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Algebraically Closed Groups

A group G is said to be existentially closed
(algebraically closed) if every �nite system

ui(g1, . . . , gq, x1, . . . , xr) = 1

vj(g1, . . . , gq, x1, . . . , xr) 6= 1

of equations and in-equations in variables xi and the group
elements gj which has a solution in a group H ≥ G already
has a solution in G .



Existentially Closed Groups

Examples of equations and inequations.
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κ-Existentially Closed Groups

Not every equation or in-equation is solvable in overgroup
H ≥ G .

As an example; let a and b be two elements of di�erent
orders, say n and m. Then the equation x−1ax = b has no
solution in any overgroup containing a and b.
Similarly

x5 = 1, x4 = 1, x 6= 1

the system has no solution over any group.
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Existentially Closed Groups

The existence of existentially closed groups is established in
[1].

William R. Scott, Algebraically closed groups, Proc.
Amer. Math. Soc. 2 (1951), 118�121.

After Scott's paper algebraically closed groups are studied
by many group theorists, nowadays they are called as
existentially closed groups.
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Existentially Closed Groups

Question. What are the properties of existentially closed
groups?

Theorem 1 (Scott [1])

Every group can be embedded in an existentially closed
group.

Moreover the order of the existentially closed group is
larger of ℵ0 and |G |.

In particular there are existentially closed groups of any
given in�nite cardinality.

But we will see in coming slides that, this is not true for
κ-existentially closed groups.



Existentially Closed Groups

Question. What are the properties of existentially closed
groups?

Theorem 1 (Scott [1])

Every group can be embedded in an existentially closed
group.

Moreover the order of the existentially closed group is
larger of ℵ0 and |G |.

In particular there are existentially closed groups of any
given in�nite cardinality.

But we will see in coming slides that, this is not true for
κ-existentially closed groups.



Existentially Closed Groups

Question. What are the properties of existentially closed
groups?

Theorem 1 (Scott [1])

Every group can be embedded in an existentially closed
group.

Moreover the order of the existentially closed group is
larger of ℵ0 and |G |.

In particular there are existentially closed groups of any
given in�nite cardinality.

But we will see in coming slides that, this is not true for
κ-existentially closed groups.



Existentially Closed Groups

Question. What are the properties of existentially closed
groups?

Theorem 1 (Scott [1])

Every group can be embedded in an existentially closed
group.

Moreover the order of the existentially closed group is
larger of ℵ0 and |G |.

In particular there are existentially closed groups of any
given in�nite cardinality.

But we will see in coming slides that, this is not true for
κ-existentially closed groups.



Existentially Closed Groups

Question. What are the properties of existentially closed
groups?

Theorem 1 (Scott [1])

Every group can be embedded in an existentially closed
group.

Moreover the order of the existentially closed group is
larger of ℵ0 and |G |.

In particular there are existentially closed groups of any
given in�nite cardinality.

But we will see in coming slides that, this is not true for
κ-existentially closed groups.



Existentially Closed Groups

Every countably in�nite group can be embedded in a
countable in�nite existentially closed group.

Theorem 2 ( B. H. Neumann [1])

There are 2ℵ0 pairwise non-isomorphic 2-generator groups.

Using this result B. H. Neumann proved:

Theorem 3 (B. H. Neumann [1])

There are 2ℵ0 mutually non-isomorphic countable
existentially closed groups.

The following beautiful argument is due to B. H. Neumann.
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Existentially Closed Groups

There are 2ℵ0 mutually non-isomorphic 2-generator groups
and each by Theorem 1 can be embedded in a countable
existentially closed group.

But each countable group contains only countably many
pairs of elements and thus only countably many 2-generator
groups.

Hence 2ℵ0 countable existentially closed groups are needed
to accommodate all 2-generator groups.



Existentially Closed Groups

There are 2ℵ0 mutually non-isomorphic 2-generator groups
and each by Theorem 1 can be embedded in a countable
existentially closed group.

But each countable group contains only countably many
pairs of elements and thus only countably many 2-generator
groups.

Hence 2ℵ0 countable existentially closed groups are needed
to accommodate all 2-generator groups.



Existentially Closed Groups

There are 2ℵ0 mutually non-isomorphic 2-generator groups
and each by Theorem 1 can be embedded in a countable
existentially closed group.

But each countable group contains only countably many
pairs of elements and thus only countably many 2-generator
groups.

Hence 2ℵ0 countable existentially closed groups are needed
to accommodate all 2-generator groups.



Existentially Closed Groups

Theorem 4 ( B. H. Neumann)

An existentially closed group is simple.

B. H. Neumann proved the followings in [4]:

Theorem 5 ( B. H. Neumann)

An existentially closed group can not be �nitely generated.

The proof of this is quite interesting and short. Let's have
a look at the proof.
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Existentially Closed Groups

Proof.

Let G be an existentially closed group. Let
X = {g1, g2, . . . gn} be a �nite subset of G . We can solve
the equations

x−1g1x = g1, x
−1g2x = g2, x

−1 . . . = x−1gnx = gn, x 6= 1

in the direct product G × H where H is a non-trivial group
and hence in G .

So every �nitely generated subgroup has a non-trivial
centralizer.

But an existentially closed group is simple.

So G is not �nitely generated.
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κ-Existentially Closed Groups

The generalization of Existentially closed groups namely
κ-existentially closed groups are indicated in the paper of
Scott [1].

κ-existentially closed groups are the analogs of existentially
closed groups, allowing the number of equations and the
number of in-equations to be in�nite.
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κ-Existentially Closed Groups

De�nition. Let κ be an in�nite cardinal. A group G with
|G | ≥ κ is called κ-existentially closed if every system
of less than κ-many equations and in-equations with
coe�cients in G which has a solution in some overgroup
H > G already has a solution in G .



κ-Existentially Closed Groups

Observe that existentially closed groups de�ned by Scott
are ℵ0-existentially closed groups.

The following Lemma will be used to characterize the
κ-existentially closed groups.

Lemma 6 (Kegel-K, 2018)

If κ is uncountable and G is a κ-existentially closed group,
then isomorphic copy of every group A of order |A| < κ is
contained in G .

Moreover if κ is uncountable, then isomorphic copy of every
group of order κ is contained in G .
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κ-Existentially Closed Groups

We give the following characterization of κ-existentially
closed groups.

Proposition 7 (Kegel-K, 2018)

Let G be a group and κ be an uncountable cardinal. Then
G is κ-existentially closed if and only if
(i) G contains an isomorphic copy of every group of
cardinality less than κ, and
(ii) every isomorphism between two subgroups of G of
cardinality less than κ is induced by an inner automorphism
of G .
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Existence of Explicit Examples of Existentially Closed Groups

B. H. Neumann in [4] stated that "However, no
algebraically closed group is explicitly known, the existence
proof being highly non-constructive. This stem in part from
the fact that there is no useful criterion known that tells
one what sentences are or are not consistent over a given
group".

In this talk, we will give [1], explicit examples of
existentially closed groups for large cardinals. In particular
we answer the more general question; existence of explicit
examples of κ-existentially closed groups. Hence we answer
Neumann's question in a more general case, positively.
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Cayley's Theorem

The main ingredient of the construction of an existentially
closed groups is the Cayley's Theorem.



Cayley's Theorem

The right regular representation has very interesting
properties.

Lemma 8 (P. Hall)

If K and K ∗ are isomorphic �nite subgroups of G , then the
right regular representations r(K ) and r(K ∗) are conjugate
in Sym(G ).

Observe that the above Lemma implies that the image
under r of any two elements of the same order are
conjugate in the symmetric group, Sym(G ).

But as you know; inside the symmetric group any two
elements of order 2 may not be conjugate.
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Indeed
(1, 2) and (1, 2)(3, 4)

are two elements of order 2 in S4, so

A ∼= B

But A and B are not conjugate in Sym(4).

The reason is that the cycle type of these elements are not
equal.

One may observe that the image of these elements under
right regular representation r are conjugate.
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Construction of explicit example of existentially Closed
Groups

Construction of explicit example of existentially Closed
Groups is as follows:

Let κ be any in�nite regular cardinal. We may start with an
arbitrary group G0 of countably in�nite order. Embed G0

into Sym(G0) = G1 by right regular representation. Then
embed G1 into Sym(G1) = G2 again by right regular
representation, continue like this, for limit ordinals β let
Gβ =

⋃
i<β

Gi . We continue until we reach the group Gκ.

Then the group Gκ is κ-existentially closed.

The reason is the following Proposition:
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κ-Existentially Closed Groups

Proposition 9 (Kegel-K, 2018)

Let G be a group and κ be an uncountable cardinal. Then
G is κ-existentially closed if and only if
(i) G contains an isomorphic copy of every group of
cardinality less than κ, and
(ii) every isomorphism between two subgroups of G of
cardinality less than κ is induced by an inner automorphism
of G .



Construction of explicit example of existentially Closed
Groups

Since every κ-existentially closed group is an
ℵ0-existentially closed group, the above examples of
κ-existentially closed groups are examples of
ℵ0-existentially closed groups.
This answers the B. H. Neumann's question positively.



Existence of κ-existentially closed groups of cardinality
λ ≥ κ

Corollary 10 (GCH)

Let λ ≥ κ be uncountable cardinals. Then there exists a
κ-existentially closed group of cardinality λ if and only if
cf (λ) ≥ κ.

For an in�nite cardinal λ the co�nality of λ will be denoted
by cf (λ).

In particular, if λ is a successor cardinal, then there exists a
κ-existentially closed group of cardinality λ.

Moreover there exists no κ-existentially closed group of
cardinality κ for singular cardinals.



Existence of κ-existentially closed groups of cardinality
λ ≥ κ

Corollary 10 (GCH)

Let λ ≥ κ be uncountable cardinals. Then there exists a
κ-existentially closed group of cardinality λ if and only if
cf (λ) ≥ κ.

For an in�nite cardinal λ the co�nality of λ will be denoted
by cf (λ).

In particular, if λ is a successor cardinal, then there exists a
κ-existentially closed group of cardinality λ.

Moreover there exists no κ-existentially closed group of
cardinality κ for singular cardinals.



Existence of κ-existentially closed groups of cardinality
λ ≥ κ

Corollary 10 (GCH)

Let λ ≥ κ be uncountable cardinals. Then there exists a
κ-existentially closed group of cardinality λ if and only if
cf (λ) ≥ κ.

For an in�nite cardinal λ the co�nality of λ will be denoted
by cf (λ).

In particular, if λ is a successor cardinal, then there exists a
κ-existentially closed group of cardinality λ.

Moreover there exists no κ-existentially closed group of
cardinality κ for singular cardinals.



Existence of κ-existentially closed groups of cardinality
λ ≥ κ

Corollary 10 (GCH)

Let λ ≥ κ be uncountable cardinals. Then there exists a
κ-existentially closed group of cardinality λ if and only if
cf (λ) ≥ κ.

For an in�nite cardinal λ the co�nality of λ will be denoted
by cf (λ).

In particular, if λ is a successor cardinal, then there exists a
κ-existentially closed group of cardinality λ.

Moreover there exists no κ-existentially closed group of
cardinality κ for singular cardinals.



Uniqueness

So by the above Corollary, we determine for which cardinals
λ ≥ κ, there exists κ-existentially closed groups of
cardinality λ .
What can we say about the uniqueness of such groups?

We prove in [2, Theorem 2.7] that for an uncountable κ,
any two κ-existentially closed groups of cardinality κ are
isomorphic.

This is one of the di�erences between ℵ0-existentially
closed groups and κ-existentially closed groups.
As B. H. Neumann proved there are 2ℵ0-existentially closed
countable groups.
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Open Question

Open Question Let κ be not an inaccessible cardinal.
Does there exist an explicit example of κ-existentially
closed group of cardinality κ?
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Question What can we say about the automorphism
groups of κ-existentially closed groups?

We have seen in the explicit examples of κ-existentially
closed groups that the construction has κ levels.
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Automorphisms of κ-existentially closed groups

De�nition. Let G be a group. An automorphism
ϕ ∈ Aut(G ) is called κ-inner if for every subgroup X ⊆ G
with |X | < κ, there exists an element g ∈ G such that
ιg(x) = ϕ(x) for all x ∈ X .

Let κ-Inn(G ) denote the set of all κ-inner automorphisms
of G .

We clearly have

Inn(G )E κ-Inn(G )E Aut(G )

Moreover, the inclusion on right is indeed an equality for
κ-existentially closed groups.
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Proposition 11

Let κ be uncountable and let G be κ-existentially closed.
Then every automorphism of G is κ-inner.
i.e. κ-Inn(G ) = Aut(G ).



Automorphisms of κ-existentially closed groups

We now introduce the notion of a level preserving
automorphism. Let C ⊆ κ. An automorphism ϕ ∈ Aut(G )
is said to be C -level preserving if

ϕ[Gα] = Gα

for all α ∈ C .

We shall denote the set of C -level preserving
automorphisms of G by AutC (G ).

We clearly have Aut∅(G ) = Aut(G ) and

AutC (G ) 6 AutD(G ) whenever D ⊆ C
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Automorphisms of κ-existentially closed groups

Corollary 12

Let κ be inaccessible and let K be the unique
κ-existentially closed group of cardinality κ, which
(necessarily) is a limit of regular representations of length κ
with countable base. Then

Aut(K ) =
⋃
C⊆κ

C is club

AutC (K ) =
⋃
α<κ

Aut{α}(K )



Automorphisms of κ-existentially closed groups

Corollary 13

Let κ be inaccesible and let K be the unique κ-existentially
closed group of cardinality κ. Then we have
|Aut(K )| = 2κ.



THANK YOU
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