
 
1 

 
 

Methods of Group Theory in Leibniz Algebras: Some Compelling Results 
 

I.Ya. Subbotin, National University, USA 

 

(Ischia Group Theory Conference 2021) 
 

      Let L be an algebra over a field F with the binary operations + and [,]. Then L is called a 
Leibniz  algebra  (more precisely a left Leibniz algebra) if it satisfies the Leibniz identity 

 

[[a, b], c] = [a, [b, c]]-[b, [a, c]]    

for all  a, b, c   A. 
 

Another form of this identity:   

 
[a, [b, c]] = [[a, b], c] + [b, [a, c]]. 

 
Leibniz algebras first appeared in the paper of A.M. Bloh  

 
 

Bloh  A.M. On a generalization of the concept of Lie algebra.  Doklady AN USSR-165 (1965), 471-473. 
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A.M. Bloh in this paper used the term D-algebras. After two decades, a real interest to Leibniz 

algebras rose. It is happened thanks to the work of J.L. Loday 
 

Loday  J.L. Une version non commutative des algebres de Lie; les algebras de Leibniz.  Enseign. Math. 39 
(1993),     269-293. 
 
J.L. Loday "rediscovered" these algebras and used the term Leibniz algebras. 
 
 An algebra R over a field  F  is called  right Leibniz if it satisfies the Leibniz identity 
 

[a, [b, c]] = [[a, b], c]]-[[a, c], b]    

for all  a, b, c   A. 
 

Note at once that the classes of left Leibniz algebras and right Leibniz algebras are 
different.  

We prefer to work with the left Leibniz algebras. Thus, further, the term a Leibniz algebra 
stands for a left Leibniz algebra. 

 

In Loday  J.L. and  Pirashvili  T. Universal enveloping algebras of Leibniz algebras and 
(co)homology’, Math. Annalen 296 (1) (1993) 139– 158, J.Lodey and T. Pirashvili began the 

systematic study of properties of Leibniz algebras.  
 
The Leibniz algebras appeared to be naturally related to several areas such as differential geometry, homological 

algebra, classical algebraic topology, algebraic K-theory, loop spaces, noncommutative geometry, and so on. They found some 
applications in physics. 
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The theory of Leibniz algebras has developed very intensively in many different directions. 
Some of the results of this theory were presented in the recent book Ayupov  SH.A., Omirov 

B.A., Rakhimov I.S. Leibniz Algebras: Structure and Classification, CRC Press, Taylor & 

Francis Group, (2020).  
 

Note that the class of Lie algebras is a subclass of the class of Leibniz algebras. 
Conversely, if L is a Leibniz algebra, in which the identity [a, a] = 0 is valid for every element 

a  L, then it is a Lie algebra.  

 
In any algebraic structure, one of the first tasks is the study of substructures generated 

by a single element. In Lie algebras, the situation is trivial: a cyclic subalgebra of a Lie algebra  

L generated by an element  a coincides with the subspace generated by  a. In contrast to Lie 
algebras, the situation with cyclic subalgebras in Leibniz algebras turned out to be quite 

difficult. A description of cyclic Leibniz algebras has been obtained in the paper 
 

Chupordya  V.A., Kurdachenko   L.A., Subbotin  I.Ya.  On some minimal Leibniz algebras. Journal  

of  Algebra and its Applications -16 (2017),  no. 2. DOI: 10.1142/S0219498817500827 
 

For the case when  F = C  is a field of complex number the description of cyclic finite 

dimensional Leibniz algebras were obtained in the following paper; however, it does not show 

the structure of cyclic Leibniz algebras  
 

Scofield,  D.,  Mckay  Sullivan,  S.  Classification of complex cyclic Leibniz algebras.  ArXiv: 

1411.0170v2. 2014 
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Another natural problem that immediately arises is the study of the structure of Leibniz 

algebras, whose subalgebras are ideals. In group theory, a similar problem was solved a very 
long time ago in the classical papers of R. Dedekind and R. Baer. The Lie algebras with this 

property are abelian. But for Leibniz algebras the structure of algebras, whose subalgebras are 
ideals, is far from being plain. The structure of such Leibniz algebras was described in the paper 
 

Kurdachenko  L.A., SEMKO  N.N., SUBBOTIN  I.Ya.  The Leibniz algebras  whose subalgebras 

are ideals. Open Mathematics 2017, Volume15, pp. 92–100 
 

Such an algebra L  has the following structure: L = E  Z  where  Z  is a subalgebra of the 

center of  L  and  E  is an extraspecial algebra such that  [x, x] ≠ 0  for each element x  (E).  
 

A Leibniz algebra L  is called an extraspecial  algebra, if it satisfies the following condition: 

(L)  is non-trivial and has dimension 1, 

L/(L) is abelian. 
 

The center  (L)  of a Leibniz algebra  L  is defined in the following way:  
 

(L) = { x  L  [x, y] = 0 = [y, x]  for each element  y  L }. 
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Here is the list of some important steps done on the way of developing of Leibniz Algebra 
systematic theory which is parallel to group theory. 

 

Chupordya V.A.,Kurdachenko L.A., Subbotin I.Ya.  On some minimal Leibniz   
algebra. Journal  of  Algebra and its Applications -16(2017),  no. 2. DOI: 

10.1142/S0219498817500827  
  

A description of the structure of cyclic Leibniz algebras. 
A description of minimal Leibniz algebras, i.e. Leibniz algebras, all proper subalgebras of   

which are Lie algebras. 
  

Kurdachenko  L.A., Semko  N.N., Subbotin  I.Ya.  The Leibniz algebras whose 
subalgebras are ideals. Open Mathematics 2017, Volume15, pp. 92–100  

  
A description of Leibniz algebras, all proper subalgebras of which are ideals. 

  

Chupordya  V.A., Kurdachenko   L.A., Semko  N.N.  On the structure of Leibniz 
algebras whose subalgebras are ideals or core-free. Algebra and Discrete 

Mathematics.Volume 29 (2020). Number 2, pp. 180-194  
 

A description of Leibniz algebras, all proper subalgebras of which are either ideals or 
have a zero kernel.  
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Kurdachenko  L.A., Subbotin  I.Ya, Yashchuk  V.S.  The Leibniz algebras whose 
subideals are ideals. Journal of Algebra and Applications 2018, Volume 17, n. 8, 

1850151 (15 p), DOI:10.1142/S0219498818501517  
  
A description of Leibniz algebras in which the relation “to be an ideal” is transitive.  
  

Kurdachenko  L.A., Subbotin  I.Ya.,  Yashchuk  V.S. On ideals and contraideals in 
Leibniz algebras. Reports  of the National Academy of Sciences of Ukraine,  2020, no. 1, 

11-15   
Kurdachenko  L.A., Subbotin  I.Ya.,  Yashchuk  V.S.  Some antipodes of ideals in 

Leibniz algebras. Journal of Algebra and Its Applications  Vol. 19, No. 06, 2050113 
(2020) https://doi.org/10.1142/S0219498820501133   

  
A description of Leibniz algebras, all proper subalgebras of which are either ideals or 

contraideals. 
  
Kurdachenko  L.A., Subbotin  I.Ya., Semko  N.N.  On the anticommutativity in Leibniz 
algebras. Algebra  and  Discrete Mathematics   2018, Volume 26, number 1,  97-109   
  
Analysis of the influence of anticommutativity on the structure of Leibniz algebras. 
 

  
 

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.worldscientific.com_worldscinet_jaa&d=DwMF-Q&c=qwHaVVscXk_NBWd7DQFk0g&r=LAsUvBN3QRrf6gB5ldJ79A&m=PW28DQxG7kkR0PgvibQxwdlM8Z5l6TtUnpN1oVPp82k&s=MFLkxlmLK10h5zZdrwYIHst8oF_iaf6tfAGGWArl8Vg&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.worldscientific.com_toc_jaa_19_06&d=DwMF-Q&c=qwHaVVscXk_NBWd7DQFk0g&r=LAsUvBN3QRrf6gB5ldJ79A&m=PW28DQxG7kkR0PgvibQxwdlM8Z5l6TtUnpN1oVPp82k&s=ujXwz1ALzqIS8Kt2tD8W_4GsgYtQxrEOdMWH8BSZ3iA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.worldscientific.com_toc_jaa_19_06&d=DwMF-Q&c=qwHaVVscXk_NBWd7DQFk0g&r=LAsUvBN3QRrf6gB5ldJ79A&m=PW28DQxG7kkR0PgvibQxwdlM8Z5l6TtUnpN1oVPp82k&s=ujXwz1ALzqIS8Kt2tD8W_4GsgYtQxrEOdMWH8BSZ3iA&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1142_S0219498820501133&d=DwMF-Q&c=qwHaVVscXk_NBWd7DQFk0g&r=LAsUvBN3QRrf6gB5ldJ79A&m=PW28DQxG7kkR0PgvibQxwdlM8Z5l6TtUnpN1oVPp82k&s=7w7qkR10_vMCKoHFDWg89Y1oP0ZIt4sBnmViGFznDak&e=


 
7 

 
 

 

Kurdachenko  L.A., Subbotin  I.Ya., Semko  N.N.From Groups to Leibniz Algebras: 
Common Approaches, Parallel Results. Advances in Group Theory and Applications-5 

(2018), pp. 1–31  
 

A proof of the existence of a locally nilpotent radical in Leibniz algebras; generalized 
nilpotent classes of Leibniz algebras are introduced.  

 
Kurdachenko  L.A., Subbotin  I.Ya.,  Yashchuk  V.S.  Leibniz algebras whose 

subalgebras are left ideals and contraideals in Leibniz algebras. Serdica Math. J. 2020, 
v 46, 175–194   

  
A description of Leibniz algebras, all proper subalgebras of which are either left ideals or 

contraideals.  
  

Kurdachenko   L.A., Otal  J. ,  Pypka  A.A. Relationships  between factors   

of  canonical   central  series  of Leibniz   algebras. European  Journal  of  

 Mathematics -2016, 2,  565-577.  

Kurdachenko   L.A., Otal  J., Subbotin  I.Ya.  On some properties of the upper central 
series in Leibniz algebras, Comment.Math.Univ.Carolin. 60,2 (2019) 161–175  

  
An analogue of Schur's theorem and its generalizations 
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Consider some results related to the concept of nilpotency. This concept arises both in 
the theory of groups and in the theory of rings and algebras (associative and non-associative). 

In the theory of Leibniz algebras this concept arises as follows. 
Every Leibniz algebra L has the following specific ideal.  

Denote by Leib(L) the subspace generated by the elements  [a, a], a  L. We note that  

Leib(L)  is an ideal of  L. Indeed, for arbitrary elements  a, x  L  we have  
 

[a, [a, x]] = [[a, a], x] + [a, [a, x]], so [[a, a], x] = 0. 
 

Furthermore,  
 

[x + [a, a], x + [a, a]] = [x, x] + [x, [a, a]] + [[a, a], x] + [[a, a], [a, a]] = 

[x, x] + [x, [a, a]]. 
 

It follows that  [x, [a, a]] = [x + [a, a], x + [a, a]]-[x, x]  Leib(L).  

 
Put  K = Leib(L). Then in the factor-algebra  L/K  we have   

 

[a + K, a + K] = [a, a] + K = K 
 

for each element  a  L. By above, we obtain that  L/K  is a Lie algebra.  
 

Conversely, suppose that  H  is an ideal of  L  such that  L/H  is a Lie algebra. Then   
 

H = [a + H, a + H] = [a, a] + H, 
 

which implies that  [a, a]  H  for every element  a  L. Then  Leib(L)  H.  
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The ideal  Leib(L)  is called the Leibniz kernel of algebra  L.  

 
We note the following important property of the Leibniz kernel: 

 
[[a, a], x] = [a, [a, x]]-[a, [a, x]] = 0. 

 

This property shows that  Leib(L)  is an abelian subalgebra of  L.  
 

Let  L  be a Leibniz algebra. Define the lower central series of  L   
 

L = 1(L)  2(L)  . . .  (L)   + 1(L)  . . . (L)  
 

by the following rule: 1(L) = L, 2(L) = [L, L],  and, recursively,   + 1(L) = [L, (L)]  for all 

ordinals    and  (L) =   <  (L)  for the limit ordinals  . The last term  (L)  is called the 

lower hypocenter of  L. We have  (L) = [L, (L)].    
 

Since  (L)  is an ideal of  L, we can consider the factor-algebra  L/(L).  
 

A Leibniz algebra  L  is called nilpotent  if there exists a positive integer  k  such that  k(L) 

= <0>. More precisely, L  is said to be nilpotent of nilpotency  class  c  if  c + 1(L) = <0>, but  c(L)  
<0>. We denote by  ncl(L)  the nilpotency class of  L.  

 

In some algebraic structures another definition of nilpotency based on the concept of the 

(upper) central series is used. In fact, suppose that  L  is a nilpotent Leibniz algebra and  k + 

1(L) = <0>. For each factor  j(L)/j + 1(L)  we have  [L, j(L)] = j + 1(L)  and  [j(L), L]  j + 1(L), and 
this leads us to the following concepts. 

 

Let  A, B  be ideals of  L  such that  A  B. The factor  B/A  is called central (in L) if      [L, 

B], [B, L]  A.  
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Starting from the center we can define the upper central series  
 

<0> = 0(L)  1(L)  2(L)  . . .  (L)   + 1(L)  . . . (L) = ∞(L) 
 

of  the Leibniz algebra  L  by the following rule:  1(L) = (L)  is the center of  L, and recursively 

 + 1(L)/(L) = (L/(L))  for all ordinals  ,  and  (L) =   <  (L)  for limit ordinals  . By 

definition, each term of this series is an ideal of  L. The last term  ∞(L)  of this series is called 
the upper hypercenter of  L. A Leibniz algebra  L  is said to be hypercentral if it coincides with the 

upper hypercenter. Denote by  zl(L)  the length of upper central series of   L.   
 

It is a well–known that in nilpotent Lie algebras and nilpotent groups the lower and the 
upper central series have the same length.  
 

Let   

<0> = C0  C1   . . .  C  C + 1  . . . C = L 
 

be an ascending series of ideals of a Leibniz algebra  L. This series is called central   if                   

C + 1/C  (L/C)  for each ordinal   < . In other words, [C + 1, L], [L, C + 1]  C  for each 

ordinal   < .  
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We note the following properties of central series (Kurdachenko   L.A., Otal  J., Pypka  A.A.  
Relationships  between  factors  of  canonical  central  series  of Leibniz  algebras. European  Journal  of  
Mathematics -2016, 2,  565-577.) 

 
 

1.  Let  L  be an  Leibniz algebra over a field  F,  and 
 

<0> = C0  C1   . . .  Cn = L 
 

be a finite central series of  L. Then 

(i)  j(L) ≤ Cn-j + 1, so that  n + 1(L) = <0>.  

(ii)  Cj ≤ j(L), so that  n(L) = L.  

(iii)  If  j, k  are positive integer such that  k  j,  then  [j(L), k(L)], [k(L), j(L)]  k-j (L).  
 

As a corollary we obtain 
 

2.  Let  L  be an  Leibniz algebra over a field  F  and suppose that  L  has a finite central series 

<0> = C0  C1   . . .  Cn = L.  
 

Then  L  is nilpotent and  ncl(L)  n. Furthermore, the upper central series of  L  is finite, ∞(L) = 
L, zl(L) ≤ n. Moreover,  ncl(L) = zl(L). 
 

The last result shows that a Leibniz algebra  L  is nilpotent if and only if there is a positive 

integer  k  such that  L = k(L). The least positive integer having this property coincides with 
nilpotency class of  L. So, as in the cases of Lie algebras and groups, the definition of 

nilpotency can be given here using the notion of the upper central series. 
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It will be appropriate to note that the Leibniz algebra L can be associative.  
 

3.  Let  L  be a  Leibniz algebra over a field  F. Then  L  is associative if and only if  [L, L]  (L).  
 

The concepts of upper and lower central series immediately leads us to the mentioned 
classes of Leibniz algebras.  

 
A Leibniz algebra  L  is said to be hypercentral  if it coincides with the upper hypercenter. 

   
A Leibniz algebra  L  is said to be hypocentral  if its lower hyporcenter is trivial. 
 

In the case of finite dimensional algebras, these two concepts coincide, but, in general, 
these two classes are very different.  

Thus, for finitely generated hypercentral Leibniz algebras we have (see 

Kurdachenko  L.A., Subbotin  I.Ya., Semko  N.N.From Groups to Leibniz Algebras: 
Common Approaches, Parallel Results. Advances in Group Theory and Applications-5 (2018), 

pp. 1–31)  
 

4.  Let  L  be a finitely generated Leibniz algebra over a field  F. If  L  is hypercentral, then  L  is 
nilpotent. Moreover, L  has finite dimension. In particular, a finitely generated nilpotent Leibniz 
algebra has finite dimension. 

 
This result is an analog of a similar group theoretical result proved by A. I. Mal’cev   
 

Maltsev A.I. Nilpotent torsion-free groups. Izvestiya AN USSR, series math.-13(1949), no. 3, 201-212.  
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At the same time, a finitely generated hypocentral Leibniz algebra can have infinite 

dimension. A simple example, which shows it is a cyclic Leibniz algebra, generated by an 
element of infinite depth.  

A Leibniz algebra  L  is said to be locally nilpotent  if every finite subset of  L  generates a 
nilpotent subalgebra.    

 

That is why, hypercentral Leibniz algebras give us examples of locally nilpotent algebras.  

We obtained the following characterization of hypercentral Leibniz algebras.  
 

5.  Let  L  be a Leibniz  algebra over a field  F. Then  L  is hypercentral if and only if for each 

element  a  L  and every countable subset { xn  n  N } of elements of  L  there exists a 

positive integer  k  such that all commutators  [x1, . . . , xj, a, xj + 1, . . . , xk]  are zeros for all  j,    

0  j  k.  
 

As a corollary we obtain 
 

6.  Let  L  be a Leibniz  algebra over a field  F. Then  L  is hypercentral if and only if every 
subalgebra of  L having finite or countable dimension is hypercentral.  
 

These results are analogs to some group-theoretical results of S.N. Chernikov. 
 

Let  L  be a Leibniz algebra. If  A, B  are nilpotent ideals of  L, then their sum  A + B  is a 

nilpotent ideal of  L. This result has been proved in the paper 
 

Barnes D. Schunck classes of soluble Leibniz algebras. Communications in Algebra, 41(2013), 4046-4065. 
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In this connection, the following question arises: If a similar assertion is valid for locally 
nilpotent ideals? For Lie algebras this assertion takes place. It was shown by B. Hartley in the 
paper  
 

Hartley  B. Locally nilpotent ideals of a Lie algebras. Proc. Cambridge Phil. Society, 63(1967), 257-272. 

Our next result gives an affirmative answer to this question. 
 

7.  Let  L  be a Leibniz algebra over a field  F, A, B  be locally nilpotent ideals of  L. Then                   
A + B  is locally nilpotent.  
 

As a corollaries we obtain 
 

8.  Let  L  be a Leibniz algebra over a field  F  and  S  be a family of locally nilpotent ideals of  L. 

Then a subalgebra generated by  S  is locally nilpotent.  
 

9. Let  L  be a Leibniz algebra over a field  F. Then   L  has the  greatest locally nilpotent ideal.  
 

Let L  be a Leibniz algebra over field  F. The greatest locally nilpotent ideal  of  L  is called 

the locally nilpotent radical  of  L  and will be denoted by  Ln(L).  
 

These results are analogues of the results in groups proven by K.A. Hirsch  
 

Hirsch  K.A. Über local-nilpotente Gruppen, Math. Z.- 63 (1955),   290-291. 

and B.I. Plotkin  
 

Plotkin  B.I. Radical groups. Math. sbornik, 37 (1955), 507-526. 

Plotkin  B.I. Generalized soluble and generalized nilpotent groups. Uspekhi  mat. nauk, 13 (1958), no. 

4, 89-172. 
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The subalgebra  Nil(L)  generated by all nilpotent ideals of  L is called the nil  radical of  L. 

If  L = Nil(L),  then  L  is called a Leibniz  nil-algebra. Every nilpotent Leibniz algebra is a nil-
algebra, but converse is not true even for a Lie algebra. Every Leibniz nil-algebra is locally 

nilpotent, but converse is not true even for a Lie algebra. Moreover, there exists a Lie nil-
algebra, which is not hypercentral. There is a corresponding example in Chapter 6 of the book  
 

Amayo  R.K., Stewart  I.  Infinite Dimensional  Lie  Algebras. Noordhoff  Intern. Publ.: Leyden, 1974. 

 
Note the following important properties of locally nilpotent Leibniz algebras. 

 
 

10. Let  L  be a locally nilpotent Leibniz algebra over a field  F.  

(i)  If  A, B, A  B  are the ideals of  L  such that factor  B/A  is  L-chief, then  B/A  is central 

in  L ( that is  B/A  (L/A)). In particular, dimF(B/A) = 1.  
(ii)  If  A  is a maximal subalgebra of  L, then  A  is an ideals of  L. 

 

Let L  be a Leibniz algebra over the field  F  and  H  a subalgebra of  L. The idealizer  of  H  is 
defined by the following rule: 
 

IL(H) = { x  L | [h, x], [x, h]  H  for all  h  H }. 
 

It is possible to prove that the idealizer of  H  is a subalgebra of  L. If  L  is a hypercentral 

(in particular, nilpotent) Leibniz algebra, then  H   IL(H).  This leads us to the following class 
of Leibniz algebras. 
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Let L  be a Leibniz algebra over field  F. We say that  L  satisfies the idealizer condition if  IL(A) 

 A  for every proper subalgebra  A  of  L.  
A subalgebra  A  is called ascendant   in  L, if  there is an ascending chain of subalgebras 
 

A = A0  A1  . . . A  A + 1  . . .  A = L 
 

such that  A  is an ideal of  A + 1 for all   < .  
It is possible to prove that  L  satisfies the idealizer condition if and only if every subalgebra 

of  L  is ascendant.  

 
The last our result is the following  
 

11.  Let  L  be a Leibniz  algebra over a field  F. If  L  satisfies the idealizer condition then  L  is 
locally nilpotent.  
 
 

This result is an analog to the following result proved by B.I. Plotkin for groups.  
 

Plotkin  B.I. To the theory of locally nilpotent groups. Doklary AN USSR 76 (1951), 655-657. 
 

Again, it should be noted that the Leibniz algebras with the idealizer condition will form 
a proper subclass of the class of locally nilpotent Leibniz algebras. It happens since this is 

already the case for Lie algebras. A corresponding example could be found in Chapter 6 of 
the book  
 

Amayo  R.K., Stewart  I.  Infinite dimensional Lie  algebras. Noordhoff  Intern. Publ.: Leyden, 1974. 

 


