Graphs associated with Groups

Mark L. Lewis
Kent State University
March 25, 2021

24 Hours of Ischia
Virtual Conference

Introduction

Throughout this talk, all groups are finite. All graphs

Introduction

Throughout this talk, all groups are finite. All graphs
will be simple. Recall that a graph is a collection

Introduction

Throughout this talk, all groups are finite. All graphs
will be simple. Recall that a graph is a collection
of vertices and edges between vertices.

Introduction

Throughout this talk, all groups are finite. All graphs
will be simple. Recall that a graph is a collection
of vertices and edges between vertices.

We do not allow multiple edges or loops.

Introduction

Throughout this talk, all groups are finite. All graphs
will be simple. Recall that a graph is a collection
of vertices and edges between vertices.

We do not allow multiple edges or loops.
I.e., each edge is between two distinct points.

There are a number of different graphs that can be associated

There are a number of different graphs that can be associated
with groups.

There are a number of different graphs that can be associated
with groups.

I should note that I will not be talking about the most well-known

There are a number of different graphs that can be associated
with groups.

I should note that I will not be talking about the most well-known
graph associated with groups: the Cayley graph.

Another graph that has been associated with groups

Another graph that has been associated with groups
is a graph that used to be commonly called the prime graph

Another graph that has been associated with groups
is a graph that used to be commonly called the prime graph
but recently is more commonly called the Gruenberg-Kegel graph

Another graph that has been associated with groups
is a graph that used to be commonly called the prime graph
but recently is more commonly called the Gruenberg-Kegel graph
since the term prime graph has been applied to more than one

Another graph that has been associated with groups
is a graph that used to be commonly called the prime graph
but recently is more commonly called the Gruenberg-Kegel graph
since the term prime graph has been applied to more than one
graph associated to groups.

We consider several related graphs.

We consider several related graphs.

One means of associating a graph to a group is the following:

We consider several related graphs.

One means of associating a graph to a group is the following:

Pick a class of groups. Call it \mathcal{C}.

We consider several related graphs.

One means of associating a graph to a group is the following:

Pick a class of groups. Call it \mathcal{C}.

For the set of vertices, we take fixed subset Ω of G.

If $x, y \in \Omega$ are distinct elements, we put an edge between

If $x, y \in \Omega$ are distinct elements, we put an edge between
x and y if $\langle x, y\rangle$ lies in \mathcal{C}. We are going to consider

If $x, y \in \Omega$ are distinct elements, we put an edge between
x and y if $\langle x, y\rangle$ lies in \mathcal{C}. We are going to consider
three possible classes for \mathcal{C}. The classes we focus

If $x, y \in \Omega$ are distinct elements, we put an edge between
x and y if $\langle x, y\rangle$ lies in \mathcal{C}. We are going to consider
three possible classes for \mathcal{C}. The classes we focus
on are abelian groups, cyclic groups, and solvable groups.

If $x, y \in \Omega$ are distinct elements, we put an edge between
x and y if $\langle x, y\rangle$ lies in \mathcal{C}. We are going to consider
three possible classes for \mathcal{C}. The classes we focus
on are abelian groups, cyclic groups, and solvable groups.

In the literature, nilpotent groups have also been considered.

Notice that you can obtain the complement to such a graph by

Notice that you can obtain the complement to such a graph by
taking the same set of vertices and putting an edge between

Notice that you can obtain the complement to such a graph by
taking the same set of vertices and putting an edge between
x and y if $\langle x, y\rangle$ is not in \mathcal{C}.

Commuting graph

In some sense, this class of graphs has been motivated by

Commuting graph

In some sense, this class of graphs has been motivated by
the commuting graph.

Commuting graph

In some sense, this class of graphs has been motivated by
the commuting graph.

The Commuting graph of G is the graph with vertex set

Commuting graph

In some sense, this class of graphs has been motivated by
the commuting graph.

The Commuting graph of G is the graph with vertex set
$G \backslash Z(G)$ with an edge between x and y if $x y=y x$.

Observe that $x y=y x$ is equivalent to $\langle x, y\rangle$ is abelian.

Observe that $x y=y x$ is equivalent to $\langle x, y\rangle$ is abelian.

Hence, the commuting graph arises when we use the class of

Observe that $x y=y x$ is equivalent to $\langle x, y\rangle$ is abelian.

Hence, the commuting graph arises when we use the class of abelian groups.

Observe that $x y=y x$ is equivalent to $\langle x, y\rangle$ is abelian.

Hence, the commuting graph arises when we use the class of abelian groups.

Commuting graphs were first studied by Brauer and Fowler in 1955

Observe that $x y=y x$ is equivalent to $\langle x, y\rangle$ is abelian.

Hence, the commuting graph arises when we use the class of
abelian groups.

Commuting graphs were first studied by Brauer and Fowler in 1955
in relation to the classification of nonabelian simple groups.

Commuting graphs were first studied in their own right

Commuting graphs were first studied in their own right
by Segev and Seitz in in terms of the classical simple groups.

Commuting graphs were first studied in their own right
by Segev and Seitz in in terms of the classical simple groups.

In fact, much of the research regarding the commuting graph

Commuting graphs were first studied in their own right
by Segev and Seitz in in terms of the classical simple groups.

In fact, much of the research regarding the commuting graph
is related to simple groups.

We are not going to try describe all of this research.

We are not going to try describe all of this research.

This research culminated in with a paper by Solomon and

We are not going to try describe all of this research.

This research culminated in with a paper by Solomon and

Woldar where they prove that if S is a nonabelian simple

We are not going to try describe all of this research.

This research culminated in with a paper by Solomon and

Woldar where they prove that if S is a nonabelian simple
group and G is any group and S and G have isomorphic

We are not going to try describe all of this research.

This research culminated in with a paper by Solomon and

Woldar where they prove that if S is a nonabelian simple
group and G is any group and S and G have isomorphic
commuting graphs, then S and G are isomorphic.

At the opposite end of the spectrum from nonabelian simple

At the opposite end of the spectrum from nonabelian simple groups are solvable groups.

At the opposite end of the spectrum from nonabelian simple groups are solvable groups.

In a seminal paper, Parker showed that if G is a solvable

At the opposite end of the spectrum from nonabelian simple groups are solvable groups.

In a seminal paper, Parker showed that if G is a solvable group with $Z(G)=1$, then the commuting graph of G

At the opposite end of the spectrum from nonabelian simple groups are solvable groups.

In a seminal paper, Parker showed that if G is a solvable group with $Z(G)=1$, then the commuting graph of G
is disconnected if and only if G is a Frobenius group or

At the opposite end of the spectrum from nonabelian simple groups are solvable groups.

In a seminal paper, Parker showed that if G is a solvable group with $Z(G)=1$, then the commuting graph of G
is disconnected if and only if G is a Frobenius group or
a 2-Frobenius group.

A group G is a 2-Frobenius group if there exist normal

A group G is a 2-Frobenius group if there exist normal
subgroups $K \leq L$ so that G / K and L are Frobenius

A group G is a 2-Frobenius group if there exist normal subgroups $K \leq L$ so that G / K and L are Frobenius groups with Frobenius kernels L / K and K respectively.

Parker also proved that if the commuting graph of G

Parker also proved that if the commuting graph of G

(still with the assumption that $Z(G)=1$ and G is solvable)

Parker also proved that if the commuting graph of G
(still with the assumption that $Z(G)=1$ and G is solvable)
is connected, then the diameter of the graph is at most 8 .

Parker also proved that if the commuting graph of G
(still with the assumption that $Z(G)=1$ and G is solvable)
is connected, then the diameter of the graph is at most 8 .

He also provides an example of such a group whose graph has this

Parker also proved that if the commuting graph of G
(still with the assumption that $Z(G)=1$ and G is solvable)
is connected, then the diameter of the graph is at most 8 .

He also provides an example of such a group whose graph has this
diameter.

Furthermore, in a separate paper, Morgan and Parker remove

Furthermore, in a separate paper, Morgan and Parker remove

the solvable hypothesis.

Furthermore, in a separate paper, Morgan and Parker remove the solvable hypothesis.

They prove that if G is any group with $Z(G)=1$,

Furthermore, in a separate paper, Morgan and Parker remove the solvable hypothesis.

They prove that if G is any group with $Z(G)=1$,
then the connected components of the commuting graph

Furthermore, in a separate paper, Morgan and Parker remove the solvable hypothesis.

They prove that if G is any group with $Z(G)=1$,
then the connected components of the commuting graph
all have diameters at most 10 .

If one removes the hypothesis that $Z(G)=1$, then the situation is

If one removes the hypothesis that $Z(G)=1$, then the situation is
much less clear and even more wide open.

In particular, it is known that there is no bound on the diameter of

In particular, it is known that there is no bound on the diameter of the commuting graph of solvable groups G with $Z(G)>1$.

In particular, it is known that there is no bound on the diameter of the commuting graph of solvable groups G with $Z(G)>1$.

Guidici and Parker have presented a family of 2-groups which

In particular, it is known that there is no bound on the diameter of
the commuting graph of solvable groups G with $Z(G)>1$.

Guidici and Parker have presented a family of 2-groups which
have no bound on the diameter of the commuting graphs.

In an REU this last summer (2020), we looked at this situation.

In an REU this last summer (2020), we looked at this situation.

The students at this REU were Nicolas F. Beike, Colin Heath,

In an REU this last summer (2020), we looked at this situation.

The students at this REU were Nicolas F. Beike, Colin Heath,

Kaiwen Lu, and Jamie D. Pearce and the graduate students

In an REU this last summer (2020), we looked at this situation.

The students at this REU were Nicolas F. Beike, Colin Heath,

Kaiwen Lu, and Jamie D. Pearce and the graduate students
working with us were Rachel Carleton and David G. Costanzo.

We were able to generalize the results of Parker and Morgan and

We were able to generalize the results of Parker and Morgan and

Parker. In particular, we are able to prove the following.

We were able to generalize the results of Parker and Morgan and

Parker. In particular, we are able to prove the following.

We use $\Gamma(G)$ to denote the commuting graph of G.

Theorem 1 (B,C,C,H,L,L,P).

Let G be a group, let $Z=Z(G)$, and suppose that $G^{\prime} \cap Z=1$.
(1) $\Gamma(G)$ is connected if and only if $\Gamma(G / Z)$ is connected.
(2) Every connected component of $\Gamma(G)$ has diameter at most 10 .
(3) If G is solvable and $\Gamma(G)$ is connected, then $\Gamma(G)$ has diameter at most 8.
(9) If G is solvable, then $\Gamma(G)$ is disconnected if and only if G / Z is either a Frobenius group or a 2-Frobenius group.

Recall that an A-group is a group where all the Sylow subgroups

Recall that an A-group is a group where all the Sylow subgroups

are abelian. It is known that if G is an A-group, then

Recall that an A-group is a group where all the Sylow subgroups
are abelian. It is known that if G is an A-group, then
$G^{\prime} \cap Z(G)=1$. Hence, Theorem 1 applies to A-groups!

Recall that an A-group is a group where all the Sylow subgroups
are abelian. It is known that if G is an A-group, then
$G^{\prime} \cap Z(G)=1$. Hence, Theorem 1 applies to A-groups!

We expect that the diameter result can be improved

Recall that an A-group is a group where all the Sylow subgroups
are abelian. It is known that if G is an A-group, then
$G^{\prime} \cap Z(G)=1$. Hence, Theorem 1 applies to A-groups!

We expect that the diameter result can be improved
for solvable A-groups.

I also should mention that we can weaken the hypothesis that

I also should mention that we can weaken the hypothesis that
$G^{\prime} \cap Z(G)=1$ even further. In fact, if we take

I also should mention that we can weaken the hypothesis that
$G^{\prime} \cap Z(G)=1$ even further. In fact, if we take
$C(G)=\{[x, y] \mid x, y \in G\}$ (i.e., the set of commutators),

I also should mention that we can weaken the hypothesis that
$G^{\prime} \cap Z(G)=1$ even further. In fact, if we take
$C(G)=\{[x, y] \mid x, y \in G\}$ (i.e., the set of commutators),
then the hypothesis we need is:

I also should mention that we can weaken the hypothesis that
$G^{\prime} \cap Z(G)=1$ even further. In fact, if we take
$C(G)=\{[x, y] \mid x, y \in G\}$ (i.e., the set of commutators),
then the hypothesis we need is:

$$
C(G) \cap Z(G)=\{1\} .
$$

Using GAP, we have found groups G where $C(G) \cap Z(G)=\{1\}$

Using GAP, we have found groups G where $C(G) \cap Z(G)=\{1\}$

but $G^{\prime} \cap Z(G)>1$. One further result we proved along these lines:

Using GAP, we have found groups G where $C(G) \cap Z(G)=\{1\}$
but $G^{\prime} \cap Z(G)>1$. One further result we proved along these lines:

Theorem 2 (B,C,C,H,L,L,P).

If G is a group where $G / Z(G)$ is either a Frobenius or a 2-Frobenius group, then $\Gamma(G)$ is disconnected.

Cyclic graph

In the literature, there are a number of graphs generalizing the

Cyclic graph

In the literature, there are a number of graphs generalizing the commuting graph.

Cyclic graph

In the literature, there are a number of graphs generalizing the commuting graph.

The one we now consider is the cyclic graph.

Cyclic graph

In the literature, there are a number of graphs generalizing the commuting graph.

The one we now consider is the cyclic graph.

This is the graph whose vertex set is $G \backslash\{1\}$

Cyclic graph

In the literature, there are a number of graphs generalizing the commuting graph.

The one we now consider is the cyclic graph.

This is the graph whose vertex set is $G \backslash\{1\}$
and there is an edge between x and y if $\langle x, y\rangle$ is cyclic.

We note that in the literature, a closely related graph is the

We note that in the literature, a closely related graph is the

 power graph.We note that in the literature, a closely related graph is the power graph.

The power graph is the graph whose vertex set is G

We note that in the literature, a closely related graph is the power graph.

The power graph is the graph whose vertex set is G and there is an edge between x and y if x is a power

We note that in the literature, a closely related graph is the power graph.

The power graph is the graph whose vertex set is G and there is an edge between x and y if x is a power of y or y is a power of x,

The punctured power graph has vertex set $G \backslash\{1\}$.

The punctured power graph has vertex set $G \backslash\{1\}$.

It is not difficult to see that the punctured power graph is a

The punctured power graph has vertex set $G \backslash\{1\}$.

It is not difficult to see that the punctured power graph is a
is a subgraph of the cyclic graph.

The punctured power graph has vertex set $G \backslash\{1\}$.

It is not difficult to see that the punctured power graph is a
is a subgraph of the cyclic graph.

We note that the graph with G as its vertex set and edges

The punctured power graph has vertex set $G \backslash\{1\}$.

It is not difficult to see that the punctured power graph is a
is a subgraph of the cyclic graph.

We note that the graph with G as its vertex set and edges
between x and y when $\langle x, y\rangle$ is cyclic
has sometimes been called the enhanced power graph
has sometimes been called the enhanced power graph
in the literature, and so, the punctured enhanced power
has sometimes been called the enhanced power graph
in the literature, and so, the punctured enhanced power
graph has been used in the literature as another name
has sometimes been called the enhanced power graph
in the literature, and so, the punctured enhanced power
graph has been used in the literature as another name
for the cyclic graph.

It is easy to see that the cyclic graph is a complete graph

It is easy to see that the cyclic graph is a complete graph
if and only if the group is a cyclic group.

It is easy to see that the cyclic graph is a complete graph
if and only if the group is a cyclic group.

Several years ago, I and Diana Imperatore showed that

It is easy to see that the cyclic graph is a complete graph
if and only if the group is a cyclic group.

Several years ago, I and Diana Imperatore showed that
all of the connected components are complete graphs if and only if

It is easy to see that the cyclic graph is a complete graph
if and only if the group is a cyclic group.

Several years ago, I and Diana Imperatore showed that
all of the connected components are complete graphs if and only if
the group is partitioned by cyclic subgroups.

My 2019 REU considered cyclic graphs.

My 2019 REU considered cyclic graphs.

The students in my 2019 REU were Stefano Schmidt, Eyob

My 2019 REU considered cyclic graphs.

The students in my 2019 REU were Stefano Schmidt, Eyob

Tsegaye, and Gabe Udell.

My 2019 REU considered cyclic graphs.

The students in my 2019 REU were Stefano Schmidt, Eyob

Tsegaye, and Gabe Udell.

The graduate student working with us was David G. Costanzo.

It is easy to see that if G is a p-group for the prime p,

It is easy to see that if G is a p-group for the prime p, then the cyclic graph is connected if and only if

It is easy to see that if G is a p-group for the prime p,
then the cyclic graph is connected if and only if
G is cyclic or generalized quaternion.

It is easy to see that if G is a p-group for the prime p,
then the cyclic graph is connected if and only if
G is cyclic or generalized quaternion.

Lemma 3.

If G is a p-group for some prime p, then the number of connected components equals the number of subgroups of order p.

We use $\Delta(G)$ to denote the cyclic graph of G.

We use $\Delta(G)$ to denote the cyclic graph of G.

If G is nilpotent, but not a p-group, we can prove:

We use $\Delta(G)$ to denote the cyclic graph of G.

If G is nilpotent, but not a p-group, we can prove:

Theorem 4 (C,L,S,T,U).

If G is nilpotent and $|G|$ is divisible by at least two primes, then $\Delta(G)$ is connected with $\operatorname{diam}(\Delta(G)) \leq 3$.

We use $\Delta(G)$ to denote the cyclic graph of G.

If G is nilpotent, but not a p-group, we can prove:

Theorem 4 (C,L,S,T,U).

If G is nilpotent and $|G|$ is divisible by at least two primes, then $\Delta(G)$ is connected with $\operatorname{diam}(\Delta(G)) \leq 3$.

In fact, we can determine exactly which nilpotent groups have

We use $\Delta(G)$ to denote the cyclic graph of G.

If G is nilpotent, but not a p-group, we can prove:

Theorem 4 (C,L,S,T,U).

If G is nilpotent and $|G|$ is divisible by at least two primes, then $\Delta(G)$ is connected with $\operatorname{diam}(\Delta(G)) \leq 3$.

In fact, we can determine exactly which nilpotent groups have cyclic graphs of diameter 2 and which have diameter 3 .

Lemma 5 (C,L,S,T,U).

Let G be a nilpotent group that does not have prime power order. Then the following are true:
(1) If at least one but not all Sylow subgroups are cyclic or generalized quaternion, then $\Delta(G)$ has diameter 2 .
(2) If no Sylow subgroup is cyclic or generalized quaternion, then $\Delta(G)$ has diameter 3.

One key point about nilpotent groups that are not p-groups

One key point about nilpotent groups that are not p-groups
is that they are nontrivial direct products.

One key point about nilpotent groups that are not p-groups
is that they are nontrivial direct products.

This is a launching point for the research of the 2019 REU.

One key point about nilpotent groups that are not p-groups
is that they are nontrivial direct products.

This is a launching point for the research of the 2019 REU.

We consider the cyclic graphs of nontrivial direct products.

We bound the diameter of a direct product when the factors

We bound the diameter of a direct product when the factors

have coprime orders:

We bound the diameter of a direct product when the factors
have coprime orders:

Lemma 6 (C,L,S,T,U).

If G and H are nontrivial groups with coprime orders, then $\Delta(G \times H)$ is connected with $\operatorname{diam}(\Delta(G \times H)) \leq 3$.

This generalizes the results for nilpotent groups.

This generalizes the results for nilpotent groups.

In the general case, we prove:

This generalizes the results for nilpotent groups.

In the general case, we prove:

Theorem 7 (C,L,S,T,U).

If G and H are nontrivial groups and the graph $\Delta(G \times H)$ is connected, then $\operatorname{diam}(\Delta(G \times H)) \leq 7$.

Now, an example of a direct product whose graph has diameter 7 .

Now, an example of a direct product whose graph has diameter 7 .

Let G be SmallGroup $(1944,2320)$ in the GAP Small Groups library,

Now, an example of a direct product whose graph has diameter 7 .

Let G be SmallGroup $(1944,2320)$ in the GAP Small Groups library,
and let H be the Frobenius group $\left(C_{9} \times C_{9}\right) \rtimes C_{4}$.

Now, an example of a direct product whose graph has diameter 7 .

Let G be $\operatorname{Small} \operatorname{Group}(1944,2320)$ in the GAP Small Groups library,
and let H be the Frobenius group $\left(C_{9} \times C_{9}\right) \rtimes C_{4}$.

Then $\Delta(G \times H)$ has diameter 7 .

Let G be a non-cyclic p-group and H be a non-cyclic

Let G be a non-cyclic p-group and H be a non-cyclic q-group for distinct primes p and q.

Let G be a non-cyclic p-group and H be a non-cyclic
q-group for distinct primes p and q.

The graphs $\Delta(G)$ and $\Delta(H)$ are disconnected.

Let G be a non-cyclic p-group and H be a non-cyclic
q-group for distinct primes p and q.

The graphs $\Delta(G)$ and $\Delta(H)$ are disconnected.

Lemma 6, however, says that $\Delta(G \times H)$

Let G be a non-cyclic p-group and H be a non-cyclic
q-group for distinct primes p and q.

The graphs $\Delta(G)$ and $\Delta(H)$ are disconnected.

Lemma 6, however, says that $\Delta(G \times H)$
is connected with a diameter bound of 3 .

Thus, the connectedness of $\Delta(G \times H)$, in general,

Thus, the connectedness of $\Delta(G \times H)$, in general, does not imply connectedness of the graphs $\Delta(G)$ and $\Delta(H)$.

Thus, the connectedness of $\Delta(G \times H)$, in general, does not imply connectedness of the graphs $\Delta(G)$ and $\Delta(H)$.

But when the diameter of $\Delta(G \times H)$ is sufficiently small,

Thus, the connectedness of $\Delta(G \times H)$, in general, does not imply connectedness of the graphs $\Delta(G)$ and $\Delta(H)$.

But when the diameter of $\Delta(G \times H)$ is sufficiently small,
some information about the cyclic graphs of G and H can be

Thus, the connectedness of $\Delta(G \times H)$, in general, does not imply connectedness of the graphs $\Delta(G)$ and $\Delta(H)$.

But when the diameter of $\Delta(G \times H)$ is sufficiently small,
some information about the cyclic graphs of G and H can be
extracted.

Theorem 8 (C,L,S,T,U).

If G and H are groups with $\operatorname{diam}(\Delta(G \times H)) \leq 2$, then

$$
\operatorname{diam}(\Delta(G)) \leq 2 \quad \text { or } \quad \operatorname{diam}(\Delta(H)) \leq 2
$$

Theorem 8 (C,L,S,T,U).

If G and H are groups with $\operatorname{diam}(\Delta(G \times H)) \leq 2$, then $\operatorname{diam}(\Delta(G)) \leq 2 \quad$ or $\quad \operatorname{diam}(\Delta(H)) \leq 2$.

We have determined exactly when the cyclic graph of a

Theorem 8 (C,L,S,T,U).

If G and H are groups with $\operatorname{diam}(\Delta(G \times H)) \leq 2$, then

$$
\operatorname{diam}(\Delta(G)) \leq 2 \quad \text { or } \quad \operatorname{diam}(\Delta(H)) \leq 2
$$

We have determined exactly when the cyclic graph of a
nontrivial direct product is disconnected.

Condition $\left(\mathcal{C}_{1}(p)\right)$: there exists an element in G of

Condition $\left(\mathcal{C}_{1}(p)\right)$: there exists an element in G of prime order p whose centralizer is a p-group.

Condition $\left(\mathcal{C}_{1}(p)\right)$: there exists an element in G of prime order p whose centralizer is a p-group.

Theorem 9 (C,L,S,T,U).

Let G and H be nontrivial groups. The graph $\Delta(G \times H)$ is disconnected if and only if $G \times H$ satisfies $\left(\mathcal{C}_{1}(p)\right)$ for some prime p.

Corollary 10 (C,L,S,T,U).

Let G and H be nontrivial groups. The graph $\Delta(G \times H)$ is disconnected if and only if there exists a prime p such that G and H satisfy $\left(\mathcal{C}_{1}(p)\right)$.

Corollary 10 (C,L,S,T,U).

Let G and H be nontrivial groups. The graph $\Delta(G \times H)$ is disconnected if and only if there exists a prime p such that G and H satisfy $\left(\mathcal{C}_{1}(p)\right)$.

We now shift gears and look at another topic studied by my 2019

Corollary 10 (C,L,S,T,U).

Let G and H be nontrivial groups. The graph $\Delta(G \times H)$ is disconnected if and only if there exists a prime p such that G and H satisfy $\left(\mathcal{C}_{1}(p)\right)$.

We now shift gears and look at another topic studied by my 2019

REU.

A Z-group is a group where all of the Sylow subgroups

A Z-group is a group where all of the Sylow subgroups are cyclic. Not surprisingly, these groups have a

A Z-group is a group where all of the Sylow subgroups are cyclic. Not surprisingly, these groups have a
very restricted structure.

A Z-group is a group where all of the Sylow subgroups are cyclic. Not surprisingly, these groups have a
very restricted structure.

A Z-group is a group where all of the Sylow subgroups are cyclic. Not surprisingly, these groups have a
very restricted structure.

Theorem 11 (C,L,S,T,U).

Let G be a Z-group. Then $\Delta(G)$ is disconnected if and only if G is a Frobenius group.

We also prove:

Theorem 12 (C,L,S,T,U).

If G is a Z-group and $\Delta(G)$ is connected, then $\operatorname{diam}(\Delta(G)) \leq 4$.

We also prove:

Theorem 12 (C,L,S,T,U).

If G is a Z-group and $\Delta(G)$ is connected, then $\operatorname{diam}(\Delta(G)) \leq 4$.

Theorem 13 (C,L,S,T,U).

If G is a Z-group, then $\operatorname{diam}(\Delta(G)) \leq 2$ if and only if $Z(G) \neq 1$.

We provide examples of Z-groups with diameters 2, 3, and 4.

Finally, we consider cyclic graphs for $\{p, q\}$-groups.

Finally, we consider cyclic graphs for $\{p, q\}$-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a $\{p, q\}$-group. Then, $\operatorname{diam}(\Delta(G))=2$ if and only if G has a unique subgroup of order p or a unique subgroup of order q and that subgroup is central in G.

Finally, we consider cyclic graphs for $\{p, q\}$-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a $\{p, q\}$-group. Then, $\operatorname{diam}(\Delta(G))=2$ if and only if G has a unique subgroup of order p or a unique subgroup of order q and that subgroup is central in G.

And $\{p, q, r\}$-groups:

Finally, we consider cyclic graphs for $\{p, q\}$-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a $\{p, q\}$-group. Then, $\operatorname{diam}(\Delta(G))=2$ if and only if G has a unique subgroup of order p or a unique subgroup of order q and that subgroup is central in G.

And $\{p, q, r\}$-groups:

Theorem 15 (C,L,S,T,U).

If G is a $\{p, q, r\}$-group and the cyclic graph of G has diameter 2, then $Z(G)>1$.

Notice that if G is a Frobenius group or a 2-Frobenius group,

Notice that if G is a Frobenius group or a 2-Frobenius group, then $Z(G)=1$. It follows that the cyclic graph and the commuting

Notice that if G is a Frobenius group or a 2-Frobenius group,
then $Z(G)=1$. It follows that the cyclic graph and the commuting
graph for G have the same set of vertices. Hence, the cyclic

Notice that if G is a Frobenius group or a 2-Frobenius group,
then $Z(G)=1$. It follows that the cyclic graph and the commuting
graph for G have the same set of vertices. Hence, the cyclic
graph of G is a spanning subgraph of the commuting graph of G.

We know from Parker's result that the commuting graph is

We know from Parker's result that the commuting graph is disconnected when G is a Frobenius or 2-Frobenius group.

We know from Parker's result that the commuting graph is
disconnected when G is a Frobenius or 2-Frobenius group.

It follows that the cyclic graph is also disconnected for

We know from Parker's result that the commuting graph is
disconnected when G is a Frobenius or 2-Frobenius group.

It follows that the cyclic graph is also disconnected for
either of these groups.

When G is a Frobenius group with Frobenius kernel N, it is not

When G is a Frobenius group with Frobenius kernel N, it is not

difficult to see that the number of connected components in

When G is a Frobenius group with Frobenius kernel N, it is not

difficult to see that the number of connected components in
the commuting graph of G is $1+|N|$.

When G is a 2-Frobenius group where $K \leq L$ satisfies that L and

When G is a 2-Frobenius group where $K \leq L$ satisfies that L and

G / K are Frobenius groups with Frobenius kernel K and L / K,

When G is a 2-Frobenius group where $K \leq L$ satisfies that L and
G / K are Frobenius groups with Frobenius kernel K and L / K, the commuting graph of G has $1+|K|$ connected components.

Counting the number of connected components of the cyclic graph

Counting the number of connected components of the cyclic graph
is more complicated. The following is work with David Costanzo.

Counting the number of connected components of the cyclic graph
is more complicated. The following is work with David Costanzo.

Set $m_{p}(G)$ to be the number of subgroups

Counting the number of connected components of the cyclic graph
is more complicated. The following is work with David Costanzo.

Set $m_{p}(G)$ to be the number of subgroups
of order p. For Frobenius groups, we obtain:

Theorem 16 (C,L).

Let G be a Frobenius group with Frobenius kernel N. If N is a p-group for some prime number p, then $\Delta(G)$ has $|N|+m_{p}(N)$ connected components. If N is not a group of prime power order, then $\Delta(G)$ has $|N|+1$ connected components.

Theorem 16 (C,L).

Let G be a Frobenius group with Frobenius kernel N. If N is a p-group for some prime number p, then $\Delta(G)$ has $|N|+m_{p}(N)$ connected components. If N is not a group of prime power order, then $\Delta(G)$ has $|N|+1$ connected components.

For 2-Frobenius groups, it is more complicated.

We first have the formula when K does not have prime power

We first have the formula when K does not have prime power

 order.We first have the formula when K does not have prime power order.

Theorem 17 (C,L).

Let G be a 2-Frobenius group with K as in the definition. If $|K|$ is divisible by at least two distinct prime numbers, then $\Delta(G)$ has $|K|+1$ connected components.

Next, we find the formula for the case that K and G / L are

Next, we find the formula for the case that K and G / L are
p-groups for some prime p.

Next, we find the formula for the case that K and G / L are
p-groups for some prime p.

Theorem 18 (C,L).

Let G be a 2-Frobenius group, and assume that K and G / L are p-groups for some prime p, where K and L are as in the definition. Then $\Delta(G)$ has $|K|+m_{p}(G)$ connected components.

Finally, we compute the formula when K is a p-group and G / L is

Finally, we compute the formula when K is a p-group and G / L is not a p-group for some prime p.

Finally, we compute the formula when K is a p-group and G / L is not a p-group for some prime p.

Theorem 19 (C,L).

Let G be a 2-Frobenius group, and let p be a prime number. Assume that K is a p-group for some prime p and that G / L is not a p-group, where K and L are as in the definition. Then the number of connected components of $\Delta(G)$ is

$$
|K|+|K: L|+m_{p}^{*}
$$

where m_{p}^{*} is the number of subgroups of order p in G that are not centralized by an element of prime order other than p.

We switch gears again.

We switch gears again.

If Γ is a graph, we say a vertex v is a universal vertex if

We switch gears again.

If Γ is a graph, we say a vertex v is a universal vertex if
v is adjacent to all other vertices in Γ.

We switch gears again.

If Γ is a graph, we say a vertex v is a universal vertex if
v is adjacent to all other vertices in Γ.

To understand the connectivity of a graph, it is often useful to

We switch gears again.

If Γ is a graph, we say a vertex v is a universal vertex if
v is adjacent to all other vertices in Γ.

To understand the connectivity of a graph, it is often useful to
throw out any universal vertices.

Sometimes when people talk about the commuting graph,

Sometimes when people talk about the commuting graph, they take the set of vertices to be G or $G \backslash\{1\}$.

Sometimes when people talk about the commuting graph,
they take the set of vertices to be G or $G \backslash\{1\}$.

Taking the edges to be as in the commuting graph,

Sometimes when people talk about the commuting graph,
they take the set of vertices to be G or $G \backslash\{1\}$.

Taking the edges to be as in the commuting graph,
x is a universal element if and only if $x \in Z(G)$.

Since we want to throw out the universal elements,

Since we want to throw out the universal elements,
we take $G \backslash Z(G)$ to be the vertex set

Since we want to throw out the universal elements,
we take $G \backslash Z(G)$ to be the vertex set
for the commuting graph.

Next, we consider the cyclic graph.

Next, we consider the cyclic graph.

If included, 1 would be a universal vertex, so we omit it.

Next, we consider the cyclic graph.

If included, 1 would be a universal vertex, so we omit it.

Because of this, most of the results in the literature look at the set

Next, we consider the cyclic graph.

If included, 1 would be a universal vertex, so we omit it.

Because of this, most of the results in the literature look at the set
$G \backslash\{1\}$ as the vertices of the cyclic graph.

In fact, 1 is not necessarily the only universal vertex.

In fact, 1 is not necessarily the only universal vertex.

Until recently, it had been an open question regarding a description

In fact, 1 is not necessarily the only universal vertex.

Until recently, it had been an open question regarding a description of the universal vertices of this graph.

Based on the work done in that REU, we can describe the set of

Based on the work done in that REU, we can describe the set of

universal vertices for this graph.

Based on the work done in that REU, we can describe the set of
universal vertices for this graph.

Theorem 20 (C,L,S,T,U).

Let G be a group, $g \in G$, and $\pi=\pi(o(g))$. Write $g=\prod_{p \in \pi} g_{p}$, where each g_{p} is a p-element for $p \in \pi$ and $g_{p} g_{q}=g_{q} g_{p}$ for all $p, q \in \pi$. Then g is a universal vertex for $\Delta(G)$ if and only if, for each $p \in \pi$, a Sylow p-subgroup P of G is cyclic or generalized quaternion and $\left\langle g_{p}\right\rangle \leq P \cap Z(G)$.

One can show that the set of universal vertices in the cyclic graph

One can show that the set of universal vertices in the cyclic graph
is a subgroup. (This was proved by O'Bryant, Patrick, Smithline,

One can show that the set of universal vertices in the cyclic graph
is a subgroup. (This was proved by O'Bryant, Patrick, Smithline,
and Wepsic.) It may make sense to reexamine the results in the

One can show that the set of universal vertices in the cyclic graph
is a subgroup. (This was proved by O'Bryant, Patrick, Smithline,
and Wepsic.) It may make sense to reexamine the results in the
literature with the set of nonuniversal vertices in place of $G \backslash\{1\}$.

Let G be a group, for an element $x \in G$, define

Let G be a group, for an element $x \in G$, define

$$
\operatorname{cyc}(x)=\{y \in G \mid\langle x, y\rangle \text { is cyclic }\rangle\}
$$

Let G be a group, for an element $x \in G$, define

$$
\operatorname{cyc}(x)=\{y \in G \mid\langle x, y\rangle \text { is cyclic }\rangle\}
$$

This is the set of neighbors of x.

Let G be a group, for an element $x \in G$, define $\operatorname{cyc}(x)=\{y \in G \mid\langle x, y\rangle$ is cyclic $\rangle\}$.

This is the set of neighbors of x.

It is not difficult to see that this set is usually not a subgroup of G.

Let G be a group, for an element $x \in G$, define
$\operatorname{cyc}(x)=\{y \in G \mid\langle x, y\rangle$ is cyclic $\rangle\}$.

This is the set of neighbors of x.

It is not difficult to see that this set is usually not a subgroup of G.
(Note that in the commuting graph, the set of neighbors of x is

Let G be a group, for an element $x \in G$, define
$\operatorname{cyc}(x)=\{y \in G \mid\langle x, y\rangle$ is cyclic $\rangle\}$.

This is the set of neighbors of x.

It is not difficult to see that this set is usually not a subgroup of G.
(Note that in the commuting graph, the set of neighbors of x is
the set $C_{G}(x)=\{y \in G \mid x y=y x\}$, which is a subgroup of G.)

It makes sense to study groups where $\operatorname{cyc}(x)$ is a subgroup for all

It makes sense to study groups where $\operatorname{cyc}(x)$ is a subgroup for all
$x \in G$. (In the literature, these groups are called tidy groups.)

It makes sense to study groups where $\operatorname{cyc}(x)$ is a subgroup for all
$x \in G$. (In the literature, these groups are called tidy groups.)

An abelian group is tidy if and only if each of its Sylow subgroups is

It makes sense to study groups where $\operatorname{cyc}(x)$ is a subgroup for all
$x \in G$. (In the literature, these groups are called tidy groups.)

An abelian group is tidy if and only if each of its Sylow subgroups is
cyclic or is elementary abelian. (O'Bryant, Patrick, Smithline, and

It makes sense to study groups where $\operatorname{cyc}(x)$ is a subgroup for all
$x \in G$. (In the literature, these groups are called tidy groups.)

An abelian group is tidy if and only if each of its Sylow subgroups is
cyclic or is elementary abelian. (O'Bryant, Patrick, Smithline, and

Wepsic)

My 2020 REU studied tidy groups.

My 2020 REU studied tidy groups.

We proved:

My 2020 REU studied tidy groups.

We proved:

Theorem 21 (B,C,C,H,L,L,P).

Let G be a p-group for some prime p. Then G is tidy if and if only one of the following occurs:
(1) G has exponent p.
(2) G is cyclic.
(3) $p=2$ and G is dihedral or generalized quaternion.

Note that a nilpotent group is tidy if and only if its Sylow

Note that a nilpotent group is tidy if and only if its Sylow
subgroups are all tidy. (O'Bryant, Patrick, Smithline, and Wepsic)

Note that a nilpotent group is tidy if and only if its Sylow
subgroups are all tidy. (O'Bryant, Patrick, Smithline, and Wepsic)

We were able to get strong information about tidy, solvable groups.

Note that a nilpotent group is tidy if and only if its Sylow
subgroups are all tidy. (O'Bryant, Patrick, Smithline, and Wepsic)

We were able to get strong information about tidy, solvable groups.

Note that subgroups of tidy groups are tidy.

Note that a nilpotent group is tidy if and only if its Sylow
subgroups are all tidy. (O'Bryant, Patrick, Smithline, and Wepsic)

We were able to get strong information about tidy, solvable groups.

Note that subgroups of tidy groups are tidy.

Hence, the Sylow subgroups of a tidy group are all tidy.

We have examples that show that the converse is not true for

We have examples that show that the converse is not true for solvable groups. However, if we look at the Hall subgroups

We have examples that show that the converse is not true for solvable groups. However, if we look at the Hall subgroups for sets of two primes, we do have a converse:

We have examples that show that the converse is not true for solvable groups. However, if we look at the Hall subgroups for sets of two primes, we do have a converse:

Theorem 22 (B,C,C,H,L,L,P).

Suppose G is a solvable group and let π be the set of primes dividing $|G|$. If G has a tidy Hall ρ-subgroup for each subset $\rho \subseteq \pi$ of size 2, then G is tidy.

We can classify the tidy $\{p, q\}$-groups:

We can classify the tidy $\{p, q\}$-groups:

Theorem 23 (B,C,C,H,L,L,P).

Suppose G is a $\{p, q\}$-group for distinct primes p and q. Then G is tidy if and only if G has tidy Sylow p - and Sylow q-subgroups and one of the following occurs:
$1 G$ is nilpotent.
2 Up to relabeling p and q, Z_{∞} is a q-group and G / Z_{∞} is a Frobenius group whose Frobenius kernel is the Sylow p-subgroup.
$3\{p, q\}=\{2,3\}, O_{2}(G)$ is a Klein 4-group, $G / O_{3}(G) \cong S_{4}$ and $G / O_{2}(G)$ is a Frobenius group whose Frobenius kernel is the Sylow 3-subgroup of $\mathrm{G} / \mathrm{O}_{2}(\mathrm{G})$ and whose Frobenius complement has order 2. Also, $Z(G)=1$.

Theorem (Continued).

$4\{p, q\}=\{2,3\}, O_{2}(G)$ is a Sylow 2-subgroup of G and is the quaternion group of order $8, G / O_{3}(G) \cong \mathrm{SL}_{2}(3)$. Also, $Z_{\infty}=Z\left(O_{2}(G)\right) \times O_{3}(G)$.
$5\{p, q\}=\{2,3\}, O_{2}(G)$ is the quaternion group of order 8 , $G / O_{3}(G) \cong \mathrm{GL}_{2}(3)$ and $G / O_{2}(G)$ is a Frobenius group whose Frobenius kernel is the Sylow 3-subgroup of $G / \mathrm{O}_{2}(G)$ and whose Frobenius complement has order 2. Also, $Z_{\infty}=Z(G)=Z\left(O_{2}(G)\right)$.

Theorem (Continued).

$4\{p, q\}=\{2,3\}, O_{2}(G)$ is a Sylow 2-subgroup of G and is the quaternion group of order $8, G / O_{3}(G) \cong \mathrm{SL}_{2}(3)$. Also, $Z_{\infty}=Z\left(O_{2}(G)\right) \times O_{3}(G)$.
$5\{p, q\}=\{2,3\}, O_{2}(G)$ is the quaternion group of order 8 , $G / O_{3}(G) \cong \mathrm{GL}_{2}(3)$ and $G / O_{2}(G)$ is a Frobenius group whose Frobenius kernel is the Sylow 3-subgroup of $G / \mathrm{O}_{2}(G)$ and whose Frobenius complement has order 2. Also, $Z_{\infty}=Z(G)=Z\left(O_{2}(G)\right)$.

It is well known that $\mathrm{SL}_{2}(3)$ has a unique non split

Theorem (Continued).

$4\{p, q\}=\{2,3\}, O_{2}(G)$ is a Sylow 2-subgroup of G and is the quaternion group of order $8, G / O_{3}(G) \cong \mathrm{SL}_{2}(3)$. Also, $Z_{\infty}=Z\left(O_{2}(G)\right) \times O_{3}(G)$.
$5\{p, q\}=\{2,3\}, O_{2}(G)$ is the quaternion group of order 8 , $G / O_{3}(G) \cong \mathrm{GL}_{2}(3)$ and $G / O_{2}(G)$ is a Frobenius group whose Frobenius kernel is the Sylow 3-subgroup of $G / \mathrm{O}_{2}(G)$ and whose Frobenius complement has order 2. Also, $Z_{\infty}=Z(G)=Z\left(O_{2}(G)\right)$.

It is well known that $\mathrm{SL}_{2}(3)$ has a unique non split
extension by Z_{2}. We denote it by $\widetilde{\mathrm{GL}_{2}(3)}$.

We note that the definition of tidy groups is not particularly

We note that the definition of tidy groups is not particularly compatible with quotients. It is noted by Erfanian and Farrokhi

We note that the definition of tidy groups is not particularly
compatible with quotients. It is noted by Erfanian and Farrokhi
D.G. that the quotients of infinite tidy groups are not necessarily

We note that the definition of tidy groups is not particularly
compatible with quotients. It is noted by Erfanian and Farrokhi
D.G. that the quotients of infinite tidy groups are not necessarily
tidy. We prove that the quotients of finite solvable tidy groups are

We note that the definition of tidy groups is not particularly
compatible with quotients. It is noted by Erfanian and Farrokhi
D.G. that the quotients of infinite tidy groups are not necessarily
tidy. We prove that the quotients of finite solvable tidy groups are
tidy.

Theorem 24 (B,C,C,H,L,L,P).

If G is a solvable tidy group and N is a normal subgroup of G, then G / N is tidy.

Theorem 24 (B,C,C,H,L,L,P).

If G is a solvable tidy group and N is a normal subgroup of G, then G / N is tidy.

We also bound the Fitting height of tidy, solvable groups.

Theorem 24 (B,C,C,H,L,L,P).

If G is a solvable tidy group and N is a normal subgroup of G, then G / N is tidy.

We also bound the Fitting height of tidy, solvable groups.

Theorem 25 (B,C,C,H,L,L,P).

Let G be a solvable, tidy group. Then G has Fitting height at most 4 and $G / F(G)$ has derived length at most 4. If $|G|$ is odd, then G has Fitting height at most 3 and $G / F(G)$ is abelian or metabelian.

Solvable (Soluble) graph

The next graph considers the graph for a group G where the edges

Solvable (Soluble) graph

The next graph considers the graph for a group G where the edges occur when $\langle x, y\rangle$ is solvable for $x, y \in G$.

Solvable (Soluble) graph

The next graph considers the graph for a group G where the edges
occur when $\langle x, y\rangle$ is solvable for $x, y \in G$.

Let G be a group and $x \in G$.

Solvable (Soluble) graph

The next graph considers the graph for a group G where the edges
occur when $\langle x, y\rangle$ is solvable for $x, y \in G$.

Let G be a group and $x \in G$.

We write $S(G)$ for the solvable radical of G.

Solvable (Soluble) graph

The next graph considers the graph for a group G where the edges
occur when $\langle x, y\rangle$ is solvable for $x, y \in G$.

Let G be a group and $x \in G$.

We write $S(G)$ for the solvable radical of G.

This is the largest normal subgroup of G that is solvable.

A theorem of Thompson states that if G is a group and $x \in G$

A theorem of Thompson states that if G is a group and $x \in G$ then $\langle x, y\rangle$ is solvable for all $y \in G$ if and only if $x \in S(G)$.

A theorem of Thompson states that if G is a group and $x \in G$ then $\langle x, y\rangle$ is solvable for all $y \in G$ if and only if $x \in S(G)$.

Hence, the universal vertices for this graph are precisely the

A theorem of Thompson states that if G is a group and $x \in G$ then $\langle x, y\rangle$ is solvable for all $y \in G$ if and only if $x \in S(G)$.

Hence, the universal vertices for this graph are precisely the elements in $S(G)$.

A theorem of Thompson states that if G is a group and $x \in G$ then $\langle x, y\rangle$ is solvable for all $y \in G$ if and only if $x \in S(G)$.

Hence, the universal vertices for this graph are precisely the elements in $S(G)$.

A corollary of this is that the graph is complete if and only if G is

A theorem of Thompson states that if G is a group and $x \in G$ then $\langle x, y\rangle$ is solvable for all $y \in G$ if and only if $x \in S(G)$.

Hence, the universal vertices for this graph are precisely the elements in $S(G)$.

A corollary of this is that the graph is complete if and only if G is
solvable.

If G is a group, then we define the solvable graph of G

If G is a group, then we define the solvable graph of G
to be the graph with vertex set $G \backslash S(G)$ and there

If G is a group, then we define the solvable graph of G
to be the graph with vertex set $G \backslash S(G)$ and there
is an edge between $x, y \in G \backslash S(G)$ whenever $\langle x, y\rangle$ is solvable.

If G is a group, then we define the solvable graph of G
to be the graph with vertex set $G \backslash S(G)$ and there
is an edge between $x, y \in G \backslash S(G)$ whenever $\langle x, y\rangle$ is solvable.

In fact, a recent paper of ours with Akbari, Mirzajani, and

If G is a group, then we define the solvable graph of G
to be the graph with vertex set $G \backslash S(G)$ and there
is an edge between $x, y \in G \backslash S(G)$ whenever $\langle x, y\rangle$ is solvable.

In fact, a recent paper of ours with Akbari, Mirzajani, and

Moghaddamfar considered this graph.

Theorem 26 (A,L,M,M).

For every group G, the solubility graph $\Delta_{\mathcal{S}}(G)$ is connected, and its diameter is at most 11 .

Theorem 26 (A,L,M,M).

For every group G, the solubility graph $\Delta_{\mathcal{S}}(G)$ is connected, and its diameter is at most 11 .

We do not know of any examples with diameter more than 3 .

Theorem 26 (A,L,M,M).

For every group G, the solubility graph $\Delta_{\mathcal{S}}(G)$ is connected, and its diameter is at most 11 .

We do not know of any examples with diameter more than 3 .

Question: Find the correct upper bound of the diameter of the

Theorem 26 (A,L,M,M).

For every group G, the solubility graph $\Delta_{\mathcal{S}}(G)$ is connected, and its diameter is at most 11 .

We do not know of any examples with diameter more than 3 .

Question: Find the correct upper bound of the diameter of the
solvable graph.

Let G be a group and let $x \in G$. The neighbors of x

Let G be a group and let $x \in G$. The neighbors of x in this graph is $\operatorname{Sol}_{G}(x)=\{y \in G \mid\langle x, y\rangle$ is solvable $\}$.

Let G be a group and let $x \in G$. The neighbors of x in this graph is $\operatorname{Sol}_{G}(x)=\{y \in G \mid\langle x, y\rangle$ is solvable $\}$.

It is not difficult to see that $\operatorname{Sol}_{G}(x)$ is not necessarily

Let G be a group and let $x \in G$. The neighbors of x
in this graph is $\operatorname{Sol}_{G}(x)=\{y \in G \mid\langle x, y\rangle$ is solvable $\}$.

It is not difficult to see that $\operatorname{Sol}_{G}(x)$ is not necessarily
a subgroup. In A_{5}, this set is a subgroup when x has order

Let G be a group and let $x \in G$. The neighbors of x
in this graph is $\operatorname{Sol}_{G}(x)=\{y \in G \mid\langle x, y\rangle$ is solvable $\}$.

It is not difficult to see that $\operatorname{Sol}_{G}(x)$ is not necessarily
a subgroup. In A_{5}, this set is a subgroup when x has order

5 and is not a subgroup otherwise.

We prove:

We prove:

Theorem 27 (A,L,M,M).

A group G is soluble if and only if $\operatorname{Sol}_{G}(x)$ is a subgroup of G for all $x \in G$.

We prove:

Theorem 27 (A,L,M,M).

A group G is soluble if and only if $\operatorname{Sol}_{G}(x)$ is a subgroup of G for all $x \in G$.

In fact, we can obtain the following:

We prove:

Theorem 27 (A,L,M,M).

A group G is soluble if and only if $\mathrm{Sol}_{G}(x)$ is a subgroup of G for all $x \in G$.

In fact, we can obtain the following:

Theorem 28 (A,L,M,M).

Let G be a group. If there exists $x \in G$ so that the elements of $\mathrm{Sol}_{G}(x)$ commute pairwise, then G is abelian.

We also obtained the following:

We also obtained the following:

Theorem 29 (A,L,M,M).

Let G be a group. The following are equivalent:

1. G is soluble.
2. For each conjugacy class \mathcal{C} of G, the induced subgraph $\Gamma_{\mathcal{S}}(\mathcal{C})$ is a clique.
3. Sol $_{G}(x) \cap \mathcal{C} \neq \emptyset$ for every $x \in G$ and every conjugacy class \mathcal{C} of G.

Thank You!

Questions?

Finally, we return to the commuting graph.

Finally, we return to the commuting graph.

We note that in general, it is not difficult to find nonisomorphic

Finally, we return to the commuting graph.

We note that in general, it is not difficult to find nonisomorphic groups with isomorphic commuting graphs.

Finally, we return to the commuting graph.

We note that in general, it is not difficult to find nonisomorphic
groups with isomorphic commuting graphs.

In fact, if G_{1} and G_{2} are isoclinic and have the same order,

Finally, we return to the commuting graph.

We note that in general, it is not difficult to find nonisomorphic
groups with isomorphic commuting graphs.

In fact, if G_{1} and G_{2} are isoclinic and have the same order,
then G_{1} and G_{2} have isomorphic commuting graphs.

It is known that isoclinism defines an equivalence relation on

It is known that isoclinism defines an equivalence relation on
groups.

It is known that isoclinism defines an equivalence relation on
groups.

It does not preserve order!

It is known that isoclinism defines an equivalence relation on
groups.

It does not preserve order!

However, if G_{1} and G_{2} are isomorphic, then they are isoclinic.

We say G_{1} and G_{2} are isoclinic if there exist isomorphisms

We say G_{1} and G_{2} are isoclinic if there exist isomorphisms
$\sigma: G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$ and $\tau: G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ that satisfy:

We say G_{1} and G_{2} are isoclinic if there exist isomorphisms $\sigma: G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$ and $\tau: G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ that satisfy:

$$
\left[\sigma\left(a Z\left(G_{1}\right)\right), \sigma\left(b Z\left(G_{1}\right)\right)\right]=\tau([a, b]) \text { for all } a, b \in G_{1} .
$$

The fact that the commuting graphs of isoclinic groups with the

The fact that the commuting graphs of isoclinic groups with the same order are isomorphic is really due to Vahidi and Talebi.

The fact that the commuting graphs of isoclinic groups with the same order are isomorphic is really due to Vahidi and Talebi.

Define the graph $C^{*}(G)$ to be the graph obtained by taking the

The fact that the commuting graphs of isoclinic groups with the same order are isomorphic is really due to Vahidi and Talebi.

Define the graph $C^{*}(G)$ to be the graph obtained by taking the
subgraph of $C(G)$ induced by a transversal for $Z(G)$ in G.

It is not difficult to see that $C^{*}(G)$ is independent of the

It is not difficult to see that $C^{*}(G)$ is independent of the
transversal chosen since a and b commute if and only if $a z_{1}$

It is not difficult to see that $C^{*}(G)$ is independent of the
transversal chosen since a and b commute if and only if $a z_{1}$
and $b z_{2}$ commute for all $z_{1}, z_{2} \in Z(G)$.

It is not difficult to see that $C^{*}(G)$ is independent of the
transversal chosen since a and b commute if and only if $a z_{1}$
and $b z_{2}$ commute for all $z_{1}, z_{2} \in Z(G)$.

It is immediate to see that if G_{1} and G_{2} have isomorphic

It is not difficult to see that $C^{*}(G)$ is independent of the
transversal chosen since a and b commute if and only if $a z_{1}$
and $b z_{2}$ commute for all $z_{1}, z_{2} \in Z(G)$.

It is immediate to see that if G_{1} and G_{2} have isomorphic
commuting graphs, then $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$.

Conversely, if $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$, then

Conversely, if $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$, then
G_{1} and G_{2} have isomorphic commuting graphs.

Conversely, if $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$, then
G_{1} and G_{2} have isomorphic commuting graphs.

When G_{1} and G_{2} are isoclinic and α is the

Conversely, if $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$, then
G_{1} and G_{2} have isomorphic commuting graphs.

When G_{1} and G_{2} are isoclinic and α is the
associated isomorphism from $G_{1} / Z\left(G_{1}\right)$ to $G_{2} / Z\left(G_{2}\right)$,

it is easy to see that α will map a transversal for

it is easy to see that α will map a transversal for
$Z\left(G_{1}\right)$ in G_{1} to a transversal for $Z\left(G_{2}\right)$ in G_{2},
it is easy to see that α will map a transversal for
$Z\left(G_{1}\right)$ in G_{1} to a transversal for $Z\left(G_{2}\right)$ in G_{2}, and the commutator condition will imply that a pair of cosets
it is easy to see that α will map a transversal for
$Z\left(G_{1}\right)$ in G_{1} to a transversal for $Z\left(G_{2}\right)$ in G_{2},
and the commutator condition will imply that a pair of cosets
in G_{1} commutes if and only if the corresponding pair of cosets
it is easy to see that α will map a transversal for
$Z\left(G_{1}\right)$ in G_{1} to a transversal for $Z\left(G_{2}\right)$ in G_{2},
and the commutator condition will imply that a pair of cosets
in G_{1} commutes if and only if the corresponding pair of cosets
in G_{2} commute.

Hence, if G_{1} and G_{2} are isoclinic, then $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$.

Hence, if G_{1} and G_{2} are isoclinic, then $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$.

With this in mind, we then see that when G_{1} and G_{2} are isoclinic

Hence, if G_{1} and G_{2} are isoclinic, then $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$.

With this in mind, we then see that when G_{1} and G_{2} are isoclinic with $\left|G_{1}\right|$ and $\left|G_{2}\right|$, then G_{1} and G_{2} have isomorphic commuting

Hence, if G_{1} and G_{2} are isoclinic, then $C^{*}\left(G_{1}\right) \cong C^{*}\left(G_{2}\right)$.

With this in mind, we then see that when G_{1} and G_{2} are isoclinic
with $\left|G_{1}\right|$ and $\left|G_{2}\right|$, then G_{1} and G_{2} have isomorphic commuting
graphs.

It makes sense to ask if the following is true:

It makes sense to ask if the following is true:

Suppose G_{1} and G_{2} are groups with the same order

It makes sense to ask if the following is true:

Suppose G_{1} and G_{2} are groups with the same order that have isomorphic commuting graphs.

It makes sense to ask if the following is true:

Suppose G_{1} and G_{2} are groups with the same order that have isomorphic commuting graphs.

Open question: Must G_{1} and G_{2} be isoclinic?

It makes sense to ask if the following is true:

Suppose G_{1} and G_{2} are groups with the same order
that have isomorphic commuting graphs.

Open question: Must G_{1} and G_{2} be isoclinic?

Probably not,

It makes sense to ask if the following is true:

Suppose G_{1} and G_{2} are groups with the same order
that have isomorphic commuting graphs.

Open question: Must G_{1} and G_{2} be isoclinic?

Probably not,
but we would be very interested to see a counterexample.

We also want to introduce another related graph.

We also want to introduce another related graph.

Define $Z(a)=Z\left(C_{G}(a)\right)$ for all $a \in G \backslash Z(G)$.

We also want to introduce another related graph.

Define $Z(a)=Z\left(C_{G}(a)\right)$ for all $a \in G \backslash Z(G)$.

We set $\mathcal{C}(G)=\left\{C_{G}(x) \mid x \in G \backslash Z(G)\right\}$ and

We also want to introduce another related graph.

Define $Z(a)=Z\left(C_{G}(a)\right)$ for all $a \in G \backslash Z(G)$.

We set $\mathcal{C}(G)=\left\{C_{G}(x) \mid x \in G \backslash Z(G)\right\}$ and
$\mathcal{Z}(G)=\{Z(x) \mid x \in G \backslash Z(G)\}$.

We also want to introduce another related graph.

Define $Z(a)=Z\left(C_{G}(a)\right)$ for all $a \in G \backslash Z(G)$.

We set $\mathcal{C}(G)=\left\{C_{G}(x) \mid x \in G \backslash Z(G)\right\}$ and
$\mathcal{Z}(G)=\{Z(x) \mid x \in G \backslash Z(G)\}$.

The following two facts relate these sets.

Lemma 30.

Let G be a group. If $Z \in \mathcal{Z}(G)$ and $C=C_{G}(Z)$, then $C \in \mathcal{C}(G)$ and $Z=Z(C)$. In particular, the maps $C \mapsto Z(C)$ from $\mathcal{C}(G) \rightarrow \mathcal{Z}(G)$ and $Z \mapsto C_{G}(Z)$ from $\mathcal{Z}(G)$ to $\mathcal{C}(G)$ are inverse maps, and thus, bijections.

Lemma 30.

Let G be a group. If $Z \in \mathcal{Z}(G)$ and $C=C_{G}(Z)$, then $C \in \mathcal{C}(G)$ and $Z=Z(C)$. In particular, the maps $C \mapsto Z(C)$ from $\mathcal{C}(G) \rightarrow \mathcal{Z}(G)$ and $Z \mapsto C_{G}(Z)$ from $\mathcal{Z}(G)$ to $\mathcal{C}(G)$ are inverse maps, and thus, bijections.

Lemma 31.

Let G be a group and suppose $a, b \in G \backslash Z(G)$.
(1) If $a \in C_{G}(b)$, then $Z(a) \leq C_{G}(b)$.
(2) $Z(a) \leq C_{G}(b)$ if and only if $Z(b) \leq C_{G}(a)$.

We let $\Gamma_{\mathcal{Z}}(G)$ be the graph with vertices $\{Z \in \mathcal{Z}(G)\}$.

We let $\Gamma_{\mathcal{Z}}(G)$ be the graph with vertices $\{Z \in \mathcal{Z}(G)\}$.

If $Z_{1}, Z_{2} \in \mathcal{Z}(G)$ with $Z_{1} \neq Z_{2}$, then there

We let $\Gamma_{\mathcal{Z}}(G)$ be the graph with vertices $\{Z \in \mathcal{Z}(G)\}$.

If $Z_{1}, Z_{2} \in \mathcal{Z}(G)$ with $Z_{1} \neq Z_{2}$, then there
is an edge between Z_{1} and Z_{2} precisely when $Z_{2} \leq C_{G}\left(Z_{1}\right)$.

Notice via Lemma 31 that $Z_{2} \leq C_{G}\left(Z_{1}\right)$ if and only if

Notice via Lemma 31 that $Z_{2} \leq C_{G}\left(Z_{1}\right)$ if and only if

$Z_{1} \leq C_{G}\left(Z_{2}\right)$. Hence, it really does make sense to think

Notice via Lemma 31 that $Z_{2} \leq C_{G}\left(Z_{1}\right)$ if and only if
$Z_{1} \leq C_{G}\left(Z_{2}\right)$. Hence, it really does make sense to think
of this as an undirected graph. Recall that $\mathcal{C}(G)$ is in bijection

Notice via Lemma 31 that $Z_{2} \leq C_{G}\left(Z_{1}\right)$ if and only if
$Z_{1} \leq C_{G}\left(Z_{2}\right)$. Hence, it really does make sense to think
of this as an undirected graph. Recall that $\mathcal{C}(G)$ is in bijection
with $\mathcal{Z}(G)$, so we could have used $\{C \in \mathcal{C}(G)\}$ for our vertex set.

Let Γ be a graph. If u is a vertex of Γ,

Let Γ be a graph. If u is a vertex of Γ,
then we use $N(u)$ to denote the neighbors of u.

Let Γ be a graph. If u is a vertex of Γ,
then we use $N(u)$ to denote the neighbors of u.
I.e., $N(u)$ is the set of vertices in Γ that are adjacent to u.

We define an equivalence relation on the vertices of Γ.

We define an equivalence relation on the vertices of Γ.

We say that $u \sim v$ if either $u=v$ or u is adjacent to v and

We define an equivalence relation on the vertices of Γ.

We say that $u \sim v$ if either $u=v$ or u is adjacent to v and
$\{u\} \cup N(u)=\{v\} \cup N(v)$.

We define an equivalence relation on the vertices of Γ.

We say that $u \sim v$ if either $u=v$ or u is adjacent to v and
$\{u\} \cup N(u)=\{v\} \cup N(v)$.

We can then define the graph Γ / \sim.

We define an equivalence relation on the vertices of Γ.

We say that $u \sim v$ if either $u=v$ or u is adjacent to v and
$\{u\} \cup N(u)=\{v\} \cup N(v)$.

We can then define the graph Γ / \sim.

The vertices of this graph are the equivalence classes under \sim.

If $[u]$ and $[v]$ are the equivalence classes of u and v, then $[u]$ and

If $[u]$ and $[v]$ are the equivalence classes of u and v, then $[u]$ and
[v] are adjacent in Γ / \sim if and only if u and v are adjacent

If $[u]$ and $[v]$ are the equivalence classes of u and v, then $[u]$ and [v] are adjacent in Γ / \sim if and only if u and v are adjacent in Γ. Observe that \sim is uniquely determined by Γ.

Hence, if Γ and Δ are isomorphic graphs, then Γ / \sim

Hence, if Γ and Δ are isomorphic graphs, then Γ / \sim and Δ / \sim will be isomorphic.

Hence, if Γ and Δ are isomorphic graphs, then Γ / \sim
and Δ / \sim will be isomorphic.

We show that $\Gamma_{\mathcal{Z}}(G)$ can be obtained from the commuting

Hence, if Γ and Δ are isomorphic graphs, then Γ / \sim and Δ / \sim will be isomorphic.

We show that $\Gamma_{\mathcal{Z}}(G)$ can be obtained from the commuting graph of G and $C^{*}(G)$ via this equivalence relation.

We use $C(G)$ to denote the commuting graph of G.

We use $C(G)$ to denote the commuting graph of G.

Lemma 32.

Let G be a group. Then the map $Z(g) \mapsto[g]$ is a graph isomorphism from $\Gamma_{\mathcal{Z}}(G)$ to $C(G) / \sim$ or $C^{*}(G) / \sim$.

We use $C(G)$ to denote the commuting graph of G.

Lemma 32.

Let G be a group. Then the map $Z(g) \mapsto[g]$ is a graph isomorphism from $\Gamma_{\mathcal{Z}}(G)$ to $C(G) / \sim$ or $C^{*}(G) / \sim$.

This implies that $\Gamma_{\mathcal{Z}}(G)$ and $C(G)$ have the same number of

We use $C(G)$ to denote the commuting graph of G.

Lemma 32.

Let G be a group. Then the map $Z(g) \mapsto[g]$ is a graph isomorphism from $\Gamma_{\mathcal{Z}}(G)$ to $C(G) / \sim$ or $C^{*}(G) / \sim$.

This implies that $\Gamma_{\mathcal{Z}}(G)$ and $C(G)$ have the same number of
connected components and that the diameters of the

corresponding components are the same with one exception.

corresponding components are the same with one exception.

The exception is when a connected component
corresponding components are the same with one exception.

The exception is when a connected component
in $\Gamma_{\mathcal{Z}}(G)$ consists of a single vertex
corresponding components are the same with one exception.

The exception is when a connected component
in $\Gamma_{\mathcal{Z}}(G)$ consists of a single vertex
and the corresponding component in $C(G)$ will be complete.

Lemma 33.

Let G be a group, and $g, h \in G \backslash Z(G)$. If $C_{G}(g) \cap C_{G}(h)>Z(G)$, then $Z(g)$ and $Z(h)$ have distance at most 2 in $\Gamma_{\mathcal{Z}}(G)$. Equivalently, g and h have distance at most 2 in $C(G)$ and $g Z(G)$ and $h Z(G)$ have distance at most 2 in $C^{*}(G)$.

Lemma 33.

Let G be a group, and $g, h \in G \backslash Z(G)$. If $C_{G}(g) \cap C_{G}(h)>Z(G)$, then $Z(g)$ and $Z(h)$ have distance at most 2 in $\Gamma_{\mathcal{Z}}(G)$. Equivalently, g and h have distance at most 2 in $C(G)$ and $g Z(G)$ and $h Z(G)$ have distance at most 2 in $C^{*}(G)$.

Theorem 34.

Let G be a group. If $\left|G^{\prime}\right|<|G: Z(G)|^{1 / 2}$, then $C(G)$ is connected and has diameter at most 2.

We now characterize the isolated vertices in $\Gamma_{\mathcal{Z}}(G)$.

Lemma 35.

Let G be a group. Let $g \in G \backslash Z(G)$. Then the following are equivalent:
(1) $C_{G}(g)$ is abelian and for all $h \in G \backslash Z(G)$, either $C_{G}(h)=C_{G}(g)$ or $C_{G}(h) \cap C_{G}(g)=Z(G)$.
(2) $C_{G}(h)=C_{G}(g)$ for all $h \in C_{G}(g) \backslash Z(G)$.
(3) $Z(h)=Z(g)$ for all $h \in C_{G}(g) \backslash Z(G)$.
(9) $Z(h)=C_{G}(g)$ for all $h \in C_{G}(g) \backslash Z(G)$.
(5) $Z(g)$ is an isolated vertex in $\Gamma_{\mathcal{Z}}(G)$.

Hence, Z is an isolated vertex in $\Gamma_{\mathcal{Z}}(G)$ if and only

Hence, Z is an isolated vertex in $\Gamma_{\mathcal{Z}}(G)$ if and only
if $C_{G}(Z)$ is abelian and maximal among the subgroups in $\mathcal{C}(G)$.

Hence, Z is an isolated vertex in $\Gamma_{\mathcal{Z}}(G)$ if and only
if $C_{G}(Z)$ is abelian and maximal among the subgroups in $\mathcal{C}(G)$.

Recall that an empty graph is a graph with no edges.

Hence, Z is an isolated vertex in $\Gamma_{\mathcal{Z}}(G)$ if and only
if $C_{G}(Z)$ is abelian and maximal among the subgroups in $\mathcal{C}(G)$.

Recall that an empty graph is a graph with no edges.

One consequence of Lemma 35 is that if $\Gamma_{\mathcal{Z}}(G)$ is

Hence, Z is an isolated vertex in $\Gamma_{\mathcal{Z}}(G)$ if and only
if $C_{G}(Z)$ is abelian and maximal among the subgroups in $\mathcal{C}(G)$.

Recall that an empty graph is a graph with no edges.

One consequence of Lemma 35 is that if $\Gamma_{\mathcal{Z}}(G)$ is
an empty graph, then $C_{G}(x)$ is abelian for all $x \in G \backslash Z(G)$.

A group G is called a $C A$-group if $C_{G}(x)$ is abelian for all

A group G is called a $C A$-group if $C_{G}(x)$ is abelian for all

$$
x \in G \backslash Z(G)
$$

A group G is called a $C A$-group if $C_{G}(x)$ is abelian for all
$x \in G \backslash Z(G)$.
(Some authors call these AC-groups.)

A group G is called a $C A$-group if $C_{G}(x)$ is abelian for all
$x \in G \backslash Z(G)$.
(Some authors call these AC-groups.)

We claim that if G is a CA-group, then $\Gamma_{\mathcal{Z}}(G)$ is empty.

Corollary 36.

Let G be a group. Then $\Gamma_{\mathcal{Z}}(G)$ is an empty graph if and only if G is a CA-group.

Lemma 37.

Let G be a group. Let $g \in G \backslash Z(G)$. The following are equivalent:
(1) For all $h \in G \backslash Z(G)$, either $C_{G}(h) \leq C_{G}(g)$ or $C_{G}(h) \cap C_{G}(g)=Z(G)$.
(2) $C_{G}(h) \leq C_{G}(g)$ for all $h \in C_{G}(g) \backslash Z(G)$.
(3) $Z(g) \leq Z(h)$ for all $h \in C_{G}(g) \backslash Z(G)$.
(1) $C_{G}(g) \backslash Z(G)$ is a connected component in $\mathfrak{C}(G)$.

