
On groups with restricted centralizers of
commutators

Pavel Shumyatsky

University of Brasilia, Brazil

Pavel Shumyatsky On groups with restricted centralizers of commutators



Part 1: Introduction

A group G is said to have restricted centralizers if for each g ∈ G
the centralizer CG (g) either is finite or has finite index in G .

If G is profinite, then this is equivalent to saying that for each
g ∈ G the centralizer CG (g) either is finite or open.
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This notion of restricted centralizers was introduced by Shalev in
1994. He showed that a profinite group with restricted centralizers
is abelian-by-finite.

In a joint work with Detomi and Morigi we obtained a “verbal”
version of this result.
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Let w = w(x1, . . . , xk) be a group-word, that is, a nontrivial
element of the free group F on free generators x1, x2, . . . .

In any group G we define the verbal subgroup w(G ) of G , that is,
the subgroup generated by the set of all values w(g1, . . . , gk),
where g1, . . . , gk are elements of G .

If G is profinite, w(G ) is the closed subgroup generated by the set
of all values w(g1, . . . , gk), where g1, . . . , gk are elements of G .
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Say that a word is multilinear commutator if it can be written in
the form of multilinear Lie monomial, ex.

[[x1, x2, x3], [x4, x5]].

Such words are also known under the name of outer commutator
words.
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Many important words are multilinear commutators.

Examples include the lower central words

γk = [x1, . . . , xk ]

and the derived words δk , which are defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k )].

Of course, γk(G ) is the familiar kth term of the lower central
series of the group G while δk(G ) = G (k) is the k-th commutator
subgroup of G .
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We proved the following theorem.

Let w be a multilinear commutator word and G a profinite group
in which all centralizers of w-values are either finite or open. Then
w(G ) is abelian-by-finite.

I will now describe some steps in the proof.
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Part 2: FC-stuff

Recall that a group G is an FC-group if the centralizer CG (g) has
finite index in G for each g ∈ G .

Equivalently, G is an FC-group if each conjugacy class gG is finite.
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A group G is a BFC-group if all conjugacy classes in G are finite
and have bounded size.

A famous theorem of B. H. Neumann says that the commutator
subgroup of a BFC-group is finite.

In general, an FC-group need not be a BFC-group. However Shalev
proved that a profinite FC-group has finite commutator subgroup
(and so is a BFC-group).
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In a recent joint work with G. Dierings we deduced a BFC-type
theorem for commutators:

Theorem (Dierings, Shumyatsky) Let m be a positive integer and
G a group. If |xG | ≤ m for any commutator x, then |G ′′| is finite
and |m|-bounded.

Later, with Detomi and Morigi, we extended this to arbitrary
multilinear commutator words.
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Theorem (E. Detomi, M. Morigi, Shumyatsky) Let m be a positive
integer, w a multilinear commutator word and G a group such that
|xG | ≤ m for any w-value x, then |w(G )′| is finite and
|m|-bounded.
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We have also established a nonquantitative version for profinite
groups:

If w is a multilinear commutator word and G is a profinite group in
which all w-values have open centralizers, then w(G ) has finite
commutator subgroup.

This extends Shalev’s result on profinite FC-groups but... it turns
out this is not sufficient for our purposes.

Actually we require something much stronger.
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PROPOSITION: Let w be a multilinear commutator word, G a
profinite group and T an open normal subgroup of G such that
every w-value of G contained in T is an FC-element. Let K be the
subgroup generated by all w-values contained in T . Then K is
open in w(G ) and K ′ is finite.
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Now let G be a profinite group in which the centralizers of
w -values are either finite or open. We want to prove that w(G ) is
abelian-by-finite.

Suppose that g is a w -value having infinite order. Then CG (g) is
open and each w -value of G contained in CG (g) has infinite
centralizer. Thus, each w -value of G contained in CG (g) has open
centralizer.
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Let T be an open normal subgroup of G contained in CG (g), and
let K be the subgroup generated by all w -values contained in T .

Using the above show that K is open in w(G ) and K ′ is finite.
Then we easily deduce that w(G ) is abelian-by-finite, as required.

Hence, from now on we assume that all w -values in G are of finite
order.
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Part 3: On local finiteness of w(G )

Suppose G is a profinite group in which every w -value is of finite
order. Does it follow that w(G ) is locally finite?

We have no counter-examples to that question. On the other
hand, positive results related to that question are also scarce.

The answer is positive if w(x) = x (famous result of Zelmanov).
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We obtained the following result.

Let p be a prime, w a multilinear commutator word and G a
profinite group in which all w-values have finite p-power order. Let
K be the abstract subgroup of G generated by all w-values. Then
K is a locally finite p-group.

We do not know whether the closed subgroup of G generated by
all w -values is a locally finite p-group.
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The above proposition enables us to deduce our result in the case
where G is pronilpotent.

Let w be a multilinear commutator word and let G be a
pronilpotent group with restricted centralizers of w-values in which
every w-value has finite order. Then w(G ) is abelian-by-finite.

The proof of this is not difficult using that if a locally nilpotent
group H is residually finite and has an element with finite
centralizer, then H is necessarily finite.
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Go back to our question.

Suppose G is a profinite group in which every w -value is of finite
order. Does it follow that w(G ) is locally finite?

If G is soluble and w is a multilinear commutator, the answer is
positive.

Theorem (Detomi, Morigi, Shumyatsky, 2015): Let w be a
multilinear commutator word and G a soluble-by-finite profinite
group in which all w-values have finite order. Then w(G ) is locally
finite and has finite exponent.
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Another criterion for local finiteness of w(G ) was established by
Khukhro and the speaker in 2014.

Pavel Shumyatsky On groups with restricted centralizers of commutators



Given a word w and a subgroup P of G , let Pw be the set of
w -values on elements of P. Set

W (P) = 〈Pw
G ∩ P〉.

For example, if w = [x , y ], then W (P) is generated by all
commutators [a, b]g ∈ P, where a, b ∈ P and g ∈ G .

Here ag and bg need not belong to P.
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Theorem (Khukhro, Shumyatsky, 2014) Let w be a multilinear
commutator word, and let G be a profinite group in which
w-values have finite order and the subgroup W (P) is torsion for
any Sylow subgroup P ≤ G . Then w(G ) is locally finite.

The proof uses the Hall-Higman theory as well as its profinite
version developed by J. S. Wilson.
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The cited results on local finiteness of w(G ) enable us to show that
if G is a profinite group with restricted centralizers of w -values and
if each w -value in G has finite order, then w(G ) is locally finite.

At this point a whole range of tools (in particular, those using the
classification of finite simple groups) become available.
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Part 4: The easier part

We appeal to Wilson’s theorem on the structure of compact
torsion groups which implies that in our situation w(G ) has a finite
series of closed characteristic subgroups in which each factor either
is a pro-p group for some prime p or is isomorphic to a Cartesian
product of finite simple groups.
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Cartesian product of finite simple groups are easy to deal with.

In view of the famous Ore’s conjecture, proved by Liebeck,
O’Brien, Shalev and Tiep, for each multilinear commutator word w
every element of a nonabelian finite simple group is a w -value.

If a group K is isomorphic to a Cartesian product of nonabelian
finite simple groups and has restricted centralizers of w -values,
then actually all centralizers of elements in K are either finite or
open and so, by Shalev’s theorem, K is finite.
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Thus, we conclude that under our assumptions the verbal subgroup
w(G ) is (locally soluble)-by-finite.

So w(G ) possesses a characteristic open subgroup which has finite
series of closed characteristic subgroups in which each factor is a
pro-p group for some prime p.

Eventually we prove that w(G ) is abelian-by-finite by induction on
the length of that series.
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Part 5: Follow-up

A straightforward corollary of the theorem is that if G is a profinite
group in which all centralizers of nontrivial w -values are finite,
then either G is finite or w(G ) = 1.

Indeed, we know that w(G ) is abelian-by-finite. So w(G ) has an
open characteristic abelian subgroup N. If N contains a nontrivial
w -value, then N is finite. If N contains no nontrivial w -values,
then N is contained in w∗(G ). Since the marginal subgroup
centralizes w(G ), we again deduce that N is finite. This proves
that w(G ) is finite. Hence, CG (w(G )) has finite index in G . We
see that CG (w(G )) is both finite and of finite index, which proves
that G is finite.
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A variation of the above result for finite groups should of course be
of quantitative nature. So we considered the following general
question.

Let m be a positive integer, w a group-word, and G a finite group
such that w(G ) 6= 1 and CG (g) has order at most m for each
nontrivial w-value g ∈ G . Does it follow that the order of G is
bounded in terms of m and w only?

Pavel Shumyatsky On groups with restricted centralizers of commutators



For some words the answer to the question is negative. For
example, for w = xn.

Indeed, let G be a Frobenius group with an abelian kernel K of
exponent n and a cyclic complement of order dividing n − 1. Every
nontrivial nth power in G belongs to a conjugate of the
complement and therefore has centralizer of order at most n − 1.
On the other hand, the kernel K can be chosen of arbitrarily large
order. Hence, we cannot bound the order of G in terms of orders
of centralizers of nth poswers.
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Yet, for many words the answer is positive.

In particular, the answer is positive for multilinear commutators.

Further, the answer is positive for the Engel words [x , y , . . . , y ] and
words like [xp, yp], [xp, yp, zp], etc.
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