)
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Sets with positive Haar measures

.
Open Sets has positive Haar Measure
..

......

If G is a compact group, then µ(U) > 0 for any non-empty open
set of G ; for, since ∅ ̸= U, it easily follows that G =

∪
g∈G Ug .

Since G is compact, G =
∪

g∈T Ug for some finite subset T of G .
Now as µ is countably additive, 1 = µ(G ) ≤

∑
g∈T µ(Ug) and

since µ is invariant, 1 ≤ |T |µ(U). Hence µ(U) > 0.

.
Any Borel Set containing a non-empty Open Set has Positive
Haar Measure
..

......

Let S be a Borel set such that U ⊆ S for some open set U, then
µ(U) ≤ µ(S) and so µ(S) > 0.
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Sets satisfying a nilpotent law with positive Haar measure

▶ For any group G and positive integer k, denote by Nk(G ) the
set

{(x1, . . . , xk+1) ∈ G k+1 | [x1, . . . , xk+1] = 1},

where [x1, x2] = x−1
1 x−1

2 x1x2 and inductively
[x1, . . . , xn+1] := [[x1, . . . , xk ], xn+1] for all n ≥ 2.

▶ It is asked in
A. Martino, M. C. H. Tointon, M. Valiunas and E. Ventura,
Probabilistic Nilpotence in infinite groups, to appear in Israel
J. Math.
that:
(Question) Let G be a compact group, and suppose that
Nk(G ) has positive Haar measure in G [k+1]. Does G have an
open k-step nilpotent subgroup?
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Profinite groups with m(N1) > 0

▶ A topological space is called totally disconnected if its
connected components are singletons.

▶ A Hausdorff compact totally disconnected topological group is
called a profinite group.

▶ Question 1 has positive answer whenever k = 1 and G assume
to be profinite. It follows from Theorem 1 of
L. Lévai and L. Pyber, Profinite groups with many commuting
pairs or involutions, Arch. Math. (Basel) 75 no. 7 (2000) 1-7.
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Compact groups with m(N1) > 0

▶ Question 1 has positive answer whenever k = 1. It follows
from Theorem 1.2 of
K. H. Hofmann and F. G. Russo, The probability that x and y
commute in a compact group, Math. Proc. Cambridge Philos.
Soc. 153 (2012), no. 3, 557-571.
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Finitely generated profinite groups with m(Nk) > 0

▶ A topological group is called topologically finitely generated if
it contains a dense (algebraically) finitely generated subgroup.

▶ The motivation of Question 1 is the following. It follows from
A. Shalev, Probabilistically nilpotent groups. Proc. Amer.
Math. Soc. 146 (2018), no. 4, 1529-1536.
that if G is a topologically finitely generated profinite group
such that mG [k+1](Nk(G )) > 0 then G has an open k-step
nilpotent subgroup.
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Finitely generated profinite groups with m(Nk) > 0

▶ A topological group is called topologically finitely generated if
it contains a dense (algebraically) finitely generated subgroup.

▶ The motivation of Question 1 is the following. It follows from
A. Shalev, Probabilistically nilpotent groups. Proc. Amer.
Math. Soc. 146 (2018), no. 4, 1529-1536.
that if G is a topologically finitely generated profinite group
such that mG [k+1](Nk(G )) > 0 then G has an open k-step
nilpotent subgroup.
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Profinite groups with m(Nk) > 0

▶ The proposers of Question 1 answer positively it for profinite
groups.
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Compact groups with m(N2) > 0

▶ We prove that Question 1 has positive answer for k = 2.
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Compact groups with m(N2) > 0

We first prove that
.
Right Lemma
..

......

Suppose that G is a group and x1, x2, x3, g1, g2, g3 ∈ G are such
that

1 = [x1, x2, x3] = [x1g1, x2g2, x3g3] = [x1g1, x2g2, x3]

= [x1g1, x2, x3g2] = [x1g1, x2, x3] = [x1g1, x2, x3g3]

= [x1, x2, x3g1] = [x1, x2g2, x3g1] = [x1, x2g2, x3]

= [x1, x2, x3g2] = [x1, x2g2, x3g3] = [x1, x2, x3g3].

Then [g1, g2, g3] = 1.
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Compact groups with m(N2) > 0

We need the “right version” of Theorem 2.3 of
M. Soleimani Malekan, A. A. and M. Ebrahimi, Compact groups
with many elements of bounded order, J. Group Theory, 23 (2020)
no. 6 991-998.
as follows.
.
Right Version
..

......

If A is a measurable subset with positive Haar measure in a
compact group G , then for any positive integer k there exists an
open subset U of G containing 1 such that
mG (A ∩ Au1 ∩ · · · ∩ Auk) > 0 for all u1, . . . , uk ∈ U.

A. Abdollahi (Joint with M. Soleimani Malekan) Compact groups with a set of positive Haar measure...



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Compact groups with m(N2) > 0

Let X := N2(G ). By Theorem Right Version that there exists an
open subset U = U−1 of G containing 1 such that

X ∩ Xū1 ∩ · · · ∩ Xū11 ̸= ∅ (∗)

for all ū1, . . . , ū11 ∈ U × U × U. Now take arbitrary elements
g1, g2, g3 ∈ U and consider

ū1 = (g−1
1 , g−1

2 , g−1
3 ), ū2 = (g−1

1 , g−1
2 , 1)

ū3 = (g−1
1 , 1, g−1

2 ), ū4 = (g−1
1 , 1, 1)

ū5 = (g−1
1 , 1, g−1

3 ), ū6 = (1, 1, g−1
1 )

ū7 = (1, g−1
2 , g−1

1 ), ū8 = (1, g−1
2 , 1)

ū9 = (1, 1, g−1
2 ), ū10 = (1, g−1

2 , g−1
3 )

ū11 = (1, 1, g−1
3 ).
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Compact groups with m(N2) > 0

By (∗), there exists (x1, x2, x3) ∈ X such that all the following
3-tuples are in X .

(x1g1, x2g2, x3g3), (x1g1, x2g2, x3), (x1g1, x2, x3g2)

(x1g1, x2, x3), (x1g1, x2, x3g3), (x1, x2, x3g1), (x1, x2g2, x3g1)

(x1, x2g2, x3), (x1, x2, x3g2), (x1, x2g2, x3g3), (x1, x2, x3g3).

Now Lemma implies that [g1, g2, g3] = 1. Therefore the subgroup
H := ⟨U⟩ generated by U is 2-step nilpotent. Since H =

∪
n∈N Un,

H is open in G . This completes the proof.
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A. Abdollahi (Joint with M. Soleimani Malekan) Compact groups with a set of positive Haar measure...


