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Let F be the free group with m free generators, m > 2. That is,
F = 〈x1, . . . , xm〉. Let {w1,w2, . . . ,wi , . . .} be all elements of F . Then

B(m, n) = 〈x1, . . . , xm | wn
1 ,w

n
2 , . . . ,w

n
i , . . .〉,

is called the free Burnside group of rank m and exponent n.

General Burnside problem. If B(m, n) is finite?
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Burnside problem: history

E. Golod and I. Shafarevich, 1964, negative (without assuming that all
elements have uniformly bounded order)

P. Novikov, S. Adian, 1968, negative for all odd n > 4381

S. Adian, 1975, negative for all odd n > 665

Yu. Olshansky, 1982, negative for all odd n > 1010

S. Adian, 2015, negative for all odd n > 101

E. Rips (starting from 1982)

S. Ivanov, 1994, negative for all even n > 248

I. Lysënok, 1996, negative for all even n > 8000

B(m, 2), B(m, 3) (Burnside, 1902), B(m, 4) (Sanov, 1940), and
B(m, 6) (Marshall Hall Jr., 1958) are finite for all m
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We show that B(m, n) is infinite for all odd n > 297.

Our method is based on iterated small cancellation theory and on the
Rips’s idea of the canonical form, which we put in a combinatorial
framework.
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B(m, n) = 〈x1, . . . , xm | wn
1 ,w

n
2 , . . . ,w

n
i , . . .〉,

H = 〈wn
1 ,w

n
2 , . . . ,w

n
i , . . .〉

Our general goal is to choose a unique representative of a special form in
every coset F/H and show that there are infinite number of such elements.
The latter will be easy because of a special form of these representatives.

5 / 20



General scheme of the proof

We split the factorisation in B(m, n) = F/H into a countable number of
steps.

We start from F and take R1 ⊆ {wn
1 , . . . ,w

n
i , . . .} and choose a canonical

representative in every coset of F/〈R1〉, C1 is a set of canonical
representatives of rank 1.

We choose R′2 ⊆ {can1(wn
1 ), . . . , can1(wn

i ), . . .} and choose a canonical
representative in every coset of C1/〈R′2〉, C2 is a set of canonical
representatives of rank 2, etc.

F −→ F/〈R1〉 ∼= C1 −→ C1/〈R′2〉 ∼= C2 −→ C2/〈R′3〉 ∼= C3 −→ . . .

Using the above sequence, we define can(A) for every A ∈ F. If
AH = BH, then can(A) = can(B).

A 7→ A〈R1〉 7→ can1(A) 7→ can1(A)〈R′2〉 7→ can2(can1(A)) 7→ . . .
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Let us consider first two steps F −→ F/〈R1〉 ∼= C1 −→ C1/〈R′2〉 ∼= C2.

The step C1 −→ C1/〈R′2〉 ∼= C2 is almost a general step of induction.

R1 = {xn ∈ F |x±1 and its cyclic shifts do not contain aτ1 , a ∈ F
}
, τ1 = 7.

We are interested in common parts of relators from R1.

Lemma

Assume xn, yn are two reduced words, |x | > |y |, x 6= yk , and xn = cX ,
yn = cY . Then |c | < |x |+ |y |.
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Corollary

Assume xn, yn ∈ R1, |x | > |y |, x 6= yk , and xn = cX , yn = cY . Then
|c | < 2|x | and |c | < (τ1 + 1)|y |.

X

Y

c |y |

a prefix of x
c ′

If |c | > (τ1 + 1)|y |, then c ′ contains y τ1 . This contradicts to the
assumption xn ∈ R1.
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Structure of F/〈R1〉

Let U ∈ F be a reduced word. We consider subwords of U of the form aγ ,
where an ∈ R1, such that aγ can not be prolonged to bigger fractional
power.

Suppose R = an ∈ R1, R = m1m
−1
2 . Let U = Lm1R. The transition from

U = Lm1R to Lm2R representing the same element of F/〈R1〉. This
transition is called a turn.

L

m2 = a−n+γ

m1 = aγ

R

Two words represent the same element in F/〈R1〉 if and only if they are
connected by a sequence of turns.
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How turn influences another maximal occurrences

xγ1 yγ2c

If |x | > |y |, then |c | < (τ1 + 1)|y | and |c | < 2|x |.

xγ1

m1

m2

c

Λ(m1) > τ1 + 1, Λ(m2) > τ1 + 1 (Λ-measure is a fractional number of
periods of the corresponding relator)

m2

m1

merging Λ(m2) < τ1 + 1
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Semicanonical words and one-layer maps

A word U is called λ-semicanonical is Λ-measure of every occurrence of a
subword from R1 is 6 λ.

If λ < n − (τ1 + 1), then there are no merging in a result of a turn in a
λ-semicanonical word.

If we perform a sequence of turns in a λ-semicanonical word, we can see
the results in the following picture

Further we consider such one-layer maps with outer sides 6 λ.
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The canonical form in rank 1

We have to choose a canonical representative inside a one layer-map.
Seems natural to take everywhere the smallest side. However, this is not
good enough for our needs.

Let U be a λ-semicanonical word and consider its one-layer map.

· · · · · ·

λ λ λ

Consider UX , that is, some small changes of U from the right.

· · · · · ·

D
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The canonical form in rank 1

We need a control over a structure of D. We apply a special condition on
this “domino part” of the one-layer map.

If the condition is satisfied, we take into account cells in D in U. If not,
we erase them in U in advance.

After that we choose the smallest side using the rest cells.

· · · · · ·

If A ∈ F, then first we make it λ-semicanonical and then choose a
canonical form in the corresponding one-layer map.

We show that if A and B represent the same element in F/〈R1〉, then
they belong to the same one-layer map. This yields that can1 is well
defined and can1(A) = can1(B).
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Multiplication of canonical words in rank 1

Let C = can1(AB). Then we have the following picture (any of bubbles
can be absent):

d2

d1 d3

C

A B

d1, d2, d3 do not contain cubic powers formed by maximal occurrences of
rank 1.
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Structure of C1/〈R′2〉

We make also a canonical form of a cyclic word. This is the same
procedure but in a cyclic one-layer map. Let Cc1 be canonical forms of
cyclic words.

R2 =
{
xn ∈ Cc1 |if x±1or its cyclic shift contains aτ1 ,

then an ∈ R1, a ∈ F
}
.

Moreover, one can show that if xn ∈ R2, then there exists a cyclic shift of
x that contains aτ1 , an ∈ R1.

Lemma

Assume xn, yn ∈ R2, |x | > |y |, x 6= yk , and xn = cX , yn = cY . Then
|c | < 2|x | and |c | < (τ1 + 1)|y |.
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Turn of rank 2

U ∈ C1, U = Lm1R, m1m
−1
2 ∈ R2. We make a transformation

Lm1R → Lm2R → can1(Lm2R).

L

m1

m2 R

L

m1

m′2 R
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One can show that two words represent the same element of C1/〈R′2〉 if
and only they are connected by a sequence of turns of rank 2.

m1

m′2

c

The key fact. Λ(c) < 7 + τ1 + 1 = 7 + 7 + 1 = 15.
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So, we can use the same argument as in rank 1, but for a bit more
complicated turns and one-layer-maps.

=
a canonical triangle of rank 1.
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Multiplication of canonical words in rank 2

C = can2(can1(AB)).

d2

d1 d3

C

A B

=
a canonical triangle of rank 1.
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A global canonical form

Let A ∈ F. Consider a sequence

A 7→ can1(A) 7→ can2(can1(A)) 7→ . . .

It stabilizes after a finite number of steps. The resulting word is called a
global canonical form of A and is denoted by can(A).

We show that A and B represent the same element in the group B(m, n) if
and only if can(A) = can(B).

It is clear that if A is a cubic-free word, then A = can(A). Hence |B(m, n)|
is not less than number of cubic-free words. However, it is known that
there are infinitely many different such words. Thus, B(m, n) is infinite.

All these calculations work for odd n > 297.
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