Automorphism orbits of groups and the Monster

Michael Giudici
Centre for the Mathematics of Symmetry and Computation

joint work with Alexander Bors and Cheryl E. Praeger
Ischia Group Theory 2020/2021

March 25-26 2021

Introduction

G a finite group, $\operatorname{Aut}(G)$

Introduction

G a finite group, Aut(G)

- Aut (G) acts transitively on $G \Longrightarrow G=1$.

Introduction

G a finite group, $\operatorname{Aut}(G)$

- Aut (G) acts transitively on $G \Longrightarrow G=1$.
- Aut (G) acts transitively on $G \backslash\{1\} \Longrightarrow G=C_{p}^{d}$.

Let $\omega(G)$ denote the number of orbits of $\operatorname{Aut}(G)$ on G.

3 or 4 orbits

Laffey-MacHale (1986): Suppose that G is not a p-group:

- If $\omega(G)=3$ then $|G|=p^{a} q$ for some primes p and q and G has a normal elementary abelian Sylow p-subgroup.

3 or 4 orbits

Laffey-MacHale (1986): Suppose that G is not a p-group:

- If $\omega(G)=3$ then $|G|=p^{a} q$ for some primes p and q and G has a normal elementary abelian Sylow p-subgroup.
- If $\omega(G)=4$ then $G=A_{5}$ or $|G|=p^{a} q^{b}$ or some primes p and q and G has a normal Sylow p-subgroup.

p-groups with $\omega(G)=3$

Suppose that G is a p-group with $\omega(G)=3$.

- Shult (1968): If p odd and G has exponent p^{2} then G is abelian.
- Mäurer-Stroppel (1997): Give structural information in exponent p case and some examples.
- Bors-Glasby (2019): Classified the 2-groups G with $\omega(G)=3$.

A different theme

Bors (2019): If $\operatorname{Aut}(G)$ has an orbit of length $>\frac{18|G|}{19}$ then G is soluble.

Conjectures true proportion is $3 / 7$ as achieved for $\operatorname{PSL}(2,8)$.

AT-groups

A group is called an AT-group if for all integers k, $\operatorname{Aut}(G)$ acts transitively on the set of elements of G of order k.

AT-groups

A group is called an AT-group if for all integers k, $\operatorname{Aut}(G)$ acts transitively on the set of elements of G of order k.

Zhang (1992):

- Gave a structure theorem for AT-groups
- Only nonabelian simple ones are $A_{5}, \mathrm{PSL}_{2}(7), \mathrm{PSL}_{2}(8), A_{6}$ and $\mathrm{PSL}_{3}(4)$.

A variation

Let $o(G)$ denote the number of element orders in G.
Then G is an AT-group if and only if $o(G)=\omega(G)$.

A variation

Let $o(G)$ denote the number of element orders in G. Then G is an AT-group if and only if $o(G)=\omega(G)$.

Question: How close can they be?

A variation

Define

$$
\begin{gathered}
\mathfrak{d}(G)=\omega(G)-o(G) \geqslant 0 \\
\mathfrak{q}(G)=\frac{\omega(G)}{o(G)} \geqslant 1
\end{gathered}
$$

Also define

$$
\mathfrak{m}(G)=\quad \text { maximum over all } k \text { of number of }
$$

Aut (G)-orbits on set of elements of order k

A variation

Define

$$
\begin{gathered}
\mathfrak{d}(G)=\omega(G)-o(G) \geqslant 0 \\
\mathfrak{q}(G)=\frac{\omega(G)}{o(G)} \geqslant 1
\end{gathered}
$$

Also define

$$
\mathfrak{m}(G)=\quad \text { maximum over all } k \text { of number of }
$$

Aut (G)-orbits on set of elements of order k

$$
\mathfrak{m}(G)=1 \Longleftrightarrow \mathfrak{d}(G)=0 \Longleftrightarrow \mathfrak{q}(G)=1 \Longleftrightarrow G \text { is an AT-group }
$$

$$
\mathfrak{q}(G) \leqslant \frac{o(G) \mathfrak{m}(G)}{o(G)}=\mathfrak{m}(G)
$$

Bounding order of group

Let $\operatorname{Rad}(G)$ be the largest normal soluble subgroup of G.
Main Theorem I (Bors-Giudici-Praeger): There exist monotonically increasing functions f_{1}, f_{2} such that
(1) $|G: \operatorname{Rad}(G)| \leqslant f_{1}(\mathfrak{d}(G))$
(2) $|G: \operatorname{Rad}(G)| \leqslant f_{2}(\mathfrak{q}(G), o(\operatorname{Rad}(G))$

Reduction Lemma

Lemma: Let N be a characteristic subgroup of G.
(1) $\mathfrak{d}(N) \leqslant \mathfrak{d}(G)$
(2) $\mathfrak{m}(N) \leqslant \mathfrak{m}(G)$
(3) $\mathfrak{m}(G / N) \leqslant 2^{\mathfrak{o}(G)}+\mathfrak{d}(G)$

Reduction Lemma

Lemma: Let N be a characteristic subgroup of G.
(1) $\mathfrak{d}(N) \leqslant \mathfrak{d}(G)$
(2) $\mathfrak{m}(N) \leqslant \mathfrak{m}(G)$
(3) $\mathfrak{m}(G / N) \leqslant 2^{\mathfrak{d}(G)}+\mathfrak{d}(G)$

Proof of (1): Aut(N)-orbits are unions of $\operatorname{Aut}(G)$-orbits on N so

$$
\begin{aligned}
\mathfrak{d} G=\sum_{o \in \operatorname{Ord}(G)}\left(\omega_{o}(G)-1\right) & \geqslant \sum_{o \in \operatorname{Ord}(N)}\left(\omega_{o}(G)-1\right) \\
& \geqslant \sum_{o \in \operatorname{Ord}(N)}\left(\omega_{o}(N)-1\right)=\mathfrak{d} N
\end{aligned}
$$

Reduction Lemma

Lemma: Let N be a characteristic subgroup of G.
(1) $\mathfrak{d}(N) \leqslant \mathfrak{d}(G)$
(2) $\mathfrak{m}(N) \leqslant \mathfrak{m}(G)$
(3) $\mathfrak{m}(G / N) \leqslant 2^{\mathfrak{d}(G)}+\mathfrak{d}(G)$

Proof of (1): Aut(N)-orbits are unions of $\operatorname{Aut}(G)$-orbits on N so

$$
\begin{aligned}
\mathfrak{d} G=\sum_{o \in \operatorname{Ord}(G)}\left(\omega_{o}(G)-1\right) & \geqslant \sum_{o \in \operatorname{Ord}(N)}\left(\omega_{o}(G)-1\right) \\
& \geqslant \sum_{o \in \operatorname{Ord}(N)}\left(\omega_{o}(N)-1\right)=\mathfrak{d} N
\end{aligned}
$$

Take $N=\operatorname{Rad}(G)$. Want to bound $|G: N|$ by a function of $\mathfrak{m}(G / N)$.

Reduction to simple case

Note $\operatorname{soc}(G / N)=T_{1}^{n_{1}} \times \cdots \times T_{k}^{n_{s}}$ where T_{i} nonabelian simple groups.
Lemma: $\quad \mathfrak{m}(G / N) \geqslant \mathfrak{m}\left(T_{1}^{n_{1}} \times \cdots \times T_{s}^{n_{s}}\right) \geqslant \prod_{1}^{s} n_{i} \mathfrak{m}\left(T_{i}\right)$

$$
\geqslant \max \left\{n_{i}, \mathfrak{m}\left(T_{i}\right)\right\} \geqslant \max \left\{n_{i}, \mathfrak{q}\left(T_{i}\right)\right\}
$$

Reduction to simple case

Note $\operatorname{soc}(G / N)=T_{1}^{n_{1}} \times \cdots \times T_{k}^{n_{s}}$ where T_{i} nonabelian simple groups.
Lemma: $\quad \mathfrak{m}(G / N) \geqslant \mathfrak{m}\left(T_{1}^{n_{1}} \times \cdots \times T_{s}^{n_{s}}\right) \geqslant \prod_{1}^{s} n_{i} \mathfrak{m}\left(T_{i}\right)$

$$
\geqslant \max \left\{n_{i}, \mathfrak{m}\left(T_{i}\right)\right\} \geqslant \max \left\{n_{i}, \mathfrak{q}\left(T_{i}\right)\right\}
$$

So n_{i} and $\mathfrak{q}\left(T_{i}\right)$ are bounded above by $\mathfrak{m}(G / N)$.
We are trying to bound $|G / N|$ by a function of $\mathfrak{m}(G / N)$.

Reduction to simple case

Note $\operatorname{soc}(G / N)=T_{1}^{n_{1}} \times \cdots \times T_{k}^{n_{s}}$ where T_{i} nonabelian simple groups.
Lemma: $\quad \mathfrak{m}(G / N) \geqslant \mathfrak{m}\left(T_{1}^{n_{1}} \times \cdots \times T_{s}^{n_{s}}\right) \geqslant \prod_{1}^{s} n_{i} \mathfrak{m}\left(T_{i}\right)$

$$
\geqslant \max \left\{n_{i}, \mathfrak{m}\left(T_{i}\right)\right\} \geqslant \max \left\{n_{i}, \mathfrak{q}\left(T_{i}\right)\right\}
$$

So n_{i} and $\mathfrak{q}\left(T_{i}\right)$ are bounded above by $\mathfrak{m}(G / N)$.
We are trying to bound $|G / N|$ by a function of $\mathfrak{m}(G / N)$.
Now
$\left.\left.G / N \leqslant \operatorname{Aut}(\operatorname{soc}(G / N))=\left(\operatorname{Aut}\left(T_{1}\right)\right\} S_{n_{1}}\right) \times \cdots \times\left(\operatorname{Aut}\left(T_{s}\right)\right\} S_{n_{s}}\right)$.

- $\left|\operatorname{Out}\left(T_{i}\right)\right|$ bounded above by $\left|T_{i}\right|$.
- Want to bound $\left|T_{i}\right|$ in terms of $\mathfrak{q}\left(T_{i}\right)$.

Some new parameters

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Some new parameters

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Main Theorem II (Bors-Giudici-Praeger):
(1) $\frac{\log a(T)}{\log \omega(T)} \rightarrow 0$ as $|T| \rightarrow \infty$.

Some new parameters

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Main Theorem II (Bors-Giudici-Praeger):
(1) $\frac{\log o(T)}{\log \omega(T)} \rightarrow 0$ as $|T| \rightarrow \infty$.
(2) $\epsilon_{\omega}\left(A_{n}\right) \rightarrow \frac{1}{2}$ and $\epsilon_{\mathfrak{q}}\left(A_{n}\right) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$
(3) $\liminf _{|T| \rightarrow \infty} \epsilon_{\omega}(T)=\frac{1}{2}=\liminf _{|T| \rightarrow \infty} \epsilon_{\mathfrak{q}}(T)$.

Some new parameters

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Main Theorem II (Bors-Giudici-Praeger):
(1) $\frac{\log o(T)}{\log \omega(T)} \rightarrow 0$ as $|T| \rightarrow \infty$.
(2) $\epsilon_{\omega}\left(A_{n}\right) \rightarrow \frac{1}{2}$ and $\epsilon_{\mathfrak{q}}\left(A_{n}\right) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$
(3) $\liminf _{|T| \rightarrow \infty} \epsilon_{\omega}(T)=\frac{1}{2}=\liminf _{|T| \rightarrow \infty} \epsilon_{\mathfrak{q}}(T)$.
(4) $\mathfrak{q}(T) \rightarrow \infty$ as $|T| \rightarrow \infty$

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Main Theorem II (Bors-Giudici-Praeger):
(5) $\epsilon_{\omega}(T) \geqslant \frac{\log \log 4}{\log \log 60} \approx 0.231720$, with equality if and only if $T \cong A_{5}$.

Define

$$
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|}
$$

$$
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
$$

Main Theorem II (Bors-Giudici-Praeger):
(5) $\epsilon_{\omega}(T) \geqslant \frac{\log \log 4}{\log \log 60} \approx 0.231720$, with equality if and only if $T \cong A_{5}$.
(6) $\epsilon_{\mathfrak{q}}(T) \geqslant \epsilon_{\mathfrak{q}}(M)=\frac{\log \log (413 / 73)}{\log \log |M|} \approx 0.114045$, with equality if and only if $T \cong M$,

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Main Theorem II (Bors-Giudici-Praeger):
(5) $\epsilon_{\omega}(T) \geqslant \frac{\log \log 4}{\log \log 60} \approx 0.231720$, with equality if and only if $T \cong A_{5}$.
(6 $\epsilon_{\mathfrak{q}}(T) \geqslant \epsilon_{\mathfrak{q}}(M)=\frac{\log \log (413 / 73)}{\log \log |M|} \approx 0.114045$, with equality if and only if $T \cong M$, where M is the monster simple group.

This gives our bound for $|T|$ in terms of $\mathfrak{q}(T)$.

Define

$$
\begin{gathered}
\epsilon_{\omega}(T)=\frac{\log \log \omega(T)}{\log \log |T|} \\
\epsilon_{\mathfrak{q}}(T)=\frac{\log \log (\mathfrak{q}(T)+3)}{\log \log |T|}
\end{gathered}
$$

Main Theorem II (Bors-Giudici-Praeger):
(5) $\epsilon_{\omega}(T) \geqslant \frac{\log \log 4}{\log \log 60} \approx 0.231720$, with equality if and only if $T \cong A_{5}$.
(6) $\epsilon_{\mathfrak{q}}(T) \geqslant \epsilon_{\mathfrak{q}}(M)=\frac{\log \log (413 / 73)}{\log \log |M|} \approx 0.114045$, with equality if and only if $T \cong M$, where M is the monster simple group.

This gives our bound for $|T|$ in terms of $\mathfrak{q}(T)$.

$$
\mathfrak{q}(M)=194 / 73 \quad \mathfrak{q}\left(A_{43}\right) \cong 56 \quad \mathfrak{q}\left(\mathrm{PSL}_{7}(13)\right) \geqslant 6180
$$

Some tools

Note $\omega(G) \geqslant \frac{k(T)}{|\operatorname{Out}(T)|}$

Some tools

Note $\omega(G) \geqslant \frac{k(T)}{|\operatorname{Out}(T)|}$
$T=A_{n}$: use asymptotics on partitions and Erdős-Turan on element orders in S_{n}

Some tools

Note $\omega(G) \geqslant \frac{k(T)}{|\operatorname{Out}(T)|}$
$T=A_{n}$: use asymptotics on partitions and Erdős-Turan on element orders in S_{n}
T a group of Lie type:

- Fulman-Guralnick: $k(\operatorname{InnDiag}(T)) \geqslant q^{d}$
- $o(T) \leqslant$ (\#unipotent orders)(\#semisimple orders)

Some tools

Note $\omega(G) \geqslant \frac{k(T)}{|\operatorname{Out}(T)|}$
$T=A_{n}$: use asymptotics on partitions and Erdős-Turan on element orders in S_{n}
T a group of Lie type:

- Fulman-Guralnick: $k(\operatorname{InnDiag}(T)) \geqslant q^{d}$
- $o(T) \leqslant$ (\#unipotent orders)(\#semisimple orders)
$\#$ ss orders $\leqslant(\#$ conjugacy classes of maximal tori $) \times$ (maximal \# element orders in a maximal torus)

Some tools

Note $\omega(G) \geqslant \frac{k(T)}{|\operatorname{Out}(T)|}$
$T=A_{n}$: use asymptotics on partitions and Erdős-Turan on element orders in S_{n}
T a group of Lie type:

- Fulman-Guralnick: $k(\operatorname{InnDiag}(T)) \geqslant q^{d}$
- $o(T) \leqslant$ (\#unipotent orders)(\#semisimple orders)
$\#$ ss orders $\leqslant(\#$ conjugacy classes of maximal tori $) \times$ (maximal \# element orders in a maximal torus)
- order of torus $\leqslant(q+1)^{d}$ so $\#$ element orders $\leqslant 2(q+1)^{d / 2}$

Some tools

Note $\omega(G) \geqslant \frac{k(T)}{|\operatorname{Out}(T)|}$
$T=A_{n}$: use asymptotics on partitions and Erdős-Turan on element orders in S_{n}
T a group of Lie type:

- Fulman-Guralnick: $k(\operatorname{InnDiag}(T)) \geqslant q^{d}$
- $o(T) \leqslant$ (\#unipotent orders)(\#semisimple orders)
$\#$ ss orders $\leqslant(\#$ conjugacy classes of maximal tori $) \times$ (maximal \# element orders in a maximal torus)
- order of torus $\leqslant(q+1)^{d}$ so $\#$ element orders $\leqslant 2(q+1)^{d / 2}$
- yields $o(T) \leqslant q^{\left(\frac{1}{2}+\frac{\epsilon}{2}\right) d}$ if $\max \{d, q\} \geqslant N_{2}(\epsilon)$

Finishing up

Enough for asymptotics. Gives bounds for $\epsilon_{\omega}(T), \epsilon_{\mathfrak{q}}(T)$ for large d and q.

For lower values of d and q use better bounds on number of conjugacy classes or exact structure of tori.

Finishing up

Enough for asymptotics. Gives bounds for $\epsilon_{\omega}(T), \epsilon_{\mathfrak{q}}(T)$ for large d and q.

For lower values of d and q use better bounds on number of conjugacy classes or exact structure of tori.

Get down to 68 groups. Either calculate $\epsilon_{\mathfrak{q}}(T)$ exactly or get better bounds for $o(T)$.

