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Introduction

G a finite group, Aut(G )

• Aut(G ) acts transitively on G =⇒ G = 1.

• Aut(G ) acts transitively on G\{1} =⇒ G = Cd
p .

Let ω(G ) denote the number of orbits of Aut(G ) on G .
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3 or 4 orbits

Laffey-MacHale (1986): Suppose that G is not a p-group:

• If ω(G ) = 3 then |G | = paq for some primes p and q and G
has a normal elementary abelian Sylow p-subgroup.

• If ω(G ) = 4 then G = A5 or |G | = paqb or some primes p and
q and G has a normal Sylow p-subgroup.
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p-groups with ω(G ) = 3

Suppose that G is a p-group with ω(G ) = 3.

• Shult (1968): If p odd and G has exponent p2 then G is
abelian.

• Mäurer-Stroppel (1997): Give structural information in
exponent p case and some examples.

• Bors-Glasby (2019): Classified the 2-groups G with ω(G ) = 3.



A different theme

Bors (2019): If Aut(G ) has an orbit of length > 18|G |
19 then G is

soluble.

Conjectures true proportion is 3/7 as achieved for PSL(2, 8).



AT-groups

A group is called an AT-group if for all integers k , Aut(G ) acts
transitively on the set of elements of G of order k .

Zhang (1992):

• Gave a structure theorem for AT-groups

• Only nonabelian simple ones are A5, PSL2(7), PSL2(8), A6

and PSL3(4).
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A variation

Define
d(G ) = ω(G )− o(G ) > 0

q(G ) =
ω(G )

o(G )
> 1

Also define

m(G ) = maximum over all k of number of
Aut(G )-orbits on set of elements of order k

m(G ) = 1 ⇐⇒ d(G ) = 0 ⇐⇒ q(G ) = 1 ⇐⇒ G is an AT-group

q(G ) 6
o(G )m(G )

o(G )
= m(G )
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Bounding order of group

Let Rad(G ) be the largest normal soluble subgroup of G .

Main Theorem I (Bors-Giudici-Praeger): There exist monotonically
increasing functions f1, f2 such that

1 |G : Rad(G )| 6 f1(d(G ))

2 |G : Rad(G )| 6 f2(q(G ), o(Rad(G ))



Reduction Lemma

Lemma: Let N be a characteristic subgroup of G .

1 d(N) 6 d(G )

2 m(N) 6 m(G )

3 m(G/N) 6 2d(G) + d(G )

Proof of (1): Aut(N)-orbits are unions of Aut(G )-orbits on N so

dG =
∑

o∈Ord(G)

(ωo(G )− 1) >
∑

o∈Ord(N)

(ωo(G )− 1)

>
∑

o∈Ord(N)

(ωo(N)− 1) = dN

Take N = Rad(G ). Want to bound |G : N| by a function of
m(G/N).
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Reduction to simple case

Note soc(G/N) = T n1
1 × · · · × T ns

k where Ti nonabelian simple
groups.

Lemma: m(G/N) > m(T n1
1 × · · · × T ns

s ) >
s∏
1

nim(Ti )

> max{ni ,m(Ti )} > max{ni , q(Ti )}

So ni and q(Ti ) are bounded above by m(G/N).

We are trying to bound |G/N| by a function of m(G/N).

Now
G/N 6 Aut(soc(G/N)) = (Aut(T1) o Sn1)× · · · × (Aut(Ts) o Sns ).

• |Out(Ti )| bounded above by |Ti |.
• Want to bound |Ti | in terms of q(Ti ).
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Some new parameters

Define

εω(T ) =
log logω(T )

log log |T |

εq(T ) =
log log(q(T ) + 3)

log log |T |

Main Theorem II (Bors-Giudici-Praeger):

1
log o(T )
logω(T ) → 0 as |T | → ∞.

2 εω(An)→ 1
2 and εq(An)→ 1

2 as n→∞
3 lim inf |T |→∞ εω(T ) = 1

2 = lim inf |T |→∞ εq(T ).

4 q(T )→∞ as |T | → ∞
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log log 60 ≈ 0.231720, with equality if and only if

T ∼= A5.

6 εq(T ) > εq(M) = log log (413/73)
log log |M| ≈ 0.114045, with equality if

and only if T ∼= M,

where M is the monster simple group.

This gives our bound for |T | in terms of q(T ).

q(M) = 194/73 q(A43) ∼= 56 q(PSL 7(13)) > 6180
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Some tools

Note ω(G ) > k(T )
|Out(T )|

T = An: use asymptotics on partitions and Erdős-Turan on
element orders in Sn

T a group of Lie type:

• Fulman-Guralnick: k(InnDiag(T )) > qd

• o(T ) 6 (#unipotent orders)(#semisimple orders)

•

#ss orders 6(# conjugacy classes of maximal tori)×
(maximal # element orders in a maximal torus)

• order of torus 6 (q + 1)d so # element orders 6 2(q + 1)d/2

• yields o(T ) 6 q(
1
2
+ ε

2
)d if max{d , q} > N2(ε)
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Finishing up

Enough for asymptotics. Gives bounds for εω(T ), εq(T ) for large d
and q.

For lower values of d and q use better bounds on number of
conjugacy classes or exact structure of tori.

Get down to 68 groups. Either calculate εq(T ) exactly or get
better bounds for o(T ).
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