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Let F be the free group with m free generators, m > 2. That is,
F=<(x1,...,xm). Let {wi,wp,... , w;,...} be all elements of F. Then
n

B(m,n) = (x1,...,xXm | wi,wy,....,w,...),

is called the free Burnside group of rank m and exponent n.
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Let F be the free group with m free generators, m > 2. That is,
F=<(x1,...,xm). Let {wi,wp,... , w;,...} be all elements of F. Then

n n n
B(m,n) = (x1,...,xXm | wi,wy,....,w,...),
is called the free Burnside group of rank m and exponent n.

General Burnside problem. If B(m, n) is finite?
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Burnside problem: history

E. Golod and |. Shafarevich, 1964, negative (without assuming that all

elements have uniformly bounded order)

P. Novikov, S. Adian, 1968, negative for all odd n > 4381

S. Adian, 1975, negative for all odd n > 665

Yu. Olshansky, 1982, negative for all odd n > 1010

S. Adian, 2015, negative for all odd n > 101

E. Rips (starting from 1982)

S. lvanov, 1994, negative for all even n > 248

[. Lysénok, 1996, negative for all even n > 8000
)

B(m,2), B(m,3) (Burnside, 1902), B(m,4) (Sanov, 1940), and
B(m, 6) (Marshall Hall Jr., 1958) are finite for all m
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We show that B(m, n) is infinite for all odd n > 297.

Our method is based on iterated small cancellation theory and on the

Rips's idea of the canonical form, which we put in a combinatorial
framework.

4 /20



B(m,n) = (x1,...,Xm | wi,wy,....,w,...),

H=(wi,wy,....w', ...)

Our general goal is to choose a unique representative of a special form in
every coset F/H and show that there are infinite number of such elements.
The latter will be easy because of a special form of these representatives.
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General scheme of the proof

We split the factorisation in B(m, n) = F/H into a countable number of
steps.

We start from F and take R; C {w{,...,w/, ...} and choose a canonical
representative in every coset of F/(R1), C1 is a set of canonical
representatives of rank 1.

We choose R, C {cani(wy),...,cani(w/),...} and choose a canonical
representative in every coset of C1/(R%), Cz is a set of canonical
representatives of rank 2, etc.

F—F/(R1) 2C, — C1/(Ry) = Cp — Co/(RE) 2C3 —> ...

Using the above sequence, we define can(A) for every A € F. If
AH = BH, then can(A) = can(B).

A A(R1) — cany(A) — cany(A)(R5) — cany(cani(A)) — ...
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Let us consider first two steps F — F/(R1) = C1 — C1/(RS) = Ca.

The step C; — C1/(R5) = Cy is almost a general step of induction.
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Let us consider first two steps F — F/(R1) = C1 — C1/(RS) = Ca.

The step C; — C1/{R%) = C, is almost a general step of induction.
p 2

R1 = {x" € F |x™! and its cyclic shifts do not contain a™,a € Fl, =1

We are interested in common parts of relators from R;.

,xyéyk, and x" = cX,

Assume x", y" are two reduced words,
y"=cY. Then |c| < |x| + |y|.

x| =y
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Assume x",y" € Ry, |x| = |y|, x # y¥, and x" = cX, y" = cY. Then
lc| < 2|x| and |c| < (11 + 1)|y|.

a prefix of x

If |c| = (71 + 1)|y|, then ¢’ contains y™. This contradicts to the
assumption x" € R.
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Structure of F/(R1)

Let U € F be a reduced word. We consider subwords of U of the form a7,
where 3" € Rq, such that a7 can not be prolonged to bigger fractional
power.

Suppose R=3" € R1, R= m1m2_1. Let U = LmiR. The transition from
U= LmiR to LmyR representing the same element of F/(R1). This
transition is called a turn.

my = a "7

e

my = a”

Two words represent the same element in F/(Rq) if and only if they are
connected by a sequence of turns.
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How turn influences another maximal occurrences

71
. | X G o
I

Eap— ‘

If |x| > |y|, then |c| < (71 + 1)|y| and |c| < 2|x].
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A(m1) =71+ 1, A(mp) > 71 + 1 (A-measure is a fractional number of
periods of the corresponding relator)

my

my

L] L |
~~

merging

ANmp) <1 +1

10 / 20



Semicanonical words and one-layer maps

A word U is called A\-semicanonical is A-measure of every occurrence of a
subword from Rq is < A.

If A\ < n— (71 + 1), then there are no merging in a result of a turn in a
A-semicanonical word.

If we perform a sequence of turns in a A-semicanonical word, we can see
the results in the following picture

]

Further we consider such one-layer maps with outer sides < \.
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The canonical form in rank 1

We have to choose a canonical representative inside a one layer-map.

Seems natural to take everywhere the smallest side. However, this is not
good enough for our needs.

Let U be a A-semicanonical word and consider its one-layer map.

Consider UX, that is, some small changes of U from the right.

.- -~ - ~ -
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The canonical form in rank 1

We need a control over a structure of D. We apply a special condition on
this “domino part” of the one-layer map.

If the condition is satisfied, we take into account cells in D in U. If not,
we erase them in U in advance.

After that we choose the smallest side using the rest cells.

If AcF, then first we make it A-semicanonical and then choose a
canonical form in the corresponding one-layer map.

We show that if A and B represent the same element in F/(R1), then
they belong to the same one-layer map. This yields that canj is well
defined and canj(A) = can;(B).
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Multiplication of canonical words in rank 1

Let C = can;(AB). Then we have the following picture (any of bubbles
can be absent):

IYALORN:

d>
| —~ NN B |
o, <O

C

d1, d», d3 do not contain cubic powers formed by maximal occurrences of
rank 1.

14 / 20



Structure of C;1/(R5)

We make also a canonical form of a cyclic word. This is the same

procedure but in a cyclic one-layer map. Let C{ be canonical forms of
cyclic words.

Ry = {x" €C§ |if xFLor its cyclic shift contains a™,
then a" € Ry,a € F}.

Moreover, one can show that if x” € R, then there exists a cyclic shift of
x that contains a™, a" € R;.

Assume x", y" € Ry,
lc| < 2|x| and |c| < (71 + 1)|y].

x| > |yl, x # yk, and x" = cX, y" = cY. Then

15 / 20



Turn of rank 2

UelC, U=LmR, m1m2_1 € Ro. We make a transformation
LmR — LmyR — canj(LmyR).

m
. L mo R .
my
L m R
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One can show that two words represent the same element of C1/(RY) if
and only they are connected by a sequence of turns of rank 2.

The key fact. A(c) <7+ +1=7+7+1=15.
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So, we can use the same argument as in rank 1, but for a bit more
complicated turns and one-layer-maps.

—— o O T

a canonical triangle of rank 1.
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Multiplication of canonical words in rank 2

C = canp(can;(AB)).

d>
dp ds3

a canonical triangle of rank 1.
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A global canonical form

Let A € F. Consider a sequence
A cany(A) — cang(cany(A)) — ...

It stabilizes after a finite number of steps. The resulting word is called a
global canonical form of A and is denoted by can(A).

We show that A and B represent the same element in the group B(m, n) if
and only if can(A) = can(B).

It is clear that if A is a cubic-free word, then A = can(A). Hence |B(m, n)|
is not less than number of cubic-free words. However, it is known that
there are infinitely many different such words. Thus, B(m, n) is infinite.

All these calculations work for odd n > 297.
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