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Introduction.

In this talk we shall describe some recent criteria for solvability, nilpotency
and other properties of finite groups G , based either on the orders of the
elements of G or on the orders of the subgroups of G . The various results
will be described in the following Sections II, III and IV, each dedicated to
one of the above mentioned properties of finite groups.
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New criteria for solvability

We start with two criteria for solvability which were proved in the paper [1]
of Patrizia Longobardi, Mercede Maj and myself. The first criterion was:

Theorem 1

Let G be a finite group of order n containing a subgroup A of prime power
index ps . Moreover, suppose that A contains a normal cyclic subgroup H
and A/H is a cyclic group of order 2r for some non-negative integer r .
Then G is a solvable group.

Notice that since [G : A] = ps , it follows that G = AB, where B is a
p-group.
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We continue with three remarks concerning this result. Here and later, G
will denote a finite group.

Remark 1

Theorem 1 is a generalization of a special case of the following result of H.
Wielandt and N. Ito (see Scott’s book [2], Theorem 13.10.1):

Theorem 2

If G = AB, where B is a nilpotent subgroup of G and A is a subgroup of
G containing a cyclic subgroup H of index [A : H] ≤ 2, then G is solvable.

If B is a p-group, then this result corresponds to Theorem 1 with
1 ≤ 2r ≤ 2, while in our case r is not bounded.
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Remark 2

For the proof of Theorem 1 we used the following Szep’s conjecture, which
was proved by Elsa Fisman and Zvi Arad in [3]:

Theorem 3

If G = AB, where A and B are subgroups of G with non-trivial centers,
then G is not a non-abelian simple group.

Remark 3

The proof of Theorem 3 relies on the classification of finite simple groups.
Therefore our proof of Theorem 1 also relies on that classification. On the
other hand, the proof of Theorem 2 by Wielandt and Ito does not rely on
the classification.
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Before continuing, we need to introduce some notation,
which will be used also in the other sections. First,

ψ(G ) =
∑
x∈G

o(x),

where o(x) denotes the order of x . This notation was introduced by H.
Amiri, S.M. Jafarian Amiri and I.M. Isaacs in their 2009 paper [4]. They
proved the following theorem;

Theorem 4

If G is a non-cyclic group of order n and Cn denotes the cyclic group of
order n, then ψ(G ) < ψ(Cn).
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In [5], P. Longobardi, M. Maj and myself determined the exact upper
bound for ψ(G ) for non-cyclic groups G . We proved the following theorem.

Theorem 5

If G is non-cyclic group of order n, then

ψ(G ) ≤ 7

11
ψ(Cn),

and equality holds for the groups G = Ck × C2 × C2, where k denotes an
arbitrary odd integer.

Later we proved that equality holds only for the above mentioned groups.
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Our second criterion for solvability in [1] was:

if |G | = n and ψ(G ) ≥ 1

6.68
ψ(Cn),

then G is solvable. Since ψ(A5) = 211
1617ψ(C60) < 1

6.68ψ(C60), we
conjectured that if ψ(G ) > 211

1617ψ(Cn), then G is solvable and this result is
the best possible. And indeed, M. Baniasad Azad and B. Khosravi proved
in [6] the following theorem:

Theorem 6

If |G | = n and ψ(G ) > 211
1617ψ(Cn), then G is solvable and this lower bound

is the best possible.
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And what can we say about a non-solvable group G of order n satisfying
ψ(G ) = 211

1617ψ(Cn)? In this case, A. Bahri, B. Khosravi and Z. Akhlaghi
proved in [7] the following theorem:

Theorem 7

Let G be a non-solvable group of order n. Then

ψ(G ) =
211

1617
ψ(Cn)

if and only if G = A5 × Cm, where (m, 30) = 1.

The next criterion for solvability will be based on the orders of the
subgroups of G .
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We shall consider now the following function of G :

σ1(G ) =
1

|G |
∑
H≤G
|H|,

which was introduced by T. De Medts and M. Tărnăuceanu in the
paper [8].
Tărnăuceanu conjectured in [9] that

if σ1(G ) <
117

20
, then G is solvable.

Since σ1(A5) = 117
20 , this upper bound is the best possible.
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In [10], P. Longobardi, M. Maj and myself proved
Tărnăuceanu’s conjecture . We proved the following theorem:

Theorem 8

If

σ1(G ) =
1

|G |
∑
H≤G
|H| < 117

20
,

then G is solvable and this upper bound is the best possible.

We pass now to the section dealing with criteria for nilpotency.
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New criteria for nilpotency

In [11], M. Tărnăuceanu proved the following theorem:

Theorem 9

If

σ1(G ) =
1

|G |
∑
H≤G
|H| < 2 +

4

|G |
,

then G is a nilpotent group.

Inspired by this result, he asked whether there exists a constant c > 2 such
that if σ1(G ) < c , then G is nilpotent. In the same paper Tărnăuceanu
showed that such c does not exist. In fact, he constructed an infinite
sequence of non-nilpotent groups (Gn), such that σ1(Gn) approaches 2
monotonically from above, as n tends to infinity.
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Since a nilpotent group is a direct product of its Sylow subgroups, it
follows that if G is nilpotent and x , y ∈ G are of co-prime orders, then
o(xy) = o(x)o(y). But is the converse of this statement true? This is a
natural question and it is very surprising that only in 2018 this fact was
proved by Benjamin Baumslag and James Wiegold, using only elementary
methods. They proved in [12] the following theorem.

Theorem 10

G is nilpotent if and only if

o(xy) = o(x)o(y)

for any x , y ∈ G of co-prime orders.
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Using the function ψ(G ) =
∑

x∈G o(x), Tărnăuceanu proved in [13] the
following theorem.

Theorem 11

If |G | = n and

ψ(G ) >
13

21
ψ(Cn),

then G is nilpotent. Moreover, ψ(G ) = 13
21ψ(Cn) if and only if

G = S3 × Cm with (m, 6) = 1.
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It is interesting to notice that in the paper [14], dealing with non-cyclic
groups of order 2m, m odd, P. Longobardi, M. Maj and myself proved the
following related result (see Theorem 7 in [14]):

Theorem 12

Let G be a non-cyclic group of order n = 2m, with m an odd integer. Then

ψ(G ) ≤ 13

21
ψ(Cn).

Moreover, ψ(G ) = 13
21ψ(Cn) if and only if m = 3m1 with (m1, 3) = 1 and

G = S3 × Cm1 .

Marcel Herzog March 23, 2021 15 / 37



Since by Corollary 4 in [14] ψ(G ) < 1
2ψ(Cn) if n = |G | is odd, the above

two theorems yield the following result: if G is a non-cyclic group of order
n and ψ(G ) > 13

21ψ(Cn), then G is nilpotent group with n divisible by 4.
But Tărnăuceanu proved more. He proved the following theorem (see
Corollary 1.2 in [13]):
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Theorem 13

If |G | = n and

ψ(G ) >
13

21
ψ(Cn),

then
ψ(G )

ψ(Cn)
∈ {27

43
,

7

11
, 1}

and one of the following statements holds, respectively:

1 G = Q8 × Cm, where m is odd;

2 G = (C2 × C2)× Cm, where m is odd;

3 G is cyclic.
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Tărnăuceanu’s Theorems 11 and 13 imply the following result:

Theorem 14

The four largest values of the fraction ψ(G)
ψ(C|G |)

on the class of finite groups

G are:

1,
7

11
,

27

43
,

13

21

in the decreasing order.
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Another interesting criterion for nilpotency is the following theorem of
Tărnăuceanu in [15]. He defined the function

ϕ(G ) = |{a ∈ G | o(a) = exp(G )}|,

and he proved that

Theorem 15

G is nilpotent if and only if ϕ(S) 6= 0 for any section S of G.

Recall that a section of a group G is a homomorphic image of a subgroup
of G . Moreover, if G is nilpotent, then ϕ(G ) > 0.
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The proof of Theorem 15 relies on the structure of minimal non-nilpotent
groups. Tărnăuceanu also presented examples of non-nilpotent groups G
which satisfy ϕ(G ) 6= 0 and even ϕ(H) 6= 0 for all subgroups H of G . So
considering only subgroups of G is not sufficient.
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Another interesting characterization of nilpotency was
proved by Martino Garonzi and Massimiliano Patassini in their paper [16].
Let ϕ denote the Euler totient function. They proved the following
theorem

Theorem 16

Let r < 0 be a real number and let |G | = n. Then

∑
x∈G

(
o(x)

ϕ(o(x))

)r

≥
∑
x∈Cn

(
o(x)

ϕ(o(x))

)r

and equality holds if and only if G is nilpotent. In particular, G is
nilpotent if and only if∑

x∈G

(
ϕ(o(x))

o(x)

)
=
∑
x∈Cn

(
ϕ(o(x))

o(x)

)
.
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It is worthwhile to mention that if G is a nilpotent group of order n, then∑
x∈G

(
o(x)

ϕ(o(x))

)s

=
∑
x∈Cn

(
o(x)

ϕ(o(x))

)s

for all real numbers s and by Theorem 16 the converse is true if s < 0. It
had been conjectured that the converse is true for all real numbers s 6= 0.
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In [17], Tărnăuceanu considered the following function of G :

ψ”(G ) =
ψ(G )

|G |2
.

Among other results, some to be mentioned later, he proved the following
theorem:

Theorem 17

If

ψ”(G ) >
13

36
= ψ”(S3),

then G is nilpotent.

Which groups satisfy ψ”(G ) = 13
36? This question will be considered in the

next section.
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Finally, we shall describe an amusing connection between group theory and
number theory, discovered by Tom De Medts and Marius Tărnăuceanu .
Let n denote a positive integer and let σ(n) denote the sum of the divisors
of n:

σ(n) =
∑
d |n

d .

Recall that n is a deficient number if σ(n) < 2n and a perfect number if
σ(n) = 2n. Thus the set consisting of both the deficient numbers and the
perfect numbers is characterized by the inequality

σ(n) ≤ 2n.
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Now let G be a group and denote by C (G ) the set of cyclic subgroups of
G . Denote by S1 and S2 the following classes of groups:

S1 = {G |
∑
H≤G
|H| ≤ 2|G |}

and
S2 = {G |

∑
H∈C(G)

|H| ≤ 2|G |}.

Clearly S1 ⊆ S2 and ∑
H≤G
|H| =

∑
H∈C(G)

|H|

if and only if G is a cyclic group.
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De Medts and Tărnăuceanu proved in [8] the following theorem.

Theorem 18

Let G be a group of order n. Then the following statements hold.

1 G ∈ S1 = {G |
∑

H≤G |H| ≤ 2|G |} if and only if G is cyclic and n is
either a deficient or a perfect number.

2 G is a nilpotent group belonging to

S2 = {G |
∑

H∈C(G)

|H| ≤ 2|G |}

if and only if n is either a deficient or a perfect number.
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Recent criteria for some other types of groups

In this section we shall list some criteria for a group to be cyclic, abelian
and supersolvable.
In [17], Tărnăuceanu proved the following theorem. Recall that

ψ(G ) =
∑

x∈G o(x) and ψ”(G ) = ψ(G)
|G |2 .

Theorem 19

Let G be a finite group. Then the following statements hold.

1 If ψ”(G ) > 7
16 = ψ”(C2 × C2), then G is cyclic.

2 If ψ”(G ) > 27
64 = ψ”(Q8), then G is abelian.

3 If ψ”(G ) > 13
36 = ψ”(S3), then G is nilpotent.

4 If ψ”(G ) > 31
144 = ψ”(A4), then G is supersolvable.

5 If ψ”(G ) > 211
3600 = ψ”(A5), then G is solvable.
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3 was mentioned in Section 3 dealing with nilpotent groups. In this paper
Tărnăuceanu stated the following open problem: determine all finite
groups G for which ψ”(G ) takes on one of the values which appear in
Theorem 19. He mentions that given a rational number c ∈ (0, 1), the
main difficulty in finding groups G satisfying ψ”(G ) = c is to solve this
problem for cyclic groups G .
A partial solution to this problem was supplied by M. Baniasad Azad, B.
Khosravi and M. Jafarpour in their paper [18]. They proved the following
theorem.
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Theorem 20

Let G be a finite group. Then the following statements hold.

1 If G is non-cyclic and ψ”(G ) = 7
16 , then G = C2 × C2.

2 If G is non-cyclic and ψ”(G ) = 27
64 , then G = Q8.

3 If G is non-cyclic and ψ”(G ) = 13
36 , then G = S3.

4 If G is non-supersolvable and ψ”(G ) = 31
144 , then G = A4.

5 If G is non-solvable and ψ”(G ) = 211
3600 , then G = A5.

We shall conclude our treatment of the function ψ”(G ) = ψ(G)
|G |2 , with the

following two recent results.
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The first result is the following theorem, which also appeared in the paper
[18] of M. Baniasad Azad, B. Khosravi and M. Jafarpour.

Theorem 21

Let p > 5 be a prime and suppose that G is not a p-nilpotent group. Then

ψ”(G ) ≤ p2 + p + 1

4p2
= ψ”(D2p),

and equality holds if and only if G = D2p.
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The second result is the following theorem of M. Lazorec and M.
Tărnăuceanu which appeared in their paper [19].

Theorem 22

The set Imψ” = {ψ”(G ) | G is a finite group} is dense in [0, 1].

The final topic of this talk are the cyclic subgroups of G . First we shall
define three relevant functions.

Definitions

Let G be a finite group.

1 C (G ) denotes the set of cyclic subgroups of G .

2 α(G ) = |C(G)|
|G | .

3 o(G ) denotes the average order in G . Hence

o(G ) =
1

|G |
∑
x∈G

o(x) =
ψ(G )

|G |
.
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First we notice that in the multiset {〈x〉 | x ∈ G}, each 〈x〉 appears
exactly ϕ(o(x)) times, where ϕ denotes the Euler totient function.
Consequently, each x ∈ G contributes 1

ϕ(o(x)) to |C (G )| and therefore

|C (G )| =
∑
x∈G

1

ϕ(o(x))
.

Hence |C (G )|, α(G ) = |C(G)|
|G | and o(G ) = 1

|G |
∑

x∈G o(x) are completely
determined by the orders of the elements of the group G .
In his paper [20], Andrei Jaikin-Zapirain proved the following result
concerning o(G ) = 1

|G |
∑

x∈G o(x) (see his Lemma 2.7 and Corollary 2.10).
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Theorem 23

If G is a finite group, then

k(G ) ≥ o(G ) ≥ o(Z (G )),

where k(G ) denotes the number of the conjugacy classes of G.

In his paper [21], Tărnăuceanu proved that the function α(G ) = |C(G)|
|G |

satisfies the reversed inequality:

Theorem 24

If G is a finite group, then

α(G ) ≤ α(Z (G )).

He also determined which groups satisfy the equality. In particular, he
showed that such groups are 4-abelian, namely. (xy)4 = x4y4 hoilds for all
x , y ∈ G .
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The lecture is now complete.

THANK YOU for your ATTENTION!
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