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Exercise

No group is the union of two proper subgroups.

Theorem

A group G is the union of three proper subgroups if and only if
G has a homomorphic image isomorphic to the Klein 4-group.

G. Scorza, I gruppi che possone pensarsi come somma di tre
lori sottogruppi, Boll. Un. Mat. Ital., 5 (1926), 216-218.
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Exercise

No quasigroup is the union of two proper subquasigroups.

Loop = group without associativity
Quasigroup = loop without identity

Definition

An algebraic structure A has a finite covering by proper
algebraic substructres of A if A is the union of finitely many
proper substructures. The covering number of an algebraic
structure A, denoted σ(A), is the minimum number of proper
substructures whose union is A.
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Theorem

For every integer n > 2, there exists a loop L with σ(L) = n

S. M. Gagola III and L. C. Kappe, On the covering number of
loops, Expositiones Mathematicae, 34 (2016) 436-447
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only if it has a finite non-cyclic homomorphic image.

B.H. Neumann, Groups covered by finitely many cosets, Publ.
Math. Debrecen, 3 (1954), 227-242
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Theorem

The integers n ≤ 26 which are not covering numbers of a
group are 2, 7, 11, 19, 21, 22, and 25.

Tomkinson, Garonzi et. al.

Theorem

The integers between 26 and 129 which are not covering
numbers of a group are 27, 34, 35, 37, 39, 41, 43, 45, 47, 49,
51, 52, 53, 55, 56, 58, 59, 61, 66, 69, 70, 75, 76, 77, 78, 79,
81, 83, 87, 88, 89, 91, 93, 94, 95, 96, 97, 99, 100, 101, 103,
105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119,
120, 123, 124, and 125.

M. Garonzi, L. C. Kappe, and E. Swartz, On Integers that are
Covering Numbers of Groups, Experimental Mathematics, to
appear
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Exercise

There is no ring with covering number 2.

Theorem

A ring has finite covering number if and only if there exists a
finite quotient with finite covering.

Theorem

Let R be a ring. If S is a subring of finite index, then S also
contains a two-sided ideal of R which is also of finite index.

J. Lewin, Subrings of finite index in finitely generated rings,
J. Algebra, 5 (1967), 84-88
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Theorem

For every integer n with 2 < n < 13, there exists a ring R with
σ(R) = n.

Conjecture

There exists no ring with covering number 13.
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Example

Let N be the semigroup of natural numbers under
multiplication. Then σ(N) = 2.



Definition

A semigroup is a set with an associative binary operation.

I Groups, functions with composition, numbers with
addition/multiplication, words with concatenation. . .

Definition

1. The covering number of a semigroup S with respect to
semigroups, σs(S), is the minimum number of proper
subsemigroups of S whose union is S .

2. The covering number of a semigroup S with respect to
groups, σg (S), is the minimum number of proper
subgroups of S whose union is S .
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Theorem (Donoven, K)

Let S be a finite semigroup.

I If S is monogenic, then σs(S) =∞.

I If S is a group, then σs(S) = σg (S).

I Otherwise, σs(S) = 2.



Definition

Let S be a semigroup and x , y ∈ S . Then xJ y if only if
S1xS1 = S1yS1.

J is an equivalence relation known as a Green’s Relation.

There is a natural partial order ≤J on the equivalence classes
of J : for x , y ∈ S , we have Jx ≤J Jy if and only if
S1xS1 ⊆ S1yS1.
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Lemma

Let S be a semigroup and J be a maximal J -class of S on the
partial order. Then the set difference S − J is a semigroup,
provided S − J 6= ∅.

Corollary

Let S be a semigroup with a maximal J -class J such that
〈J〉 6= S , σs(2).

If 〈J〉 = S , then either:

I J = S and S is a Rees matrix semigroup, or

I J 6= S and S surjects onto a Rees 0-matrix semigroup.
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Definition

Let K and Λ be nonempty sets, G be a group, and P be a
|Λ| × |K | matrix with entries in G . Then the Rees matrix
semigroup S =M[K ,G ,Λ;P] is the set of triples K × G × Λ
with multiplication

(κ, g , λ)(µ, h, ν) = (κ, gpλ,µh, ν).

Proposition

Let S =M[K ,G ,Λ;P] be a Rees matrix semigroup. If
|K | > 1 or |Λ| > 1, then σs(S) = 2. If |K | = |Λ| = 1, then S
is a group.
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Lemma

If G is a torsion group, then σs(G ) = σg (G ).

Let G be a torsion group (e.g. finite) with subsemigroup T .
Then for each x ∈ T , we have

I id = x |x | ∈ T ,

I x−1 = x |x |−1 ∈ T .

Thus, T is a group and σs(G ) = σg (G ).

Example

Let C∞ = Z, the integers under addition. Then σg (Z) =∞
but σs(Z) = 2, since Z = Z− ∪ (Z+ ∪ {0}).
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Definition

Let K and Λ be nonempty sets, G be a group, and P be a
|Λ| × |K | matrix with entries in G ∪ {0}. Then the Rees
0-matrix semigroup, S =M0[K ,G ,Λ;P], is the set
(K × G × Λ) ∪ {0} with multiplication

(κ, g , λ)(µ, h, ν) = (κ, gpλ,µh, ν)

when pλ,µ 6= 0, and all other products are 0.

Proposition

Let S =M0[K ,G ,Λ;P] be a (regular) Rees 0-matrix
semigroup. If |K | > 1 or |Λ| > 1, then σs(S) = 2. If
|K | = |Λ| = 1, then S is monogenic.
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Monoid

A monoid is a set with an associative binary operation with an
identity 1.

Submonoid

A submonoid of a monoid is a subsemigroup that contains 1.

Covering Numbers

The covering number of a monoid M with respect to
submonoids, σm(M), is the minimum number of proper
submonoids of M whose union is M .
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Theorem (Donoven, K)

Let M be a monoid.

I If M is a group, then σm(M) = σs(M).

I If M − {1} is a semigroup, then σm(M) = σs(M − {1}).

I Otherwise, σm(M) = 2.



Outline of proof for monoids:

Let R1 be the set of elements of M with a right inverse.

If M = R1, then M is a group.

If R1 = {1} and M − R1 is non-empty, then M − {1} is a
semigroup.

Otherwise R1 and (M − R1) ∪ {1} are proper submonoids.
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Corollary

If M is a monoid and not a group, then σs(M) = 2.

Theorem (Donoven)

Let G be a group. Then σs(G ) = 2 if and only if G has a
non-trivial left-orderable quotient.

Open Question

For all groups G , is it true that σs(G ) = 2 or σs(G ) = σg (G )?
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Inverse Semigroups

An inverse semigroup I is a set with an associative binary
operation where for all a ∈ I there is a unique b ∈ I such that
aba = a and bab = b.

Covering Numbers

The covering number of an inverse subsemigroup I with
respect to inverse subsemigroups, σi(I ), is the minimum
number of proper inverse subsemigroups of I whose union is I .
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Theorem (Donoven, K)

Let I be a finite inverse semigroup.

I If I is not generated by a single J class, then σi(I ) = 2.

I If I is a group, then σi(I ) = σg (I ).
I Otherwise, I surjects onto a Rees 0-Matrix semigroup
M0[K ,G ,K ;P].

I If |K | = 2 and |G | = 1, then σi(I ) =∞.
I If |K | = 2 and |G | 6= 1, then σi(I ) = n + 1 where n is

the smallest index of a proper subgroup in G .
I If |K | ≥ 3, then σi(I ) = 3.

Corollary

For all n ≥ 2, there exists an inverse semigroup I such that
σi(I ) = n.
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Thank you!


