Combinatorial approach for Burnside groups of relatively small odd EXPONENTS

Agatha Atkarskaya
Department of Mathematics, Bar-Ilan University
Department of Mathematics, The Hebrew University of Jerusalem
(joint work with Katrin Tent and Eliyahu Rips)

Let F be the free group with m free generators, $m \geqslant 2$. That is, $F=\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Let $\left\{w_{1}, w_{2}, \ldots, w_{i}, \ldots\right\}$ be all elements of F. Then

$$
B(m, n)=\left\langle x_{1}, \ldots, x_{m} \mid w_{1}^{n}, w_{2}^{n}, \ldots, w_{i}^{n}, \ldots\right\rangle,
$$

is called the free Burnside group of rank m and exponent n.

Let F be the free group with m free generators, $m \geqslant 2$. That is, $F=\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Let $\left\{w_{1}, w_{2}, \ldots, w_{i}, \ldots\right\}$ be all elements of F. Then

$$
B(m, n)=\left\langle x_{1}, \ldots, x_{m} \mid w_{1}^{n}, w_{2}^{n}, \ldots, w_{i}^{n}, \ldots\right\rangle,
$$

is called the free Burnside group of rank m and exponent n.

General Burnside problem. If $B(m, n)$ is finite?

Burnside problem: history

- E. Golod and I. Shafarevich, 1964, negative (without assuming that all elements have uniformly bounded order)
- P. Novikov, S. Adian, 1968, negative for all odd $n \geqslant 4381$
- S. Adian, 1975, negative for all odd $n \geqslant 665$
- Yu. Olshansky, 1982, negative for all odd $n>10^{10}$
- S. Adian, 2015, negative for all odd $n \geqslant 101$
- E. Rips (starting from 1982)
- S. Ivanov, 1994, negative for all even $n \geqslant 2^{48}$
- I. Lysënok, 1996, negative for all even $n \geqslant 8000$
- $B(m, 2), B(m, 3)$ (Burnside, 1902), $B(m, 4)$ (Sanov, 1940), and $B(m, 6)$ (Marshall Hall Jr., 1958) are finite for all m

We show that $B(m, n)$ is infinite for all odd $n \geqslant 297$.
Our method is based on iterated small cancellation theory and on the Rips's idea of the canonical form, which we put in a combinatorial framework.

$$
\begin{aligned}
& B(m, n)=\left\langle x_{1}, \ldots, x_{m} \mid w_{1}^{n}, w_{2}^{n}, \ldots, w_{i}^{n}, \ldots\right\rangle, \\
& \mathcal{H}=\left\langle w_{1}^{n}, w_{2}^{n}, \ldots, w_{i}^{n}, \ldots\right\rangle
\end{aligned}
$$

Our general goal is to choose a unique representative of a special form in every coset F / \mathcal{H} and show that there are infinite number of such elements. The latter will be easy because of a special form of these representatives.

General scheme of the proof

We split the factorisation in $B(m, n)=\mathrm{F} / \mathcal{H}$ into a countable number of steps.

We start from F and take $\mathcal{R}_{1} \subseteq\left\{w_{1}^{n}, \ldots, w_{i}^{n}, \ldots\right\}$ and choose a canonical representative in every coset of $\mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle, \mathcal{C}_{1}$ is a set of canonical representatives of rank 1.

We choose $\mathcal{R}_{2}^{\prime} \subseteq\left\{\operatorname{can}_{1}\left(w_{1}^{n}\right), \ldots, \operatorname{can}_{1}\left(w_{i}^{n}\right), \ldots\right\}$ and choose a canonical representative in every coset of $\mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle, \mathcal{C}_{2}$ is a set of canonical representatives of rank 2, etc.

$$
\mathrm{F} \longrightarrow \mathrm{~F} /\left\langle\mathcal{R}_{1}\right\rangle \cong \mathcal{C}_{1} \longrightarrow \mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle \cong \mathcal{C}_{2} \longrightarrow \mathcal{C}_{2} /\left\langle\mathcal{R}_{3}^{\prime}\right\rangle \cong \mathcal{C}_{3} \longrightarrow \ldots
$$

Using the above sequence, we define $\operatorname{can}(A)$ for every $A \in \mathrm{~F}$. If $A \mathcal{H}=B \mathcal{H}$, then $\operatorname{can}(A)=\operatorname{can}(B)$.

$$
A \mapsto A\left\langle\mathcal{R}_{1}\right\rangle \mapsto \operatorname{can}_{1}(A) \mapsto \operatorname{can}_{1}(A)\left\langle\mathcal{R}_{2}^{\prime}\right\rangle \mapsto \operatorname{can}_{2}\left(\operatorname{can}_{1}(A)\right) \mapsto \ldots
$$

Let us consider first two steps $\mathrm{F} \longrightarrow \mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle \cong \mathcal{C}_{1} \longrightarrow \mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle \cong \mathcal{C}_{2}$.
The step $\mathcal{C}_{1} \longrightarrow \mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle \cong \mathcal{C}_{2}$ is almost a general step of induction.

Let us consider first two steps $\mathrm{F} \longrightarrow \mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle \cong \mathcal{C}_{1} \longrightarrow \mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle \cong \mathcal{C}_{2}$.
The step $\mathcal{C}_{1} \longrightarrow \mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle \cong \mathcal{C}_{2}$ is almost a general step of induction.
$\mathcal{R}_{1}=\left\{x^{n} \in \mathrm{~F} \mid x^{ \pm 1}\right.$ and its cyclic shifts do not contain $\left.a^{\tau_{1}}, a \in \mathrm{~F}\right\}, \tau_{1}=7$.
We are interested in common parts of relators from \mathcal{R}_{1}.

Lemma

Assume x^{n}, y^{n} are two reduced words, $|x| \geqslant|y|, x \neq y^{k}$, and $x^{n}=c X$, $y^{n}=c Y$. Then $|c|<|x|+|y|$.

Corollary

Assume $x^{n}, y^{n} \in \mathcal{R}_{1},|x| \geqslant|y|, x \neq y^{k}$, and $x^{n}=c X, y^{n}=c Y$. Then $|c|<2|x|$ and $|c|<\left(\tau_{1}+1\right)|y|$.

If $|c| \geqslant\left(\tau_{1}+1\right)|y|$, then c^{\prime} contains $y^{\tau_{1}}$. This contradicts to the assumption $x^{n} \in \mathcal{R}_{1}$.

Structure of $\mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle$

Let $U \in \mathrm{~F}$ be a reduced word. We consider subwords of U of the form a^{γ}, where $a^{n} \in \mathcal{R}_{1}$, such that a^{γ} can not be prolonged to bigger fractional power.

Suppose $R=a^{n} \in \mathcal{R}_{1}, R=m_{1} m_{2}^{-1}$. Let $U=L m_{1} R$. The transition from $U=L m_{1} R$ to $L m_{2} R$ representing the same element of $\mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle$. This transition is called a turn.

Two words represent the same element in $\mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle$ if and only if they are connected by a sequence of turns.

How turn influences another maximal occurrences

$$
\text { If }|x| \geqslant|y| \text {, then }|c|<\left(\tau_{1}+1\right)|y| \text { and }|c|<2|x| \text {. }
$$

$\Lambda\left(m_{1}\right) \geqslant \tau_{1}+1, \Lambda\left(m_{2}\right) \geqslant \tau_{1}+1(\Lambda$-measure is a fractional number of periods of the corresponding relator)

$$
\Lambda\left(m_{2}\right)<\tau_{1}+1
$$

Semicanonical words and one-layer maps

A word U is called λ-semicanonical is Λ-measure of every occurrence of a subword from \mathcal{R}_{1} is $\leqslant \lambda$.

If $\lambda<n-\left(\tau_{1}+1\right)$, then there are no merging in a result of a turn in a λ-semicanonical word.

If we perform a sequence of turns in a λ-semicanonical word, we can see the results in the following picture

Further we consider such one-layer maps with outer sides $\leqslant \lambda$.

The canonical form in rank 1

We have to choose a canonical representative inside a one layer-map.
Seems natural to take everywhere the smallest side. However, this is not good enough for our needs.

Let U be a λ-semicanonical word and consider its one-layer map.

Consider $U X$, that is, some small changes of U from the right.

The canonical form in rank 1

We need a control over a structure of \mathcal{D}. We apply a special condition on this "domino part" of the one-layer map.

If the condition is satisfied, we take into account cells in \mathcal{D} in U. If not, we erase them in U in advance.

After that we choose the smallest side using the rest cells.

If $A \in \mathrm{~F}$, then first we make it λ-semicanonical and then choose a canonical form in the corresponding one-layer map.

We show that if A and B represent the same element in $\mathrm{F} /\left\langle\mathcal{R}_{1}\right\rangle$, then they belong to the same one-layer map. This yields that can $_{1}$ is well defined and $\operatorname{can}_{1}(A)=\operatorname{can}_{1}(B)$.

Multiplication of canonical words in rank 1

Let $C=\operatorname{can}_{1}(A B)$. Then we have the following picture (any of bubbles can be absent):

d_{1}, d_{2}, d_{3} do not contain cubic powers formed by maximal occurrences of rank 1 .

Structure of $\mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle$

We make also a canonical form of a cyclic word. This is the same procedure but in a cyclic one-layer map. Let \mathcal{C}_{1}^{c} be canonical forms of cyclic words.

$$
\begin{gathered}
\mathcal{R}_{2}=\left\{x^{n} \in \mathcal{C}_{1}^{c} \mid \text { if } x^{ \pm 1} \text { or its cyclic shift contains } a^{\tau_{1}}\right. \\
\text { then } \left.a^{n} \in \mathcal{R}_{1}, a \in \mathrm{~F}\right\} .
\end{gathered}
$$

Moreover, one can show that if $x^{n} \in \mathcal{R}_{2}$, then there exists a cyclic shift of x that contains $a^{\tau_{1}}, a^{n} \in \mathcal{R}_{1}$.

Lemma

Assume $x^{n}, y^{n} \in \mathcal{R}_{2},|x| \geqslant|y|, x \neq y^{k}$, and $x^{n}=c X, y^{n}=c Y$. Then $|c|<2|x|$ and $|c|<\left(\tau_{1}+1\right)|y|$.

Turn of rank 2

$U \in \mathcal{C}_{1}, U=L m_{1} R, m_{1} m_{2}^{-1} \in \mathcal{R}_{2}$. We make a transformation $L m_{1} R \rightarrow L m_{2} R \rightarrow \operatorname{can}_{1}\left(L m_{2} R\right)$.

One can show that two words represent the same element of $\mathcal{C}_{1} /\left\langle\mathcal{R}_{2}^{\prime}\right\rangle$ if and only they are connected by a sequence of turns of rank 2 .

The key fact. $\Lambda(c)<7+\tau_{1}+1=7+7+1=15$.

So, we can use the same argument as in rank 1, but for a bit more complicated turns and one-layer-maps.

Multiplication of canonical words in rank 2

$C=\operatorname{can}_{2}\left(\operatorname{can}_{1}(A B)\right)$.

A global canonical form

Let $A \in \mathrm{~F}$. Consider a sequence

$$
A \mapsto \operatorname{can}_{1}(A) \mapsto \operatorname{can}_{2}\left(\operatorname{can}_{1}(A)\right) \mapsto \ldots
$$

It stabilizes after a finite number of steps. The resulting word is called a global canonical form of A and is denoted by $\operatorname{can}(A)$.

We show that A and B represent the same element in the group $B(m, n)$ if and only if $\operatorname{can}(A)=\operatorname{can}(B)$.

It is clear that if A is a cubic-free word, then $A=\operatorname{can}(A)$. Hence $|B(m, n)|$ is not less than number of cubic-free words. However, it is known that there are infinitely many different such words. Thus, $B(m, n)$ is infinite.

All these calculations work for odd $n \geqslant 297$.

