Sylow branching coefficients and solvability of finite groups

Misha Muzychuk (joint work with Zalman Balanov and Hao-pin Wu)

Ischia, March 26, 2021

My coauthors

Hao-pin Wu

Zalman Balanov

Z. Balanov, M. Muzychuk, H. Wu. On algebraic problems behind the Brouwer degree of equivariant maps, Journal of Algebra, 649 (2020), 45-77.

Main result

Definition (E. Giannelli)

Let P be a p-Sylow subgroup of a finite group G. The numbers $Z_{1_{P}}^{\chi}:=\left(\chi,\left(1_{P}\right)^{G}\right)$ are called Sylow branching coefficients of $\left(1_{P}\right)^{G}$.

$$
\left(1_{P}\right)^{G}=\sum_{\chi \in \operatorname{Irr}(G)} Z_{1_{P}}^{\chi} \chi, \quad \operatorname{Irr}\left(\left(1_{P}\right)^{G}\right):=\left\{\chi \in \operatorname{Irr}(G) \mid Z_{1_{p}}^{\chi} \neq 0\right\} .
$$

Theorem (Balanov, M. and Wu)
A finite group is solvable iff

$$
\bigcap_{p \in \pi(G)} \operatorname{Irr}\left(\left(1_{P}\right)^{G}\right)=\left\{1_{G}\right\} \Longleftrightarrow \forall_{\chi \in \operatorname{Irr}^{*}(G)} \exists_{p \in \pi(G)}: \chi \notin \operatorname{Irr}\left(\left(1_{P}\right)^{G}\right) .
$$

α-characteristic of a linear representation

Let G be a finite group,
$\operatorname{IRR}(G)$ the set of all complex irreducible representations of G, $\operatorname{Irr}(G)$ the set of all complex irreducible characters of G, $\operatorname{IRR}^{*}(G)=\operatorname{IRR}(G) \backslash\left\{1_{G}\right\}, \operatorname{Irr}^{*}(G)=\operatorname{Irr}(G) \backslash\left\{1_{G}\right\}$.

Definition (Z. Balanov \& A. Kushkuley)

Let $\rho: G \rightarrow G L(V)$ be f.d. complex linear representation of G. The greatest common divisor of lengths of G-orbits in its action on $V \backslash\{0\}$ is called the α-characteristic of $\rho ; \alpha(\rho)$ is trivial iff $\alpha(\rho)=1$.

Trivial observation

$\alpha(\rho)$ divides $|\boldsymbol{G}|$.

Motivation

Definition

Let $\rho: G \rightarrow G L(V), \sigma: G \rightarrow G L(W)$ be representations of G. A function $\Phi: V \rightarrow W$ is called G-equivariant iff

$$
\forall_{g \in G} \forall_{v \in V} \Phi(\rho(g) v)=\sigma(g) \Phi(v)
$$

Congruence Principle (after Z. Balanov and A. Kushkuley, 1996)

Let V, W be two unitary n-dimensional G-representations.
Assume that there exists a G-equivariant map $\Phi: V \rightarrow W \backslash\{0\}$. Then, for any equivariant map $\psi: V \rightarrow W \backslash\{0\}$, one has

$$
\operatorname{deg}(\Psi) \equiv \operatorname{deg}(\Phi)(\bmod \alpha(V))
$$

Motivation

The congruence principle can be effectively applied only if there exists at least one equivariant map $\Phi: V \rightarrow W \backslash\{0\}$ with $\operatorname{deg}(\Phi)$ easy to calculate. For example, if $W=V$, then one can take $\Phi=I d_{V}$, in which case,

$$
\operatorname{deg}(\Psi) \equiv 1(\bmod \alpha(V))
$$

for every equivariant map $\Psi: V \rightarrow V \backslash\{0\}$.

Problem A

Under which conditions on a G-representation V, is $\alpha(V)$ greater than 1?

Problem B

Under which conditions on V and W, does there exist an equivariant $\operatorname{map} \Phi: V \rightarrow W \backslash\{0\}$ with $\operatorname{deg}(\Phi)$ easy to calculate?

How to compute the α-characteristic

Let V be an $\mathbb{C}[G]$-module. Given a non-zero $v \in V$, a conjugacy class of the point stabilizer G_{v} is called the orbit type of v. Define

$$
\Phi(G, V):=\left\{\left(G_{v}\right) \mid v \in V^{*}\right\}
$$

Proposition

$$
\alpha(V)=\operatorname{gcd}\{[G: H] \mid(H) \in \Phi(G, V)\}
$$

Remark

$\alpha(V)$ cannot be computed from the character table of G. The quaternion group Q_{8} and the dihedral group D_{8} have the same character table, but distinct α-characteristics of their 2-dimensional modules.

Examples

$G=S_{4}, V=\left\{\left(v_{1}, \ldots, v_{4}\right) \mid v_{1}+\ldots+v_{4}=0\right\}$. Let $v=\left(v_{1}, \ldots, v_{4}\right) \in V$ be an arbitrary vector. Then

■ $G_{v}=1$ if all v_{i} 's are pairwise distinct;
■ $G_{v} \cong \mathbb{Z}_{2}$ iff $\left|\left\{v_{1}, \ldots, v_{4}\right\}\right|=3$;
■ $G_{v} \cong S_{3}$ iff three of v_{i} 's are equal;
$\square G_{v} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ iff v is of type $\{x, x,-x,-x\}$.
Thus $\alpha(V)=2$.

	V_{0}	V_{1}	V_{2}	V	$V_{1} \otimes V$
dim	1	1	2	3	3
α	1	2	3	2	4

Examples

The group $G=A_{5}$ has 5 irreducible representations:
$V_{0}, V_{1}, V_{2}, V_{3}, V_{4}$ which have the following parameters.

	dim	$\Phi(G, V)$	$\alpha(V)$
V_{0}	1	$\left\{\left(A_{5}\right)\right\}$	1
V_{1}	3	$\left\{\left(\mathbb{Z}_{2}\right),\left(\mathbb{Z}_{3}\right),\left(\mathbb{Z}_{5}\right)\right\}$	2
V_{2}	3	$\left\{\left(\mathbb{Z}_{2}\right),\left(\mathbb{Z}_{3}\right),\left(\mathbb{Z}_{5}\right)\right\}$	2
V_{3}	4	$\left\{\left(\mathbb{Z}_{2}\right),\left(\mathbb{Z}_{3}\right),\left(A_{4}\right),\left(S_{3}\right)\right\}$	5
V_{3}	5	$\left\{\left(\mathbb{Z}_{2}\right),\left(S_{3}\right),\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right),\left(D_{10}\right)\right\}$	1

Questions

What can we say about a group G if all its non-trivial irreducible complex representations have
(a) non-trivial α-characteristic?
(b) trivial α-characteristic?

Some properties of α-characteristic

Proposition

Let U, V be $\mathbb{C}[G]$-modules. Then
■ $\alpha(U \oplus V)=\operatorname{gcd}(\alpha(U), \alpha(V)) ;$
■ $\alpha(\mathbf{U} \otimes \boldsymbol{V})$ divides $\alpha(\boldsymbol{U}) \alpha(\boldsymbol{V})$;

- If U and V are Galois-conjugate, then $\alpha(U)=\alpha(V)$;

■ If $U=V^{\sigma}$ for some $\sigma \in \operatorname{Aut}(\mathbf{G})$, the $\alpha(U)=\alpha(V)$.
The division in the second line could be proper. For example, if $G=S_{3}$ and $U=V$ is the unique irreducible 2-dimensional representation of S_{3}.

Induction and restriction

Proposition

Let H be a subgroup of G, V an $\mathbb{C}[G]$-module and U an $\mathbb{C}[H]$-module. Then

- $\alpha\left(V_{H}\right)$ divides $\alpha(V)$;
- If $H \unlhd G$ then $\alpha(U)$ divides $\alpha\left(U^{G}\right)$.

If H is not normal in G then the second assertion is not true anymore. Example $G=S_{3}, H \cong S_{2}$ and U the unique non-trivial $\mathbb{C}\left[S_{2}\right]$-module.
The case when $\alpha(U) \neq \alpha\left(U^{G}\right)$ happens (for example, $\left.G=Q_{8}, H \cong \mathbb{Z}_{4}\right)$.

Corollary

If p is a prime divisor of $|G|$, then $\alpha(V)_{p}=\alpha\left(V_{P}\right)$ where $P \in \operatorname{Syl}_{p}(G) ;$

Sylow branching coefficients and α-characteristic

Proposition

Let ρ be an irreducible representation of G, χ the character of ρ.
Fix $p \in \pi(G)$ and $P \in \operatorname{Syl}_{p}(G)$. TFAE
■ p divides $\alpha(\rho)$;

- 1_{P} is not a constituent of χ_{P};
- $\chi \notin \operatorname{Irr}\left(1_{P}\right)^{G}$;

■ $\rho(\underline{P})=0$.

Corollary

An irreducible representation ρ has trivial alpha characteristic iff $\chi_{\rho} \in \bigcap_{p \in \pi(G)} \operatorname{Irr}\left(\left(1_{P}\right)^{G}\right)$.

Solvability Criterion

Theorem

Given a finite group G, TFAE
(1) G is solvable;
(2) α-characteristic of any non-trivial irreducible representation of G is non-trivial;
(3) $\bigcap_{p \in \pi(G)} \operatorname{Irr}\left(\left(1_{P}\right)^{G}\right)=\left\{1_{G}\right\}$.

Proof of SC: $(1) \Longrightarrow(2)$

Proposition

Let $\rho: \mathbb{C}[G] \rightarrow G L(V)$ be an irreducible representation. If $O_{p}(G / \operatorname{ker}(\rho)) \neq 1$ for some prime p, then p divides $\alpha(\rho)$.

Proof.

ρ is an irreducible faithful representation of $\bar{G}:=G / \operatorname{ker}(\rho)$. The subspace $V^{O_{\rho}(\bar{G})}$ is \bar{G}-invariant \Rightarrow either $V^{O_{\rho}(\bar{G})}=V$ or $V^{O_{p}(G)}=\{0\}$. The first case contradicts ρ being faithful. In the second one every non-zero $O_{p}(\bar{G})$-orbit has more than one element, and, therefore, its cardinality is divisible by p. Hence $\alpha\left(\rho_{O_{p}(\bar{G})}\right)=p^{e}, \boldsymbol{e}>0 \Rightarrow p^{e} \mid \alpha(\rho)$.

Corollary

If G is solvable, then $\alpha(\rho)>1$ for each $\rho \in \operatorname{IRR}^{*}(G)$.

Proof of SC: (2) \Longrightarrow (1)

Definition

Let $\pi(G)=\left\{p_{1}, \ldots, p_{k}\right\}$ be the set of prime divisors of $|G|$. An ordered k-tuple $\left(P_{1}, \ldots, P_{k}\right)$ of Sylow subgroups $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$ is called a complete system of Sylow subgroups.

Lemma

Let G be a finite group. Fix an ordering p_{1}, \ldots, p_{k} of $\pi(G)$. TFAE
(a) $\forall_{\rho \in \operatorname{IRR}^{*}(G)} \exists$ a Sylow $p-\operatorname{subgroup} P \leq G$ s.t. $\rho(\underline{P})=0$;
(b) $P_{1} P_{2} \cdots P_{k}=G$ for any complete system of Sylow subgroups $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$.
(b') $\frac{P_{1}}{\text { sub }} \cdot \underline{P_{2}} \cdots P_{k}=G$ for any complete system of Sylow $\overline{\text { subgroups }} \bar{P}_{i} \in \operatorname{Syl}_{p_{i}}(G)$.

Proof of the Lemma: $(\mathrm{a}) \Longrightarrow\left(\mathrm{b}^{\prime}\right)$

Proposition

An element $x \in \mathbb{C}[G]$ belongs to the principal ideal generated by \underline{G} iff $\rho(x)=0$ holds for every $\rho \in \operatorname{IRR}^{*}(G)$.

Proof.

(a) $\Rightarrow\left(\mathrm{b}^{\prime}\right)$

Denote $\Pi=\underline{P_{1}} \cdot \underline{P_{2}} \cdots \underline{P_{k}}$.
Pick an arbitrary $\rho \in \operatorname{IRR}^{*}(G)$. Then $\rho\left(\underline{P_{i}}\right)=0$ for some i.
Therefore $\rho(\Pi)=0$.
Thus $\rho(\Pi)=0$ for every $\rho \in \operatorname{IRR}^{*}(G) \Longrightarrow \Pi=\lambda \underline{G}$ for some
$\lambda \in \mathbb{C}$. Applying 1_{G} to both sides we obtain $\lambda=1$.

Proof of the Lemma: $\left(b^{\prime}\right) \Rightarrow(a)$

Assume, towards a contradiction, that

$$
\exists \rho \in \operatorname{IRR}^{*}(G) \text { s.t. } \rho\left(\underline{P_{i}}\right) \neq 0 \text { for all } i=1, \ldots, k .
$$

Let ℓ be the smallest number with $\rho\left(\underline{P_{1}}\right) \cdots \rho\left(\underline{P_{\ell}}\right)=0$ for all $P_{i} \in \operatorname{Syl}_{p_{i}}(G), i=1, \ldots, \ell$. Clearly, $1 \overline{<\ell} \leq k$. Then

$$
\begin{gathered}
\sum_{P_{\ell} \in \operatorname{Syl}_{p_{\ell}}(G)} \rho\left(\underline{P_{1}}\right) \cdots \rho\left(\underline{P_{\ell}}\right)=0 \Longrightarrow \\
\rho\left(\underline{P_{1}}\right) \cdots \rho\left(\underline{P_{\ell-1}}\right)\left(\sum_{P_{\ell} \in \operatorname{Syl}_{p_{\ell}}(G)} \rho\left(\underline{P_{\ell}}\right)\right)=0 .
\end{gathered}
$$

Proof of the Lemma: $\left(b^{\prime}\right) \Rightarrow(a)$

Since $\frac{1}{\left|P_{\ell}\right|} \rho\left(\underline{P_{\ell}}\right)$ is a non-zero idempotent, the trace of $\rho\left(\underline{P_{\ell}}\right)$ is non-zero. Therefore the trace of

$$
\sum_{P_{\ell} \in \operatorname{Syl}_{p_{\ell}}(G)} \rho\left(\underline{P_{\ell}}\right)=\rho\left(\sum_{P_{\ell} \in \operatorname{Syl}_{p_{\ell}}(G)} \underline{P_{\ell}}\right)
$$

is non-zero, implying that this sum is a non-zero scalar matrix. Hence $\rho\left(\underline{P_{1}}\right) \cdots \rho\left(\underline{P_{\ell-1}}\right)=0$, contrary to minimality of ℓ.

Theorem (P. Hall)

If G is solvable, then the product of any complete system of Sylow's subgroups is equal to G.

Theorem (G. Kaplan \& D. Levy, 2005)
The product of any complete system of Sylow subgroups is equal to G iff G is solvable.

Non-solvable groups

Definition

Let us define $A(G)$ to be the intersections of all kernels $\operatorname{ker}(\rho)$ when ρ runs through all irreps of G with $\alpha(\rho)=1$. Clearly, $\boldsymbol{A}(\boldsymbol{G})$ is a characteristic subgroup of G.

Proposition

$\operatorname{Sol}(G) \leq A(G)$.
The equality holds if the answer on the following question is affirmative.

Question

Let $N \unlhd G$ and $\theta \in \operatorname{IRR}(N)$ has trivial α-characteristic. Is it true that θ^{G} contains an irreducible constituent ρ with $\alpha(\rho)=1$?

The answer is affirmative if θ^{G} is irreducible or G / N is solvable.

"Anti"-solvable groups

Definition

Let us call a group G "anti"-solvable if every irreducible representation of G has trivial α-characteristic.
Equivalently, $\bigcap_{p \in \pi(G)} \operatorname{Irr}\left(\left(1_{P}\right)^{G}\right)=\operatorname{Irr}(G)$.
We denote the set of all such groups as \mathfrak{T}.
No solvable group is contained in \mathfrak{T}.

Example

The first Janko group $J_{1} \in \mathfrak{T},\left|J_{1}\right|=2^{3}$.3.5.7.11.19. But $J_{2} \notin \mathfrak{T}$.

"Anti"-solvable groups

Theorem

If $G \in \mathfrak{T}$ and $N \unlhd G$, then $N, G / N \in \mathfrak{T}$. If $G, H \in \mathfrak{T}$ then
$G \times H \in \mathfrak{T}$

Corollary

The composition factors of a \mathfrak{T}-group are non-abelian simple T-groups.

Sporadic simple groups
Among $M_{11}, M_{12}, J_{1}, M_{22}, J_{2}, M_{23}, H S, J_{3}, M_{24}, M c L, H e$, Suz only J_{1} and J_{3} belong to \mathfrak{T}.

Conjecture

All "anti"-solvable simple groups are sporadic.

