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Introduction

Throughout this talk, all groups are finite. All graphs

will be simple. Recall that a graph is a collection

of vertices and edges between vertices.

We do not allow multiple edges or loops.

I.e., each edge is between two distinct points.
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There are a number of different graphs that can be associated

with groups.

I should note that I will not be talking about the most well-known

graph associated with groups: the Cayley graph.
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Another graph that has been associated with groups

is a graph that used to be commonly called the prime graph

but recently is more commonly called the Gruenberg-Kegel graph

since the term prime graph has been applied to more than one

graph associated to groups.
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We consider several related graphs.

One means of associating a graph to a group is the following:

Pick a class of groups. Call it C.

For the set of vertices, we take fixed subset Ω of G .
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If x , y ∈ Ω are distinct elements, we put an edge between

x and y if 〈x , y〉 lies in C. We are going to consider

three possible classes for C. The classes we focus

on are abelian groups, cyclic groups, and solvable groups.

In the literature, nilpotent groups have also been considered.
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Notice that you can obtain the complement to such a graph by

taking the same set of vertices and putting an edge between

x and y if 〈x , y〉 is not in C.
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Commuting graph

In some sense, this class of graphs has been motivated by

the commuting graph.

The Commuting graph of G is the graph with vertex set

G \ Z (G ) with an edge between x and y if xy = yx .
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Observe that xy = yx is equivalent to 〈x , y〉 is abelian.

Hence, the commuting graph arises when we use the class of

abelian groups.

Commuting graphs were first studied by Brauer and Fowler in 1955

in relation to the classification of nonabelian simple groups.
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Commuting graphs were first studied in their own right

by Segev and Seitz in in terms of the classical simple groups.

In fact, much of the research regarding the commuting graph

is related to simple groups.
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We are not going to try describe all of this research.

This research culminated in with a paper by Solomon and

Woldar where they prove that if S is a nonabelian simple

group and G is any group and S and G have isomorphic

commuting graphs, then S and G are isomorphic.
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At the opposite end of the spectrum from nonabelian simple

groups are solvable groups.

In a seminal paper, Parker showed that if G is a solvable

group with Z (G ) = 1, then the commuting graph of G

is disconnected if and only if G is a Frobenius group or

a 2-Frobenius group.
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A group G is a 2-Frobenius group if there exist normal

subgroups K ≤ L so that G/K and L are Frobenius

groups with Frobenius kernels L/K and K respectively.
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Parker also proved that if the commuting graph of G

(still with the assumption that Z (G ) = 1 and G is solvable)

is connected, then the diameter of the graph is at most 8.

He also provides an example of such a group whose graph has this

diameter.
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Furthermore, in a separate paper, Morgan and Parker remove

the solvable hypothesis.

They prove that if G is any group with Z (G ) = 1,

then the connected components of the commuting graph

all have diameters at most 10.
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If one removes the hypothesis that Z (G ) = 1, then the situation is

much less clear and even more wide open.
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In particular, it is known that there is no bound on the diameter of

the commuting graph of solvable groups G with Z (G ) > 1.

Guidici and Parker have presented a family of 2-groups which

have no bound on the diameter of the commuting graphs.
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In an REU this last summer (2020), we looked at this situation.

The students at this REU were Nicolas F. Beike, Colin Heath,

Kaiwen Lu, and Jamie D. Pearce and the graduate students

working with us were Rachel Carleton and David G. Costanzo.
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We were able to generalize the results of Parker and Morgan and

Parker. In particular, we are able to prove the following.

We use Γ(G ) to denote the commuting graph of G .
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Theorem 1 (B,C,C,H,L,L,P).

Let G be a group, let Z = Z (G ), and suppose that G ′ ∩ Z = 1.

1 Γ(G ) is connected if and only if Γ(G/Z ) is connected.

2 Every connected component of Γ(G ) has diameter at most 10.

3 If G is solvable and Γ(G ) is connected, then Γ(G ) has
diameter at most 8.

4 If G is solvable, then Γ(G ) is disconnected if and only if G/Z
is either a Frobenius group or a 2-Frobenius group.
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Recall that an A-group is a group where all the Sylow subgroups

are abelian. It is known that if G is an A-group, then

G ′ ∩ Z (G ) = 1. Hence, Theorem 1 applies to A-groups!

We expect that the diameter result can be improved

for solvable A-groups.
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I also should mention that we can weaken the hypothesis that

G ′ ∩ Z (G ) = 1 even further. In fact, if we take

C (G ) = {[x , y ] | x , y ∈ G} (i.e., the set of commutators),

then the hypothesis we need is:

C (G ) ∩ Z (G ) = {1}.
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Using GAP, we have found groups G where C (G ) ∩ Z (G ) = {1}

but G ′ ∩ Z (G ) > 1. One further result we proved along these lines:

Theorem 2 (B,C,C,H,L,L,P).

If G is a group where G/Z (G ) is either a Frobenius or a
2-Frobenius group, then Γ(G ) is disconnected.
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Cyclic graph

In the literature, there are a number of graphs generalizing the

commuting graph.

The one we now consider is the cyclic graph.

This is the graph whose vertex set is G \ {1}

and there is an edge between x and y if 〈x , y〉 is cyclic.
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We note that in the literature, a closely related graph is the
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We note that the graph with G as its vertex set and edges
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has sometimes been called the enhanced power graph

in the literature, and so, the punctured enhanced power

graph has been used in the literature as another name

for the cyclic graph.
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It is easy to see that the cyclic graph is a complete graph

if and only if the group is a cyclic group.

Several years ago, I and Diana Imperatore showed that

all of the connected components are complete graphs if and only if

the group is partitioned by cyclic subgroups.
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My 2019 REU considered cyclic graphs.

The students in my 2019 REU were Stefano Schmidt, Eyob

Tsegaye, and Gabe Udell.

The graduate student working with us was David G. Costanzo.
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It is easy to see that if G is a p-group for the prime p,

then the cyclic graph is connected if and only if

G is cyclic or generalized quaternion.

Lemma 3.

If G is a p-group for some prime p, then the number of connected
components equals the number of subgroups of order p.
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We use ∆(G ) to denote the cyclic graph of G .

If G is nilpotent, but not a p-group, we can prove:

Theorem 4 (C,L,S,T,U).

If G is nilpotent and |G | is divisible by at least two primes, then
∆(G ) is connected with diam(∆(G )) ≤ 3.

In fact, we can determine exactly which nilpotent groups have

cyclic graphs of diameter 2 and which have diameter 3.
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Lemma 5 (C,L,S,T,U).

Let G be a nilpotent group that does not have prime power order.
Then the following are true:

1 If at least one but not all Sylow subgroups are cyclic or
generalized quaternion, then ∆(G ) has diameter 2.

2 If no Sylow subgroup is cyclic or generalized quaternion, then
∆(G ) has diameter 3.
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One key point about nilpotent groups that are not p-groups

is that they are nontrivial direct products.

This is a launching point for the research of the 2019 REU.

We consider the cyclic graphs of nontrivial direct products.
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We bound the diameter of a direct product when the factors

have coprime orders:

Lemma 6 (C,L,S,T,U).

If G and H are nontrivial groups with coprime orders, then
∆(G × H) is connected with diam(∆(G × H)) ≤ 3.
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This generalizes the results for nilpotent groups.

In the general case, we prove:

Theorem 7 (C,L,S,T,U).

If G and H are nontrivial groups and the graph ∆(G × H) is
connected, then diam(∆(G × H)) ≤ 7.
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Now, an example of a direct product whose graph has diameter 7.

Let G be SmallGroup(1944,2320) in the GAP Small Groups library,

and let H be the Frobenius group (C9 × C9) o C4.

Then ∆(G × H) has diameter 7.
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Let G be a non-cyclic p-group and H be a non-cyclic

q-group for distinct primes p and q.

The graphs ∆(G ) and ∆(H) are disconnected.

Lemma 6, however, says that ∆(G × H)

is connected with a diameter bound of 3.
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Thus, the connectedness of ∆(G × H), in general,

does not imply connectedness of the graphs ∆(G ) and ∆(H).

But when the diameter of ∆(G × H) is sufficiently small,

some information about the cyclic graphs of G and H can be

extracted.
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Theorem 8 (C,L,S,T,U).

If G and H are groups with diam(∆(G × H)) ≤ 2, then

diam(∆(G )) ≤ 2 or diam(∆(H)) ≤ 2.

We have determined exactly when the cyclic graph of a

nontrivial direct product is disconnected.
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Condition (C1(p)): there exists an element in G of

prime order p whose centralizer is a p-group.

Theorem 9 (C,L,S,T,U).

Let G and H be nontrivial groups. The graph ∆(G × H) is
disconnected if and only if G × H satisfies (C1(p)) for some prime
p.
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Corollary 10 (C,L,S,T,U).

Let G and H be nontrivial groups. The graph ∆(G × H) is
disconnected if and only if there exists a prime p such that G and
H satisfy (C1(p)).

We now shift gears and look at another topic studied by my 2019

REU.
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A Z -group is a group where all of the Sylow subgroups

are cyclic. Not surprisingly, these groups have a

very restricted structure.

Theorem 11 (C,L,S,T,U).

Let G be a Z -group. Then ∆(G ) is disconnected if and only if G
is a Frobenius group.
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We also prove:

Theorem 12 (C,L,S,T,U).

If G is a Z -group and ∆(G ) is connected, then diam(∆(G )) ≤ 4.

Theorem 13 (C,L,S,T,U).

If G is a Z -group, then diam(∆(G )) ≤ 2 if and only if Z (G ) 6= 1.

We provide examples of Z -groups with diameters 2, 3, and 4.
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Finally, we consider cyclic graphs for {p, q}-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a {p, q}-group. Then,
diam(∆(G )) = 2 if and only if G has a unique subgroup of order p
or a unique subgroup of order q and that subgroup is central in G .

And {p, q, r}-groups:

Theorem 15 (C,L,S,T,U).

If G is a {p, q, r}-group and the cyclic graph of G has diameter 2,
then Z (G ) > 1.

Mark L. Lewis Kent State University

Graphs associated with Groups



Finally, we consider cyclic graphs for {p, q}-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a {p, q}-group. Then,
diam(∆(G )) = 2 if and only if G has a unique subgroup of order p
or a unique subgroup of order q and that subgroup is central in G .

And {p, q, r}-groups:

Theorem 15 (C,L,S,T,U).

If G is a {p, q, r}-group and the cyclic graph of G has diameter 2,
then Z (G ) > 1.

Mark L. Lewis Kent State University

Graphs associated with Groups



Finally, we consider cyclic graphs for {p, q}-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a {p, q}-group. Then,
diam(∆(G )) = 2 if and only if G has a unique subgroup of order p
or a unique subgroup of order q and that subgroup is central in G .

And {p, q, r}-groups:

Theorem 15 (C,L,S,T,U).

If G is a {p, q, r}-group and the cyclic graph of G has diameter 2,
then Z (G ) > 1.

Mark L. Lewis Kent State University

Graphs associated with Groups



Finally, we consider cyclic graphs for {p, q}-groups.

Theorem 14 (C,L,S,T,U).

Let p and q be distinct primes, and let G be a {p, q}-group. Then,
diam(∆(G )) = 2 if and only if G has a unique subgroup of order p
or a unique subgroup of order q and that subgroup is central in G .

And {p, q, r}-groups:

Theorem 15 (C,L,S,T,U).

If G is a {p, q, r}-group and the cyclic graph of G has diameter 2,
then Z (G ) > 1.

Mark L. Lewis Kent State University

Graphs associated with Groups



Notice that if G is a Frobenius group or a 2-Frobenius group,

then Z (G ) = 1. It follows that the cyclic graph and the commuting

graph for G have the same set of vertices. Hence, the cyclic

graph of G is a spanning subgraph of the commuting graph of G .
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We know from Parker’s result that the commuting graph is

disconnected when G is a Frobenius or 2-Frobenius group.

It follows that the cyclic graph is also disconnected for

either of these groups.
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Counting the number of connected components of the cyclic graph

is more complicated. The following is work with David Costanzo.

Set mp(G ) to be the number of subgroups

of order p. For Frobenius groups, we obtain:
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Theorem 16 (C,L).

Let G be a Frobenius group with Frobenius kernel N. If N is a
p-group for some prime number p, then ∆(G ) has |N|+ mp(N)
connected components. If N is not a group of prime power order,
then ∆(G ) has |N|+ 1 connected components.

For 2-Frobenius groups, it is more complicated.
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We first have the formula when K does not have prime power

order.

Theorem 17 (C,L).

Let G be a 2-Frobenius group with K as in the definition. If |K | is
divisible by at least two distinct prime numbers, then ∆(G ) has
|K |+ 1 connected components.
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Next, we find the formula for the case that K and G/L are

p-groups for some prime p.

Theorem 18 (C,L).

Let G be a 2-Frobenius group, and assume that K and G/L are
p-groups for some prime p, where K and L are as in the definition.
Then ∆(G ) has |K |+ mp(G ) connected components.
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Finally, we compute the formula when K is a p-group and G/L is

not a p-group for some prime p.

Theorem 19 (C,L).

Let G be a 2-Frobenius group, and let p be a prime number.
Assume that K is a p-group for some prime p and that G/L is not
a p-group, where K and L are as in the definition. Then the
number of connected components of ∆(G ) is

|K |+ |K : L|+ m∗p,

where m∗p is the number of subgroups of order p in G that are not
centralized by an element of prime order other than p.
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We switch gears again.

If Γ is a graph, we say a vertex v is a universal vertex if

v is adjacent to all other vertices in Γ.

To understand the connectivity of a graph, it is often useful to

throw out any universal vertices.
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Sometimes when people talk about the commuting graph,

they take the set of vertices to be G or G \ {1}.

Taking the edges to be as in the commuting graph,

x is a universal element if and only if x ∈ Z (G ).
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Since we want to throw out the universal elements,

we take G \ Z (G ) to be the vertex set

for the commuting graph.
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Next, we consider the cyclic graph.

If included, 1 would be a universal vertex, so we omit it.

Because of this, most of the results in the literature look at the set

G \ {1} as the vertices of the cyclic graph.
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In fact, 1 is not necessarily the only universal vertex.

Until recently, it had been an open question regarding a description

of the universal vertices of this graph.
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Based on the work done in that REU, we can describe the set of

universal vertices for this graph.

Theorem 20 (C,L,S,T,U).

Let G be a group, g ∈ G , and π = π(o(g)). Write g =
∏

p∈π gp,
where each gp is a p-element for p ∈ π and gpgq = gqgp for all
p, q ∈ π. Then g is a universal vertex for ∆(G ) if and only if, for
each p ∈ π, a Sylow p-subgroup P of G is cyclic or generalized
quaternion and 〈gp〉 ≤ P ∩ Z (G ).
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One can show that the set of universal vertices in the cyclic graph

is a subgroup. (This was proved by O’Bryant, Patrick, Smithline,

and Wepsic.) It may make sense to reexamine the results in the

literature with the set of nonuniversal vertices in place of G \ {1}.

Mark L. Lewis Kent State University

Graphs associated with Groups



One can show that the set of universal vertices in the cyclic graph

is a subgroup. (This was proved by O’Bryant, Patrick, Smithline,

and Wepsic.) It may make sense to reexamine the results in the

literature with the set of nonuniversal vertices in place of G \ {1}.

Mark L. Lewis Kent State University

Graphs associated with Groups



One can show that the set of universal vertices in the cyclic graph

is a subgroup. (This was proved by O’Bryant, Patrick, Smithline,

and Wepsic.) It may make sense to reexamine the results in the

literature with the set of nonuniversal vertices in place of G \ {1}.

Mark L. Lewis Kent State University

Graphs associated with Groups



One can show that the set of universal vertices in the cyclic graph

is a subgroup. (This was proved by O’Bryant, Patrick, Smithline,

and Wepsic.) It may make sense to reexamine the results in the

literature with the set of nonuniversal vertices in place of G \ {1}.

Mark L. Lewis Kent State University

Graphs associated with Groups



Let G be a group, for an element x ∈ G , define

cyc(x) = {y ∈ G | 〈x , y〉 is cyclic〉}.

This is the set of neighbors of x .

It is not difficult to see that this set is usually not a subgroup of G .

(Note that in the commuting graph, the set of neighbors of x is

the set CG (x) = {y ∈ G | xy = yx}, which is a subgroup of G .)
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It makes sense to study groups where cyc(x) is a subgroup for all

x ∈ G . (In the literature, these groups are called tidy groups.)

An abelian group is tidy if and only if each of its Sylow subgroups is

cyclic or is elementary abelian. (O’Bryant, Patrick, Smithline, and

Wepsic)
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My 2020 REU studied tidy groups.

We proved:

Theorem 21 (B,C,C,H,L,L,P).

Let G be a p-group for some prime p. Then G is tidy if and if only
one of the following occurs:

1 G has exponent p.

2 G is cyclic.

3 p = 2 and G is dihedral or generalized quaternion.
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Note that a nilpotent group is tidy if and only if its Sylow

subgroups are all tidy. (O’Bryant, Patrick, Smithline, and Wepsic)

We were able to get strong information about tidy, solvable groups.

Note that subgroups of tidy groups are tidy.

Hence, the Sylow subgroups of a tidy group are all tidy.
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We have examples that show that the converse is not true for

solvable groups. However, if we look at the Hall subgroups

for sets of two primes, we do have a converse:

Theorem 22 (B,C,C,H,L,L,P).

Suppose G is a solvable group and let π be the set of primes
dividing |G |. If G has a tidy Hall ρ-subgroup for each subset ρ ⊆ π
of size 2, then G is tidy.
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We can classify the tidy {p, q}-groups:

Theorem 23 (B,C,C,H,L,L,P).

Suppose G is a {p, q}-group for distinct primes p and q. Then G
is tidy if and only if G has tidy Sylow p- and Sylow q-subgroups
and one of the following occurs:

1 G is nilpotent.

2 Up to relabeling p and q, Z∞ is a q-group and G/Z∞ is a
Frobenius group whose Frobenius kernel is the Sylow
p-subgroup.

3 {p, q} = {2, 3}, O2(G ) is a Klein 4-group, G/O3(G ) ∼= S4
and G/O2(G ) is a Frobenius group whose Frobenius kernel is
the Sylow 3-subgroup of G/O2(G ) and whose Frobenius
complement has order 2. Also, Z (G ) = 1.
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Theorem (Continued).

4 {p, q} = {2, 3}, O2(G ) is a Sylow 2-subgroup of G and is the
quaternion group of order 8, G/O3(G ) ∼= SL2(3). Also,
Z∞ = Z (O2(G ))× O3(G ).

5 {p, q} = {2, 3}, O2(G ) is the quaternion group of order 8,

G/O3(G ) ∼= G̃L2(3) and G/O2(G ) is a Frobenius group
whose Frobenius kernel is the Sylow 3-subgroup of G/O2(G )
and whose Frobenius complement has order 2. Also,
Z∞ = Z (G ) = Z (O2(G )).

It is well known that SL2(3) has a unique non split

extension by Z2. We denote it by G̃L2(3).
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Z∞ = Z (G ) = Z (O2(G )).

It is well known that SL2(3) has a unique non split

extension by Z2. We denote it by G̃L2(3).

Mark L. Lewis Kent State University

Graphs associated with Groups



Theorem (Continued).

4 {p, q} = {2, 3}, O2(G ) is a Sylow 2-subgroup of G and is the
quaternion group of order 8, G/O3(G ) ∼= SL2(3). Also,
Z∞ = Z (O2(G ))× O3(G ).

5 {p, q} = {2, 3}, O2(G ) is the quaternion group of order 8,

G/O3(G ) ∼= G̃L2(3) and G/O2(G ) is a Frobenius group
whose Frobenius kernel is the Sylow 3-subgroup of G/O2(G )
and whose Frobenius complement has order 2. Also,
Z∞ = Z (G ) = Z (O2(G )).

It is well known that SL2(3) has a unique non split

extension by Z2. We denote it by G̃L2(3).

Mark L. Lewis Kent State University

Graphs associated with Groups



We note that the definition of tidy groups is not particularly

compatible with quotients. It is noted by Erfanian and Farrokhi

D.G. that the quotients of infinite tidy groups are not necessarily

tidy. We prove that the quotients of finite solvable tidy groups are

tidy.
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Theorem 24 (B,C,C,H,L,L,P).

If G is a solvable tidy group and N is a normal subgroup of G ,
then G/N is tidy.

We also bound the Fitting height of tidy, solvable groups.

Theorem 25 (B,C,C,H,L,L,P).

Let G be a solvable, tidy group. Then G has Fitting height at most
4 and G/F (G ) has derived length at most 4. If |G | is odd, then G
has Fitting height at most 3 and G/F (G ) is abelian or metabelian.
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Solvable (Soluble) graph

The next graph considers the graph for a group G where the edges

occur when 〈x , y〉 is solvable for x , y ∈ G .

Let G be a group and x ∈ G .

We write S(G ) for the solvable radical of G .

This is the largest normal subgroup of G that is solvable.
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A theorem of Thompson states that if G is a group and x ∈ G

then 〈x , y〉 is solvable for all y ∈ G if and only if x ∈ S(G ).

Hence, the universal vertices for this graph are precisely the

elements in S(G ).

A corollary of this is that the graph is complete if and only if G is

solvable.
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If G is a group, then we define the solvable graph of G

to be the graph with vertex set G \ S(G ) and there

is an edge between x , y ∈ G \ S(G ) whenever 〈x , y〉 is solvable.

In fact, a recent paper of ours with Akbari, Mirzajani, and

Moghaddamfar considered this graph.
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Theorem 26 (A,L,M,M).

For every group G , the solubility graph ∆S(G ) is connected, and
its diameter is at most 11.

We do not know of any examples with diameter more than 3.

Question: Find the correct upper bound of the diameter of the

solvable graph.

Mark L. Lewis Kent State University

Graphs associated with Groups



Theorem 26 (A,L,M,M).

For every group G , the solubility graph ∆S(G ) is connected, and
its diameter is at most 11.

We do not know of any examples with diameter more than 3.

Question: Find the correct upper bound of the diameter of the

solvable graph.

Mark L. Lewis Kent State University

Graphs associated with Groups



Theorem 26 (A,L,M,M).

For every group G , the solubility graph ∆S(G ) is connected, and
its diameter is at most 11.

We do not know of any examples with diameter more than 3.

Question: Find the correct upper bound of the diameter of the

solvable graph.

Mark L. Lewis Kent State University

Graphs associated with Groups



Theorem 26 (A,L,M,M).

For every group G , the solubility graph ∆S(G ) is connected, and
its diameter is at most 11.

We do not know of any examples with diameter more than 3.

Question: Find the correct upper bound of the diameter of the

solvable graph.

Mark L. Lewis Kent State University

Graphs associated with Groups



Let G be a group and let x ∈ G . The neighbors of x

in this graph is SolG (x) = {y ∈ G | 〈x , y〉 is solvable}.

It is not difficult to see that SolG (x) is not necessarily

a subgroup. In A5, this set is a subgroup when x has order

5 and is not a subgroup otherwise.
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We prove:

Theorem 27 (A,L,M,M).

A group G is soluble if and only if SolG (x) is a subgroup of G for
all x ∈ G .

In fact, we can obtain the following:

Theorem 28 (A,L,M,M).

Let G be a group. If there exists x ∈ G so that the elements of
SolG (x) commute pairwise, then G is abelian.
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We also obtained the following:

Theorem 29 (A,L,M,M).

Let G be a group. The following are equivalent:

1. G is soluble.

2. For each conjugacy class C of G , the induced subgraph ΓS(C)
is a clique.

3. SolG (x) ∩ C 6= ∅ for every x ∈ G and every conjugacy class C
of G .
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We also obtained the following:

Theorem 29 (A,L,M,M).

Let G be a group. The following are equivalent:
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Thank You!
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Questions?
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Finally, we return to the commuting graph.

We note that in general, it is not difficult to find nonisomorphic

groups with isomorphic commuting graphs.

In fact, if G1 and G2 are isoclinic and have the same order,

then G1 and G2 have isomorphic commuting graphs.
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It is known that isoclinism defines an equivalence relation on

groups.

It does not preserve order!

However, if G1 and G2 are isomorphic, then they are isoclinic.
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We say G1 and G2 are isoclinic if there exist isomorphisms

σ : G1/Z (G1)→ G2/Z (G2) and τ : G ′1 → G ′2 that satisfy:

[σ(aZ (G1)), σ(bZ (G1))] = τ([a, b]) for all a, b ∈ G1.
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The fact that the commuting graphs of isoclinic groups with the

same order are isomorphic is really due to Vahidi and Talebi.

Define the graph C ∗(G ) to be the graph obtained by taking the

subgraph of C (G ) induced by a transversal for Z (G ) in G .
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It is not difficult to see that C ∗(G ) is independent of the

transversal chosen since a and b commute if and only if az1

and bz2 commute for all z1, z2 ∈ Z (G ).

It is immediate to see that if G1 and G2 have isomorphic

commuting graphs, then C ∗(G1) ∼= C ∗(G2).
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Conversely, if C ∗(G1) ∼= C ∗(G2) and |G1| = |G2|, then

G1 and G2 have isomorphic commuting graphs.

When G1 and G2 are isoclinic and α is the

associated isomorphism from G1/Z (G1) to G2/Z (G2),
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it is easy to see that α will map a transversal for

Z (G1) in G1 to a transversal for Z (G2) in G2,

and the commutator condition will imply that a pair of cosets

in G1 commutes if and only if the corresponding pair of cosets

in G2 commute.

Mark L. Lewis Kent State University

Graphs associated with Groups



it is easy to see that α will map a transversal for

Z (G1) in G1 to a transversal for Z (G2) in G2,

and the commutator condition will imply that a pair of cosets

in G1 commutes if and only if the corresponding pair of cosets

in G2 commute.

Mark L. Lewis Kent State University

Graphs associated with Groups



it is easy to see that α will map a transversal for

Z (G1) in G1 to a transversal for Z (G2) in G2,

and the commutator condition will imply that a pair of cosets

in G1 commutes if and only if the corresponding pair of cosets

in G2 commute.

Mark L. Lewis Kent State University

Graphs associated with Groups



it is easy to see that α will map a transversal for

Z (G1) in G1 to a transversal for Z (G2) in G2,

and the commutator condition will imply that a pair of cosets

in G1 commutes if and only if the corresponding pair of cosets

in G2 commute.

Mark L. Lewis Kent State University

Graphs associated with Groups



it is easy to see that α will map a transversal for

Z (G1) in G1 to a transversal for Z (G2) in G2,

and the commutator condition will imply that a pair of cosets

in G1 commutes if and only if the corresponding pair of cosets

in G2 commute.

Mark L. Lewis Kent State University

Graphs associated with Groups



Hence, if G1 and G2 are isoclinic, then C ∗(G1) ∼= C ∗(G2).

With this in mind, we then see that when G1 and G2 are isoclinic

with |G1| and |G2|, then G1 and G2 have isomorphic commuting

graphs.
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It makes sense to ask if the following is true:

Suppose G1 and G2 are groups with the same order

that have isomorphic commuting graphs.

Open question: Must G1 and G2 be isoclinic?

Probably not,

but we would be very interested to see a counterexample.
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We also want to introduce another related graph.

Define Z (a) = Z (CG (a)) for all a ∈ G \ Z (G ).

We set C(G ) = {CG (x) | x ∈ G \ Z (G )} and

Z(G ) = {Z (x) | x ∈ G \ Z (G )}.

The following two facts relate these sets.
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Lemma 30.

Let G be a group. If Z ∈ Z(G ) and C = CG (Z ), then C ∈ C(G )
and Z = Z (C ). In particular, the maps C 7→ Z (C ) from
C(G )→ Z(G ) and Z 7→ CG (Z ) from Z(G ) to C(G ) are inverse
maps, and thus, bijections.

Lemma 31.

Let G be a group and suppose a, b ∈ G \ Z (G ).

1 If a ∈ CG (b), then Z (a) ≤ CG (b).

2 Z (a) ≤ CG (b) if and only if Z (b) ≤ CG (a).
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We let ΓZ(G ) be the graph with vertices {Z ∈ Z(G )}.

If Z1,Z2 ∈ Z(G ) with Z1 6= Z2, then there

is an edge between Z1 and Z2 precisely when Z2 ≤ CG (Z1).
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Notice via Lemma 31 that Z2 ≤ CG (Z1) if and only if

Z1 ≤ CG (Z2). Hence, it really does make sense to think

of this as an undirected graph. Recall that C(G ) is in bijection

with Z(G ), so we could have used {C ∈ C(G )} for our vertex set.
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Let Γ be a graph. If u is a vertex of Γ,

then we use N(u) to denote the neighbors of u.

I.e., N(u) is the set of vertices in Γ that are adjacent to u.
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We define an equivalence relation on the vertices of Γ.

We say that u ∼ v if either u = v or u is adjacent to v and

{u} ∪ N(u) = {v} ∪ N(v).

We can then define the graph Γ/ ∼.

The vertices of this graph are the equivalence classes under ∼.
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If [u] and [v ] are the equivalence classes of u and v , then [u] and

[v ] are adjacent in Γ/ ∼ if and only if u and v are adjacent

in Γ. Observe that ∼ is uniquely determined by Γ.
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Hence, if Γ and ∆ are isomorphic graphs, then Γ/ ∼

and ∆/ ∼ will be isomorphic.

We show that ΓZ(G ) can be obtained from the commuting

graph of G and C ∗(G ) via this equivalence relation.
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We use C (G ) to denote the commuting graph of G .

Lemma 32.

Let G be a group. Then the map Z (g) 7→ [g ] is a graph
isomorphism from ΓZ(G ) to C (G )/ ∼ or C ∗(G )/ ∼.

This implies that ΓZ(G ) and C (G ) have the same number of

connected components and that the diameters of the
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corresponding components are the same with one exception.

The exception is when a connected component

in ΓZ(G ) consists of a single vertex

and the corresponding component in C (G ) will be complete.
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Lemma 33.

Let G be a group, and g , h ∈ G \ Z (G ). If
CG (g) ∩ CG (h) > Z (G ), then Z (g) and Z (h) have distance at
most 2 in ΓZ(G ). Equivalently, g and h have distance at most 2 in
C (G ) and gZ (G ) and hZ (G ) have distance at most 2 in C ∗(G ).

Theorem 34.

Let G be a group. If |G ′| < |G : Z (G )|1/2, then C (G ) is connected
and has diameter at most 2.
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We now characterize the isolated vertices in ΓZ(G ).

Lemma 35.

Let G be a group. Let g ∈ G \ Z (G ). Then the following are
equivalent:

1 CG (g) is abelian and for all h ∈ G \ Z (G ), either
CG (h) = CG (g) or CG (h) ∩ CG (g) = Z (G ).

2 CG (h) = CG (g) for all h ∈ CG (g) \ Z (G ).

3 Z (h) = Z (g) for all h ∈ CG (g) \ Z (G ).

4 Z (h) = CG (g) for all h ∈ CG (g) \ Z (G ).

5 Z (g) is an isolated vertex in ΓZ(G ).
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Hence, Z is an isolated vertex in ΓZ(G ) if and only

if CG (Z ) is abelian and maximal among the subgroups in C(G ).

Recall that an empty graph is a graph with no edges.

One consequence of Lemma 35 is that if ΓZ(G ) is

an empty graph, then CG (x) is abelian for all x ∈ G \ Z (G ).
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A group G is called a CA-group if CG (x) is abelian for all

x ∈ G \ Z (G ).

(Some authors call these AC-groups.)

We claim that if G is a CA-group, then ΓZ(G ) is empty.
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Corollary 36.

Let G be a group. Then ΓZ(G ) is an empty graph if and only if G
is a CA-group.
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Lemma 37.

Let G be a group. Let g ∈ G \ Z (G ). The following are
equivalent:

1 For all h ∈ G \ Z (G ), either CG (h) ≤ CG (g) or
CG (h) ∩ CG (g) = Z (G ).

2 CG (h) ≤ CG (g) for all h ∈ CG (g) \ Z (G ).

3 Z (g) ≤ Z (h) for all h ∈ CG (g) \ Z (G ).

4 CG (g) \ Z (G ) is a connected component in C(G ).
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