Sylow branching coefficients and solvability of finite groups

Misha Muzychuk (joint work with Zalman Balanov and Hao-pin Wu)

Ischia, March 26, 2021

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

My coauthors

Hao-pin Wu Zalman Balanov

Z. Balanov, M. Muzychuk, H. Wu. On algebraic problems behind the Brouwer degree of equivariant maps, Journal of Algebra, 649 (2020), 45-77.

Main result

Definition (E. Giannelli)

Let *P* be a *p*-Sylow subgroup of a finite group *G*. The numbers $Z_{1_P}^{\chi} := (\chi, (1_P)^G)$ are called Sylow branching coefficients of $(1_P)^G$.

$$(\mathbf{1}_{\mathcal{P}})^{\mathcal{G}} = \sum_{\chi \in \operatorname{Irr}(\mathcal{G})} Z^{\chi}_{\mathbf{1}_{\mathcal{P}}} \chi, \quad \operatorname{Irr}((\mathbf{1}_{\mathcal{P}})^{\mathcal{G}}) := \{\chi \in \operatorname{Irr}(\mathcal{G}) \mid Z^{\chi}_{\mathbf{1}_{\mathcal{P}}} \neq \mathbf{0}\}.$$

Theorem (Balanov, M. and Wu)

A finite group is solvable iff

$$\bigcap_{\rho \in \pi(G)} \operatorname{Irr}((1_{\mathcal{P}})^{G}) = \{1_{G}\} \iff \forall_{\chi \in \operatorname{Irr}^{*}(G)} \exists_{\rho \in \pi(G)} : \chi \notin \operatorname{Irr}((1_{\mathcal{P}})^{G}).$$

Let *G* be a finite group,

IRR(*G*) the set of all complex irreducible representations of *G*, Irr(*G*) the set of all complex irreducible characters of *G*, IRR^{*}(*G*) = IRR(*G*) \ {1_{*G*}}, Irr^{*}(*G*) = Irr(*G*) \ {1_{*G*}}.

Definition (Z. Balanov & A. Kushkuley)

Let $\rho : G \to GL(V)$ be f.d. complex linear representation of *G*. The greatest common divisor of lengths of *G*-orbits in its action on $V \setminus \{0\}$ is called the α -characteristic of ρ ; $\alpha(\rho)$ is trivial iff $\alpha(\rho) = 1$.

Trivial observation

 $\alpha(\rho)$ divides |G|.

Motivation

Definition

Let $\rho : G \to GL(V), \sigma : G \to GL(W)$ be representations of *G*. A function $\Phi : V \to W$ is called *G*-equivariant iff

$$\forall_{\boldsymbol{g}\in\boldsymbol{G}}\;\forall_{\boldsymbol{v}\in\boldsymbol{V}}\;\Phi(
ho(\boldsymbol{g})\boldsymbol{v})=\sigma(\boldsymbol{g})\Phi(\boldsymbol{v}).$$

Congruence Principle (after Z. Balanov and A. Kushkuley, 1996)

Let *V*, *W* be two unitary *n*-dimensional *G*-representations. Assume that there exists a *G*-equivariant map $\Phi : V \to W \setminus \{0\}$. Then, for **any** equivariant map $\Psi : V \to W \setminus \{0\}$, one has

$$\deg(\Psi) \equiv \deg(\Phi) \pmod{\alpha(V)}.$$

Motivation

The congruence principle can be effectively applied only if there exists at least one equivariant map $\Phi: V \to W \setminus \{0\}$ with $\deg(\Phi)$ easy to calculate. For example, if W = V, then one can take $\Phi = Id_V$, in which case,

 $\deg(\Psi) \equiv 1 \pmod{\alpha(V)}.$

for every equivariant map $\Psi: V \to V \setminus \{0\}$.

Problem A

Under which conditions on a *G*-representation *V*, is $\alpha(V)$ greater than 1?

Problem B

Under which conditions on V and W, does there exist an equivariant map $\Phi: V \to W \setminus \{0\}$ with deg(Φ) easy to calculate?

Let *V* be an $\mathbb{C}[G]$ -module. Given a non-zero $v \in V$, a conjugacy class of the point stabilizer G_v is called the orbit type of *v*. Define

$$\Phi(G, V) := \{ (G_v) \, | \, v \in V^* \}.$$

Proposition

$$\alpha(V) = \operatorname{gcd} \left\{ \left[\boldsymbol{G} : \boldsymbol{H} \right] | \left(\boldsymbol{H} \right) \in \Phi(\boldsymbol{G}, V) \right\}.$$

Remark

 $\alpha(V)$ cannot be computed from the character table of *G*. The quaternion group Q_8 and the dihedral group D_8 have the same character table, but distinct α -characteristics of their 2-dimensional modules.

Examples

$$\begin{array}{l} G = S_4, V = \{(v_1, ..., v_4) \mid v_1 + ... + v_4 = 0\}. \mbox{ Let } \\ v = (v_1, ..., v_4) \in V \mbox{ be an arbitrary vector. Then } \\ \bullet \ G_v = 1 \mbox{ if all } v_i \mbox{'s are pairwise distinct;} \\ \bullet \ G_v \cong \mathbb{Z}_2 \mbox{ iff } |\{v_1, ..., v_4\}| = 3; \\ \bullet \ G_v \cong S_3 \mbox{ iff three of } v_i \mbox{'s are equal;} \\ \bullet \ G_v \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \mbox{ iff } v \mbox{ is of type } \{x, x, -x, -x\}. \\ \mbox{Thus } \alpha(V) = 2. \end{array}$$

	V_0	V_1	V_2	V	$V_1 \otimes V$
dim	1	1	2	3	3
α	1	2	3	2	4

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Examples

The group $G = A_5$ has 5 irreducible representations: V_0 , V_1 , V_2 , V_3 , V_4 which have the following parameters.

	dim	$\Phi(G, V)$	$\alpha(V)$
V_0	1	$\{(A_5)\}$	1
V_1	3	$\{(\mathbb{Z}_2), (\mathbb{Z}_3), (\mathbb{Z}_5)\}$	2
V_2	3	$\{(\mathbb{Z}_2), (\mathbb{Z}_3), (\mathbb{Z}_5)\}$	2
V_3	4	$\{(\mathbb{Z}_2), (\mathbb{Z}_3), (A_4), (S_3)\}$	5
V_3	5	$\{(\mathbb{Z}_2), (S_3), (\mathbb{Z}_2 \times \mathbb{Z}_2), (D_{10})\}$	1

Questions

What can we say about a group *G* if all its non-trivial irreducible complex representations have (a) non-trivial α -characteristic? (b) trivial α -characteristic?

Proposition

Let U, V be $\mathbb{C}[G]$ -modules. Then

- $\alpha(U \otimes V)$ divides $\alpha(U)\alpha(V)$;
- If *U* and *V* are Galois-conjugate, then $\alpha(U) = \alpha(V)$;
- If $U = V^{\sigma}$ for some $\sigma \in Aut(G)$, the $\alpha(U) = \alpha(V)$.

The division in the second line could be proper. For example, if $G = S_3$ and U = V is the unique irreducible 2-dimensional representation of S_3 .

Induction and restriction

Proposition

Let *H* be a subgroup of *G*, *V* an $\mathbb{C}[G]$ -module and *U* an $\mathbb{C}[H]$ -module. Then

- $\alpha(V_H)$ divides $\alpha(V)$;
- If $H \leq G$ then $\alpha(U)$ divides $\alpha(U^G)$.

If *H* is not normal in *G* then the second assertion is not true anymore. Example $G = S_3$, $H \cong S_2$ and *U* the unique non-trivial $\mathbb{C}[S_2]$ -module. The case when $\alpha(U) \neq \alpha(U^G)$ happens (for example, $G = Q_8, H \cong \mathbb{Z}_4$).

Corollary

If p is a prime divisor of |G|, then $\alpha(V)_p = \alpha(V_P)$ where $P \in Syl_p(G)$;

Proposition

Let ρ be an irreducible representation of G, χ the character of ρ . Fix $p \in \pi(G)$ and $P \in Syl_p(G)$. TFAE

- **p** divides $\alpha(\rho)$;
- 1_{*P*} is not a constituent of χ_P ;

$$\chi \not\in \operatorname{Irr}(\mathbf{1}_{P})^{G};$$

$$\bullet \rho(\underline{P}) = \mathbf{0}.$$

Corollary

An irreducible representation ρ has trivial alpha characteristic iff $\chi_{\rho} \in \bigcap_{p \in \pi(G)} \operatorname{Irr}((1_{P})^{G}).$

Solvability Criterion

Theorem

Given a finite group G, TFAE

- (1) G is solvable;
- (2) α -characteristic of any non-trivial irreducible representation of *G* is non-trivial;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

(3) $\bigcap_{p\in\pi(G)}\operatorname{Irr}((1_P)^G)=\{1_G\}.$

Proof of SC: (1) \implies (2)

Proposition

Let $\rho : \mathbb{C}[G] \to GL(V)$ be an irreducible representation. If $O_p(G/\ker(\rho)) \neq 1$ for some prime *p*, then *p* divides $\alpha(\rho)$.

Proof.

 ρ is an irreducible faithful representation of $\overline{G} := G/\ker(\rho)$. The subspace $V^{O_p(\overline{G})}$ is \overline{G} -invariant \Rightarrow either $V^{O_p(\overline{G})} = V$ or $V^{O_p(\overline{G})} = \{0\}$. The first case contradicts ρ being faithful. In the second one every non-zero $O_p(\overline{G})$ -orbit has more than one element, and, therefore, its cardinality is divisible by p. Hence $\alpha(\rho_{O_p(\overline{G})}) = p^e, e > 0 \Rightarrow p^e | \alpha(\rho)$.

Corollary

If *G* is solvable, then $\alpha(\rho) > 1$ for each $\rho \in \operatorname{IRR}^*(G)$.

Proof of SC: (2)
$$\implies$$
 (1)

Definition

Let $\pi(G) = \{p_1, ..., p_k\}$ be the set of prime divisors of |G|. An ordered *k*-tuple $(P_1, ..., P_k)$ of Sylow subgroups $P_i \in \text{Syl}_{p_i}(G)$ is called a complete system of Sylow subgroups.

Lemma

Let *G* be a finite group. Fix an ordering $p_1, ..., p_k$ of $\pi(G)$. TFAE

- (a) $\forall_{\rho \in IRR^*(G)} \exists$ a Sylow p subgroup $P \leq G$ s.t. $\rho(\underline{P}) = 0$;
- (b) $P_1P_2 \cdots P_k = G$ for any complete system of Sylow subgroups $P_i \in Syl_{p_i}(G)$.

(b') $\frac{P_1 \cdot P_2 \cdots P_k}{\text{subgroups } P_i \in \text{Syl}_{D_i}(G)}$.

Proposition

An element $x \in \mathbb{C}[G]$ belongs to the principal ideal generated by <u>G</u> iff $\rho(x) = 0$ holds for every $\rho \in IRR^*(G)$.

Proof.

(a) \Rightarrow (b') Denote $\Pi = \underline{P_1} \cdot \underline{P_2} \cdots \underline{P_k}$. Pick an arbitrary $\rho \in IRR^*(G)$. Then $\rho(\underline{P_i}) = 0$ for some *i*. Therefore $\rho(\Pi) = 0$. Thus $\rho(\Pi) = 0$ for every $\rho \in IRR^*(G) \implies \Pi = \lambda \underline{G}$ for some $\lambda \in \mathbb{C}$. Applying 1_G to both sides we obtain $\lambda = 1$.

Assume, towards a contradiction, that $\exists \rho \in \operatorname{IRR}^*(G) \text{ s.t. } \rho(\underline{P_i}) \neq 0 \text{ for all } i = 1, ..., k.$ Let ℓ be the smallest number with $\rho(\underline{P_1}) \cdots \rho(\underline{P_\ell}) = 0$ for all $P_i \in \operatorname{Syl}_{p_i}(G), i = 1, ..., \ell.$ Clearly, $1 < \ell \leq k$. Then

$$\sum_{P_{\ell} \in \operatorname{Syl}_{\rho_{\ell}}(G)} \rho(\underline{P_{1}}) \cdots \rho(\underline{P_{\ell}}) = 0 \implies$$
$$\rho(\underline{P_{1}}) \cdots \rho(\underline{P_{\ell-1}}) \left(\sum_{P_{\ell} \in \operatorname{Syl}_{\rho_{\ell}}(G)} \rho(\underline{P_{\ell}})\right) = 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Since $\frac{1}{|P_{\ell}|}\rho(\underline{P_{\ell}})$ is a non-zero idempotent, the trace of $\rho(\underline{P_{\ell}})$ is non-zero. Therefore the trace of

$$\sum_{P_{\ell} \in \operatorname{Syl}_{p_{\ell}}(G)} \rho(\underline{P_{\ell}}) = \rho(\sum_{P_{\ell} \in \operatorname{Syl}_{p_{\ell}}(G)} \underline{P_{\ell}})$$

is non-zero, implying that this sum is a non-zero scalar matrix. Hence $\rho(\underline{P_1}) \cdots \rho(\underline{P_{\ell-1}}) = 0$, contrary to minimality of ℓ .

Theorem (P. Hall)

If G is solvable, then the product of any complete system of Sylow's subgroups is equal to G.

Theorem (G. Kaplan & D. Levy, 2005)

The product of any complete system of Sylow subgroups is equal to G iff G is solvable.

Non-solvable groups

Definition

Let us define A(G) to be the intersections of all kernels ker (ρ) when ρ runs through all irreps of G with $\alpha(\rho) = 1$. Clearly, A(G)is a characteristic subgroup of G.

Proposition

 $\operatorname{Sol}(G) \leq A(G).$

The equality holds if the answer on the following question is affirmative.

Question

Let $N \trianglelefteq G$ and $\theta \in IRR(N)$ has trivial α -characteristic. Is it true that θ^{G} contains an irreducible constituent ρ with $\alpha(\rho) = 1$?

The answer is affirmative if θ^G is irreducible or G/N is solvable.

Definition

Let us call a group *G* "anti"-solvable if every irreducible representation of *G* has trivial α -characteristic. Equivalently, $\bigcap_{p \in \pi(G)} \operatorname{Irr}((1_P)^G) = \operatorname{Irr}(G)$. We denote the set of all such groups as \mathfrak{T} .

No solvable group is contained in \mathfrak{T} .

Example

The first Janko group $J_1 \in \mathfrak{T}, |J_1| = 2^3.3.5.7.11.19$. But $J_2 \notin \mathfrak{T}$.

(日) (日) (日) (日) (日) (日) (日)

"Anti"-solvable groups

Theorem

If $G \in \mathfrak{T}$ and $N \leq G$, then $N, G/N \in \mathfrak{T}$. If $G, H \in \mathfrak{T}$ then $G \times H \in \mathfrak{T}$

Corollary

The composition factors of a $\mathfrak{T}\text{-}\mathsf{group}$ are non-abelian simple $\mathfrak{T}\text{-}\mathsf{groups}.$

Sporadic simple groups

Among $M_{11}, M_{12}, J_1, M_{22}, J_2, M_{23}, HS, J_3, M_{24}, McL, He, Suz$ only J_1 and J_3 belong to \mathfrak{T} .

Conjecture

All "anti"-solvable simple groups are sporadic.