Automorphism orbits of groups and the Monster

Michael Giudici

Centre for the Mathematics of Symmetry and Computation

joint work with Alexander Bors and Cheryl E. Praeger

Ischia Group Theory 2020/2021

March 25-26 2021

Introduction

G a finite group, Aut(G)

Introduction

- G a finite group, Aut(G)
 - Aut(G) acts transitively on $G \implies G = 1$.

Introduction

- G a finite group, Aut(G)
 - Aut(G) acts transitively on $G \implies G = 1$.
 - Aut(G) acts transitively on $G \setminus \{1\} \implies G = C_p^d$.

Let $\omega(G)$ denote the number of orbits of Aut(G) on G.

Laffey-MacHale (1986): Suppose that G is not a p-group:

If ω(G) = 3 then |G| = p^aq for some primes p and q and G has a normal elementary abelian Sylow p-subgroup.

Laffey-MacHale (1986): Suppose that G is not a p-group:

- If ω(G) = 3 then |G| = p^aq for some primes p and q and G has a normal elementary abelian Sylow p-subgroup.
- If ω(G) = 4 then G = A₅ or |G| = p^aq^b or some primes p and q and G has a normal Sylow p-subgroup.

p-groups with $\omega(G) = 3$

Suppose that G is a p-group with $\omega(G) = 3$.

- Shult (1968): If p odd and G has exponent p^2 then G is abelian.
- Mäurer-Stroppel (1997): Give structural information in exponent *p* case and some examples.
- Bors-Glasby (2019): Classified the 2-groups G with $\omega(G) = 3$.

A different theme

Bors (2019): If Aut(G) has an orbit of length $> \frac{18|G|}{19}$ then G is soluble.

Conjectures true proportion is 3/7 as achieved for PSL(2,8).

A group is called an AT-group if for all integers k, Aut(G) acts transitively on the set of elements of G of order k.

AT-groups

A group is called an AT-group if for all integers k, Aut(G) acts transitively on the set of elements of G of order k.

Zhang (1992):

- Gave a structure theorem for AT-groups
- Only nonabelian simple ones are A₅, PSL₂(7), PSL₂(8), A₆ and PSL₃(4).

Let o(G) denote the number of element orders in G. Then G is an AT-group if and only if $o(G) = \omega(G)$.

Let o(G) denote the number of element orders in G. Then G is an AT-group if and only if $o(G) = \omega(G)$.

Question: How close can they be?

Define

$$\mathfrak{d}(G) = \omega(G) - o(G) \geqslant 0$$
 $\mathfrak{q}(G) = rac{\omega(G)}{o(G)} \geqslant 1$

Also define

 $\mathfrak{m}(G) = \max$ maximum over all k of number of $\operatorname{Aut}(G)$ -orbits on set of elements of order k

Define

$$\mathfrak{d}(G) = \omega(G) - o(G) \geqslant 0$$
 $\mathfrak{q}(G) = rac{\omega(G)}{o(G)} \geqslant 1$

Also define

$$\mathfrak{m}(G) = \max$$
 maximum over all k of number of $\operatorname{Aut}(G)$ -orbits on set of elements of order k

$$\mathfrak{m}(G) = 1 \iff \mathfrak{d}(G) = 0 \iff \mathfrak{q}(G) = 1 \iff G \text{ is an AT-group}$$

$$\mathfrak{q}(G) \leqslant \frac{o(G)\mathfrak{m}(G)}{o(G)} = \mathfrak{m}(G)$$

Bounding order of group

Let $\operatorname{Rad}(G)$ be the largest normal soluble subgroup of G.

Main Theorem I (Bors-Giudici-Praeger): There exist monotonically increasing functions f_1 , f_2 such that

- $(|G: \operatorname{Rad}(G)| \leq f_1(\mathfrak{d}(G))$
- $2 |G: \operatorname{Rad}(G)| \leq f_2(\mathfrak{q}(G), o(\operatorname{Rad}(G)))$

Reduction Lemma

Lemma: Let N be a characteristic subgroup of G.

1
$$\vartheta(N) \leq \vartheta(G)$$

2 $\mathfrak{m}(N) \leq \mathfrak{m}(G)$
3 $\mathfrak{m}(G/N) \leq 2^{\vartheta(G)} + \vartheta(G)$

Reduction Lemma

Lemma: Let N be a characteristic subgroup of G.

1
$$\mathfrak{d}(N) \leq \mathfrak{d}(G)$$

2 $\mathfrak{m}(N) \leq \mathfrak{m}(G)$
3 $\mathfrak{m}(G/N) \leq 2^{\mathfrak{d}(G)} + \mathfrak{d}(G)$

Proof of (1): Aut(N)-orbits are unions of Aut(G)-orbits on N so

$$\begin{split} \mathfrak{d}G &= \sum_{o \in Ord(G)} (\omega_o(G) - 1) \geqslant \sum_{o \in Ord(N)} (\omega_o(G) - 1) \\ &\geqslant \sum_{o \in Ord(N)} (\omega_o(N) - 1) = \mathfrak{d}N \quad \Box \end{split}$$

Reduction Lemma

Lemma: Let N be a characteristic subgroup of G.

1
$$\mathfrak{d}(N) \leq \mathfrak{d}(G)$$

2 $\mathfrak{m}(N) \leq \mathfrak{m}(G)$
3 $\mathfrak{m}(G/N) \leq 2^{\mathfrak{d}(G)} + \mathfrak{d}(G)$

Proof of (1): Aut(N)-orbits are unions of Aut(G)-orbits on N so

$$\begin{split} \mathfrak{d}G &= \sum_{o \in \mathit{Ord}(G)} (\omega_o(G) - 1) \geqslant \sum_{o \in \mathit{Ord}(N)} (\omega_o(G) - 1) \\ &\geqslant \sum_{o \in \mathit{Ord}(N)} (\omega_o(N) - 1) = \mathfrak{d}N \quad \Box \end{split}$$

Take N = Rad(G). Want to bound |G : N| by a function of $\mathfrak{m}(G/N)$.

Reduction to simple case

Note $soc(G/N) = T_1^{n_1} \times \cdots \times T_k^{n_s}$ where T_i nonabelian simple groups.

Lemma:
$$\mathfrak{m}(G/N) \ge \mathfrak{m}(T_1^{n_1} \times \cdots \times T_s^{n_s}) \ge \prod_{i=1}^{n_i} n_i \mathfrak{m}(T_i)$$

$$\ge \max\{n_i, \mathfrak{m}(T_i)\} \ge \max\{n_i, \mathfrak{q}(T_i)\}$$

Reduction to simple case

Note $soc(G/N) = T_1^{n_1} \times \cdots \times T_k^{n_s}$ where T_i nonabelian simple groups.

Lemma:
$$\mathfrak{m}(G/N) \ge \mathfrak{m}(T_1^{n_1} \times \cdots \times T_s^{n_s}) \ge \prod_1^r n_i \mathfrak{m}(T_i)$$

$$\ge \max\{n_i, \mathfrak{m}(T_i)\} \ge \max\{n_i, \mathfrak{q}(T_i)\}$$

So n_i and $q(T_i)$ are bounded above by $\mathfrak{m}(G/N)$. We are trying to bound |G/N| by a function of $\mathfrak{m}(G/N)$.

Reduction to simple case

Note $soc(G/N) = T_1^{n_1} \times \cdots \times T_k^{n_s}$ where T_i nonabelian simple groups.

Lemma:
$$\mathfrak{m}(G/N) \ge \mathfrak{m}(T_1^{n_1} \times \cdots \times T_s^{n_s}) \ge \prod_1^r n_i \mathfrak{m}(T_i)$$

$$\ge \max\{n_i, \mathfrak{m}(T_i)\} \ge \max\{n_i, \mathfrak{q}(T_i)\}$$

So n_i and $\mathfrak{q}(T_i)$ are bounded above by $\mathfrak{m}(G/N)$.

We are trying to bound |G/N| by a function of $\mathfrak{m}(G/N)$.

Now $G/N \leq \operatorname{Aut}(\operatorname{soc}(G/N)) = (\operatorname{Aut}(T_1) \wr S_{n_1}) \times \cdots \times (\operatorname{Aut}(T_s) \wr S_{n_s}).$

- $|\operatorname{Out}(T_i)|$ bounded above by $|T_i|$.
- Want to bound $|T_i|$ in terms of $q(T_i)$.

Define

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

Define

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

$$1 \quad \frac{\log o(T)}{\log \omega(T)} \to 0 \text{ as } |T| \to \infty.$$

Define

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

1
$$\frac{\log o(T)}{\log \omega(T)} \to 0$$
 as $|T| \to \infty$.
2 $\epsilon_{\omega}(A_n) \to \frac{1}{2}$ and $\epsilon_{\mathfrak{q}}(A_n) \to \frac{1}{2}$ as $n \to \infty$
3 $\liminf_{|T|\to\infty} \epsilon_{\omega}(T) = \frac{1}{2} = \liminf_{|T|\to\infty} \epsilon_{\mathfrak{q}}(T)$.

Define

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

1
$$\frac{\log o(T)}{\log \omega(T)} \to 0$$
 as $|T| \to \infty$.
2 $\epsilon_{\omega}(A_n) \to \frac{1}{2}$ and $\epsilon_{\mathfrak{q}}(A_n) \to \frac{1}{2}$ as $n \to \infty$
3 $\liminf_{|T| \to \infty} \epsilon_{\omega}(T) = \frac{1}{2} = \liminf_{|T| \to \infty} \epsilon_{\mathfrak{q}}(T)$.
4 $\mathfrak{q}(T) \to \infty$ as $|T| \to \infty$

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

6
$$\epsilon_{\omega}(T) \ge \frac{\log \log 4}{\log \log 60} \approx 0.231720$$
, with equality if and only if $T \cong A_5$.

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

- **6** $\epsilon_{\omega}(T) \ge \frac{\log \log 4}{\log \log 60} \approx 0.231720$, with equality if and only if $T \cong A_5$.
- 6 $\epsilon_q(T) \ge \epsilon_q(M) = \frac{\log \log (413/73)}{\log \log |M|} \approx 0.114045$, with equality if and only if $T \cong M$,

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

Main Theorem II (Bors-Giudici-Praeger):

5 $\epsilon_{\omega}(T) \ge \frac{\log \log 4}{\log \log 60} \approx 0.231720$, with equality if and only if $T \cong A_5$.

6 $\epsilon_{\mathfrak{q}}(T) \ge \epsilon_{\mathfrak{q}}(M) = \frac{\log \log (413/73)}{\log \log |M|} \approx 0.114045$, with equality if and only if $T \cong M$, where M is the monster simple group.

This gives our bound for |T| in terms of q(T).

$$\epsilon_{\omega}(T) = \frac{\log \log \omega(T)}{\log \log |T|}$$
$$\epsilon_{\mathfrak{q}}(T) = \frac{\log \log(\mathfrak{q}(T) + 3)}{\log \log |T|}$$

Main Theorem II (Bors-Giudici-Praeger):

6 ϵ_ω(T) ≥ log log 4/log log 60 ≈ 0.231720, with equality if and only if T ≅ A₅.
 6 ϵ_q(T) ≥ ϵ_q(M) = log log (413/73)/log log |M| ≈ 0.114045, with equality if

and only if $T \cong M$, where M is the monster simple group.

This gives our bound for |T| in terms of q(T).

$$\mathfrak{q}(M) = 194/73$$
 $\mathfrak{q}(A_{43}) \cong 56$ $\mathfrak{q}(\mathrm{PSL}_7(13)) \geqslant 6180$

Note
$$\omega(G) \ge \frac{k(T)}{|\operatorname{Out}(T)|}$$

Note $\omega(G) \ge \frac{k(T)}{|\operatorname{Out}(T)|}$

 $T = A_n$: use asymptotics on partitions and Erdős-Turan on element orders in S_n

Note $\omega(G) \ge \frac{k(T)}{|\operatorname{Out}(T)|}$ $T = A_n$: use asymptotics on partitions and Erdős-Turan on element orders in S_n

- T a group of Lie type:
 - Fulman-Guralnick: $k(\text{InnDiag}(T)) \ge q^d$
 - $o(T) \leq (\#$ unipotent orders)(#semisimple orders)

Note $\omega(G) \ge \frac{k(T)}{|\operatorname{Out}(T)|}$ $T = A_n$: use asymptotics on partitions and Erdős-Turan on element orders in S_n

- T a group of Lie type:
 - Fulman-Guralnick: $k(\text{InnDiag}(T)) \ge q^d$
 - $o(T) \leq (\#$ unipotent orders)(#semisimple orders)

#ss orders \leq (# conjugacy classes of maximal tori)× (maximal # element orders in a maximal torus)

Note $\omega(G) \ge \frac{k(T)}{|\operatorname{Out}(T)|}$ $T = A_n$: use asymptotics on partitions and Erdős-Turan on element orders in S_n

- T a group of Lie type:
 - Fulman-Guralnick: $k(\text{InnDiag}(T)) \ge q^d$
 - o(T) ≤ (#unipotent orders)(#semisimple orders)

#ss orders \leq (# conjugacy classes of maximal tori)× (maximal # element orders in a maximal torus)

- order of torus $\leqslant (q+1)^d$ so # element orders $\leqslant 2(q+1)^{d/2}$

Note $\omega(G) \ge \frac{k(T)}{|\operatorname{Out}(T)|}$ $T = A_n$: use asymptotics on partitions and Erdős-Turan on element orders in S_n

- T a group of Lie type:
 - Fulman-Guralnick: $k(\text{InnDiag}(T)) \ge q^d$
 - o(T) ≤ (#unipotent orders)(#semisimple orders)

#ss orders \leq (# conjugacy classes of maximal tori)× (maximal # element orders in a maximal torus)

- order of torus $\leqslant (q+1)^d$ so # element orders $\leqslant 2(q+1)^{d/2}$

• yields $o(T) \leqslant q^{(\frac{1}{2} + \frac{\epsilon}{2})d}$ if $\max\{d, q\} \ge N_2(\epsilon)$

Enough for asymptotics. Gives bounds for $\epsilon_{\omega}(T)$, $\epsilon_{\mathfrak{q}}(T)$ for large d and q.

For lower values of d and q use better bounds on number of conjugacy classes or exact structure of tori.

Enough for asymptotics. Gives bounds for $\epsilon_{\omega}(T)$, $\epsilon_{\mathfrak{q}}(T)$ for large d and q.

For lower values of d and q use better bounds on number of conjugacy classes or exact structure of tori.

Get down to 68 groups. Either calculate $\epsilon_q(T)$ exactly or get better bounds for o(T).