Powerfully nilpotent groups

Gunnar Traustason

Department of Mathematical Sciences
University of Bath

Ischia Marathon 2021

1. Powerfully nilpotent groups

Recall that a finite p-group is powerful if

$$
[G, G] \leq G^{p}(p \text { odd }), \quad[G, G] \leq G^{4}(p=2)
$$

1. Powerfully nilpotent groups

Recall that a finite p-group is powerful if

$$
[G, G] \leq G^{p}(p \text { odd }), \quad[G, G] \leq G^{4}(p=2)
$$

Definition. A powerful p-group is powerfully nilpotent if there is an ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, G\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerful class of G.

1. Powerfully nilpotent groups

Recall that a finite p-group is powerful if

$$
[G, G] \leq G^{p}(p \text { odd }), \quad[G, G] \leq G^{4}(p=2)
$$

Definition. A powerful p-group is powerfully nilpotent if there is an ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, G\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerful class of G.

The upper powerfully central series. Defined recursively by $\hat{Z}_{0}(G)=\{1\}, \hat{Z}_{n+1}(G)=\left\{a \in G:[a, x] \in \hat{Z}_{n-1}(G)^{p}\right.$ for all $\left.x \in G\right\}$. (Notice that $\hat{Z}_{1}(G)=Z(G)$).

1. Powerfully nilpotent groups

Recall that a finite p-group is powerful if

$$
[G, G] \leq G^{p}(p \text { odd }), \quad[G, G] \leq G^{4}(p=2)
$$

Definition. A powerful p-group is powerfully nilpotent if there is an ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, G\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerful class of G.

The upper powerfully central series. Defined recursively by $\hat{Z}_{0}(G)=\{1\}, \hat{Z}_{n+1}(G)=\left\{a \in G:[a, x] \in \hat{Z}_{n-1}(G)^{p}\right.$ for all $\left.x \in G\right\}$. (Notice that $\hat{Z}_{1}(G)=Z(G)$).

Definition. A finite p-group is strongly powerful if $[G, G] \leq G^{p^{2}}$.

1. Powerfully nilpotent groups

Recall that a finite p-group is powerful if

$$
[G, G] \leq G^{p}(p \text { odd }), \quad[G, G] \leq G^{4}(p=2)
$$

Definition. A powerful p-group is powerfully nilpotent if there is an ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, G\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerful class of G.

The upper powerfully central series. Defined recursively by $\hat{Z}_{0}(G)=\{1\}, \hat{Z}_{n+1}(G)=\left\{a \in G:[a, x] \in \hat{Z}_{n-1}(G)^{p}\right.$ for all $\left.x \in G\right\}$. (Notice that $\hat{Z}_{1}(G)=Z(G)$).

Definition. A finite p-group is strongly powerful if $[G, G] \leq G^{p^{2}}$.
Lemma 1.1. A strongly powerful p-group of exponent p^{e} is powerfully nilpotent. The powerful class is at most $e-1$ if $e \geq 2$.

1. Powerfully nilpotent groups

Recall that a finite p-group is powerful if

$$
[G, G] \leq G^{p}(p \text { odd }), \quad[G, G] \leq G^{4}(p=2)
$$

Definition. A powerful p-group is powerfully nilpotent if there is an ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, G\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerful class of G.

The upper powerfully central series. Defined recursively by $\hat{Z}_{0}(G)=\{1\}, \hat{Z}_{n+1}(G)=\left\{a \in G:[a, x] \in \hat{Z}_{n-1}(G)^{p}\right.$ for all $\left.x \in G\right\}$. (Notice that $\hat{Z}_{1}(G)=Z(G)$).

Definition. A finite p-group is strongly powerful if $[G, G] \leq G^{p^{2}}$.
Lemma 1.1. A strongly powerful p-group of exponent p^{e} is powerfully nilpotent. The powerful class is at most $e-1$ if $e \geq 2$.

Remark. In particular all powerful 2-groups are powerfully nilpotent.

2. Presentations and growth

Let p be an odd prime. Let G be any powerfully nilpotent p-group of rank r, exponent p^{e} and order p^{n}.

2. Presentations and growth

Let p be an odd prime. Let G be any powerfully nilpotent p-group of rank r, exponent p^{e} and order p^{n}.

Theorem 2.1(T, Williams). We can choose the generators a_{1}, \ldots, a_{r} such that $|G|=o\left(a_{1}\right) \cdots o\left(a_{r}\right)$ and such that

$$
\begin{aligned}
\left\langle a_{1}, \ldots, a_{r}\right\rangle \geq & \left\langle a_{1}^{p}, a_{2}, \ldots, a_{r}\right\rangle \geq \cdots \geq\left\langle a_{1}^{p}, \ldots, a_{r}^{p}\right\rangle \\
& \left\langle a_{1}^{p^{2}}, a_{2}^{p}, \ldots, a_{r}^{p}\right\rangle \geq \cdots \geq\left\langle a_{1}^{p^{e}}, \ldots, a_{r}^{p^{e}}\right\rangle=\{1\}
\end{aligned}
$$

is powerfully central.

2. Presentations and growth

Let p be an odd prime. Let G be any powerfully nilpotent p-group of rank r, exponent p^{e} and order p^{n}.

Theorem 2.1(T, Williams). We can choose the generators a_{1}, \ldots, a_{r} such that $|G|=o\left(a_{1}\right) \cdots o\left(a_{r}\right)$ and such that

$$
\begin{aligned}
\left\langle a_{1}, \ldots, a_{r}\right\rangle \geq & \left\langle a_{1}^{p}, a_{2}, \ldots, a_{r}\right\rangle \geq \ldots \geq\left\langle a_{1}^{p}, \ldots, a_{r}^{p}\right\rangle \\
& \left\langle a_{1}^{p^{2}}, a_{2}^{p}, \ldots, a_{r}^{p}\right\rangle \geq \cdots \geq\left\langle a_{1}^{p^{e}}, \ldots, a_{r}^{p^{e}}\right\rangle=\{1\}
\end{aligned}
$$

is powerfully central.
Powerfully nilpotent presentations. With the generators chosen as above we get relations of the form

$$
\begin{aligned}
{\left[a_{i}, a_{j}\right] } & =a_{1}^{m_{1}(i, j)} \cdots a_{r}^{m_{r}(i, j)}, \quad 1 \leq j<i \leq r \\
a_{i}^{n_{i}} & =1, \quad 1 \leq i \leq r
\end{aligned}
$$

where $n_{i}=o\left(a_{i}\right)$ and where $p \mid m_{k}(i, j)$. Also $p^{2} \mid m_{k}(i, j)$ when $k \leq i$.

These relations determine the structure of the group. We call such a presentation a powerfully nilpotent presentation. Conversely any powerfully nilpotent presentation gives us a powerfully nilpotent group G. We say that the presentation is consistent if $|G|=n_{1} \cdots n_{r}$.

These relations determine the structure of the group. We call such a presentation a powerfully nilpotent presentation. Conversely any powerfully nilpotent presentation gives us a powerfully nilpotent group G. We say that the presentation is consistent if $|G|=n_{1} \cdots n_{r}$.

Theorem 2.2 (T, Williams) Let p be an odd prime. The number of powerfully nilpotent groups of exponent p^{2} and order p^{n} is $p^{\alpha n^{3}+o\left(n^{3}\right)}$, where $\alpha=\frac{9+4 \sqrt{2}}{394}$

These relations determine the structure of the group. We call such a presentation a powerfully nilpotent presentation. Conversely any powerfully nilpotent presentation gives us a powerfully nilpotent group G. We say that the presentation is consistent if $|G|=n_{1} \cdots n_{r}$.

Theorem 2.2 (T, Williams) Let p be an odd prime. The number of powerfully nilpotent groups of exponent p^{2} and order p^{n} is $p^{\alpha n^{3}+o\left(n^{3}\right)}$, where $\alpha=\frac{9+4 \sqrt{2}}{394}$

Remark. The number of all powerful p-groups of exponent p^{2} and order p^{n} is on the other hand $p^{\frac{2}{27} n^{3}+o\left(n^{3}\right)}$.

3. Powerful coclass and the ancestry tree

Let p be a fixed prime.

3. Powerful coclass and the ancestry tree

Let p be a fixed prime.
Defininition. Let G be a powerful p-group of powerful class c and order p^{n}. We define the powerful coclass of G to be the number $d=n-c$.

3. Powerful coclass and the ancestry tree

Let p be a fixed prime.
Defininition. Let G be a powerful p-group of powerful class c and order p^{n}. We define the powerful coclass of G to be the number $d=n-c$.

The ancestry tree. The vertices are the powerfully nilpotent groups. The groups G and H are joined by a directed edge, $H \rightarrow G$, iff $H \cong G / Z(G)^{p}$ and G is not abelian.

3. Powerful coclass and the ancestry tree

Let p be a fixed prime.
Defininition. Let G be a powerful p-group of powerful class c and order p^{n}. We define the powerful coclass of G to be the number $d=n-c$.

The ancestry tree. The vertices are the powerfully nilpotent groups. The groups G and H are joined by a directed edge, $H \rightarrow G$, iff $H \cong G / Z(G)^{p}$ and G is not abelian.

Let p be a fixed prime. For any powerful p-group G we let $r=r(G)$ be the rank of $G, c=c(G)$ be the powerful class and $p^{n(G)}, p^{e(G)}$ be the order and exponent of G. As before the coclass is $d(G)=n(G)-c(G)$.

3. Powerful coclass and the ancestry tree

Let p be a fixed prime.
Defininition. Let G be a powerful p-group of powerful class c and order p^{n}. We define the powerful coclass of G to be the number $d=n-c$.

The ancestry tree. The vertices are the powerfully nilpotent groups.
The groups G and H are joined by a directed edge, $H \rightarrow G$, iff $H \cong G / Z(G)^{p}$ and G is not abelian.

Let p be a fixed prime. For any powerful p-group G we let $r=r(G)$ be the rank of $G, c=c(G)$ be the powerful class and $p^{n(G)}, p^{e(G)}$ be the order and exponent of G. As before the coclass is $d(G)=n(G)-c(G)$.

Theorem 3.1 (T, Williams) For each prime p and non-negative integer d, there are finitely many powerfully nilpotent p-group of powerful coclass d. Furthermore $r \leq d+1$ and $e \leq d+1$.

3. Powerful coclass and the ancestry tree

Let p be a fixed prime.
Defininition. Let G be a powerful p-group of powerful class c and order p^{n}. We define the powerful coclass of G to be the number $d=n-c$.

The ancestry tree. The vertices are the powerfully nilpotent groups.
The groups G and H are joined by a directed edge, $H \rightarrow G$, iff $H \cong G / Z(G)^{p}$ and G is not abelian.

Let p be a fixed prime. For any powerful p-group G we let $r=r(G)$ be the rank of $G, c=c(G)$ be the powerful class and $p^{n(G)}, p^{e(G)}$ be the order and exponent of G. As before the coclass is $d(G)=n(G)-c(G)$.

Theorem 3.1 (T, Williams) For each prime p and non-negative integer d, there are finitely many powerfully nilpotent p-group of powerful coclass d. Furthermore $r \leq d+1$ and $e \leq d+1$.

Remark. As $n \leq r e \leq(d+1)^{2}$, the two inequalities imply that there are only finitely many G with powerful coclass d.

4. Groups of maximal powerful class

4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$
p=\left|\hat{Z}_{1}(G)^{p}\right|=\left|\frac{\hat{Z}_{2}(G)^{p}}{\hat{Z}_{1}(G)^{p}}\right|=\cdots=\left|\frac{\hat{Z}_{t}(G)^{p}}{\hat{Z}_{t-1}(G)^{p}}\right| .
$$

4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$
p=\left|\hat{Z}_{1}(G)^{p}\right|=\left|\frac{\hat{Z}_{2}(G)^{p}}{\hat{Z}_{1}(G)^{p}}\right|=\cdots=\left|\frac{\hat{Z}_{t}(G)^{p}}{\hat{Z}_{t-1}(G)^{p}}\right| .
$$

We refer to $T=\hat{Z}_{t}(G)^{p}$ as the tail of G and t as the length of the tail.

4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$
p=\left|\hat{Z}_{1}(G)^{p}\right|=\left|\frac{\hat{Z}_{2}(G)^{p}}{\hat{Z}_{1}(G)^{p}}\right|=\cdots=\left|\frac{\hat{Z}_{t}(G)^{p}}{\hat{Z}_{t-1}(G)^{p}}\right| .
$$

We refer to $T=\hat{Z}_{t}(G)^{p}$ as the tail of G and t as the length of the tail.
Definition. A powerful p-group has maximal tail if the tail is G^{p}.

4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$
p=\left|\hat{Z}_{1}(G)^{p}\right|=\left|\frac{\hat{Z}_{2}(G)^{p}}{\hat{Z}_{1}(G)^{p}}\right|=\cdots=\left|\frac{\hat{Z}_{t}(G)^{p}}{\hat{Z}_{t-1}(G)^{p}}\right| .
$$

We refer to $T=\hat{Z}_{t}(G)^{p}$ as the tail of G and t as the length of the tail.
Definition. A powerful p-group has maximal tail if the tail is G^{p}.
Definition. A powerful p-group of rank r with maximal tail has maximal powerful class if the powerful class is $1+r(r-1) / 2$.

4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$
p=\left|\hat{Z}_{1}(G)^{p}\right|=\left|\frac{\hat{Z}_{2}(G)^{p}}{\hat{Z}_{1}(G)^{p}}\right|=\cdots=\left|\frac{\hat{Z}_{t}(G)^{p}}{\hat{Z}_{t-1}(G)^{p}}\right| .
$$

We refer to $T=\hat{Z}_{t}(G)^{p}$ as the tail of G and t as the length of the tail.
Definition. A powerful p-group has maximal tail if the tail is G^{p}.
Definition. A powerful p-group of rank r with maximal tail has maximal powerful class if the powerful class is $1+r(r-1) / 2$.

Theorem 4.1 (T, Williams). Let r be a positive integer and $p>r$ a prime. There exists a powerfully nilpotent p-group of rank r that is of maximal powerful class.

Theorem 4.2 (T, Williams). Let G be a powerfully nilpotent p-group of rank r where $p>r$ that has maximal powerful class $1+r(r-1) / 2$. There exists generators $b_{1}, \ldots, b_{r-1}, y$ such that

$$
G=\langle y\rangle \cdot\left\langle b_{1}\right\rangle \cdots\left\langle b_{r-1}\right\rangle,
$$

with $|G|=o(y) o\left(b_{1}\right) \cdots o\left(b_{r-1}\right), o\left(b_{i}\right)=p^{i}, o(y)=p^{r+1}$

Theorem 4.2 (T, Williams). Let G be a powerfully nilpotent p-group of rank r where $p>r$ that has maximal powerful class $1+r(r-1) / 2$.
There exists generators $b_{1}, \ldots, b_{r-1}, y$ such that

$$
G=\langle y\rangle \cdot\left\langle b_{1}\right\rangle \cdots\left\langle b_{r-1}\right\rangle,
$$

with $|G|=o(y) o\left(b_{1}\right) \cdots o\left(b_{r-1}\right), o\left(b_{i}\right)=p^{i}, o(y)=p^{r+1}$ and where,

$$
\begin{aligned}
\left\langle y, b_{1}, \ldots, b_{r-1}\right\rangle \geq & \left\langle y^{p}, b_{1}, \ldots, b_{r-1}\right\rangle \geq \cdots \geq\left\langle y^{p}, b_{1}^{p}, \ldots, b_{r-1}^{p}\right\rangle \\
& \left.\left\langle y^{p^{2}}, b_{1}^{p}, \ldots, b_{r-1}^{p}\right\rangle \geq \cdots \geq\left\langle y^{p}, b_{1}^{p} \ldots, b_{r-1}^{p^{1}}\right\rangle\right\rangle=1
\end{aligned}
$$

is powerfully central.

Theorem 4.2 (T, Williams). Let G be a powerfully nilpotent p-group of rank r where $p>r$ that has maximal powerful class $1+r(r-1) / 2$.
There exists generators $b_{1}, \ldots, b_{r-1}, y$ such that

$$
G=\langle y\rangle \cdot\left\langle b_{1}\right\rangle \cdots\left\langle b_{r-1}\right\rangle,
$$

with $|G|=o(y) o\left(b_{1}\right) \cdots o\left(b_{r-1}\right), o\left(b_{i}\right)=p^{i}, o(y)=p^{r+1}$ and where,

$$
\begin{aligned}
\left\langle y, b_{1}, \ldots, b_{r-1}\right\rangle \geq & \left\langle y^{p}, b_{1}, \ldots, b_{r-1}\right\rangle \geq \cdots \geq\left\langle y^{p}, b_{1}^{p}, \ldots, b_{r-1}^{p}\right\rangle \\
& \left\langle y^{p^{2}}, b_{1}^{p}, \ldots, b_{r-1}^{p}\right\rangle \geq \cdots \geq\left\langle y^{p}, b_{1}^{p} \ldots, b_{r-1}^{p^{1}}\right\rangle=1
\end{aligned}
$$

is powerfully central. Furthermore
(a) $\left[b_{1}, y\right]=b_{2}^{p},\left[b_{2}, y\right]=b_{3}^{p}, \ldots,\left[b_{r-2}, y\right]=b_{r-1}^{p},\left[b_{r-1}, y\right]=y^{p^{2}}$.
(b) $H=\Omega_{r}(G)=\left\langle y^{p}\right\rangle\left\langle b_{1}\right\rangle \cdots\left\langle b_{r-1}\right\rangle$ p.e. G and strongly powerful.
(c) $G^{p^{r-1}} \leq Z(G)$.

5. Powerfully solvable groups

5. Powerfully solvable groups

Definition. Let G be a finite p-group. We say that G is powerfully solvable if it has and ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, H_{i}\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerfully derived length of G.

5. Powerfully solvable groups

Definition. Let G be a finite p-group. We say that G is powerfully solvable if it has and ascending chain of subgroups

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $\left[H_{i}, H_{i}\right] \leq H_{i-1}^{p}$ for $i=1, \ldots, n$. The smallest possible n is the powerfully derived length of G.

Theorem 2.2 (T, de las Heras) Let p be an odd prime. The number of powerfully solvable groups of exponent p^{2} and order p^{n} is $p^{\alpha n^{3}+o\left(n^{3}\right)}$, where $\alpha=\frac{-1+\sqrt{2}}{6}$

6. Subgroups of powerfully nilpotent groups

6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of exponent p^{2}. There exists a powerfully nilpotent group H of exponent p^{2} and powerful nilpotency class 2 such that G is powerfully embedded in H.

6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of exponent p^{2}. There exists a powerfully nilpotent group H of exponent p^{2} and powerful nilpotency class 2 such that G is powerfully embedded in H.

Remarks.

6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of exponent p^{2}. There exists a powerfully nilpotent group H of exponent p^{2} and powerful nilpotency class 2 such that G is powerfully embedded in H.

Remarks. (1) It follows that a powerfully embedded subgroup of a powerfully nilpotent group of powerful nilpotency class 2 doesn't have to be powerfully solvable.

6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of exponent p^{2}. There exists a powerfully nilpotent group H of exponent p^{2} and powerful nilpotency class 2 such that G is powerfully embedded in H.

Remarks. (1) It follows that a powerfully embedded subgroup of a powerfully nilpotent group of powerful nilpotency class 2 doesn't have to be powerfully solvable.
(2) A powerfully nilpotent group of powerful nilpotency class 2 can have a powerfully nilpotent embedded subgroup of arbitrary large powerful nilpotency class.

6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of exponent p^{2}. There exists a powerfully nilpotent group H of exponent p^{2} and powerful nilpotency class 2 such that G is powerfully embedded in H.

Remarks. (1) It follows that a powerfully embedded subgroup of a powerfully nilpotent group of powerful nilpotency class 2 doesn't have to be powerfully solvable.
(2) A powerfully nilpotent group of powerful nilpotency class 2 can have a powerfully nilpotent embedded subgroup of arbitrary large powerful nilpotency class.

Propostion 2.2.(T, de las Heras) Let G be any finite p-group of nilpotency class 2 . There exists a powerfully nilpotent group H of powerful nilpotence class 2 that contains G as a subgroup.

7. Groups of Type $(2, \ldots, 2)$.

7. Groups of Type $(2, \ldots, 2)$.

The class \mathcal{P} of groups with a powerful basis consisting of elements of order p^{2}.

7. Groups of Type $(2, \ldots, 2)$.

The class \mathcal{P} of groups with a powerful basis consisting of elements of order p^{2}. (Growth $p^{\frac{1}{16} n^{3}+o\left(n^{3}\right)}$)

7. Groups of Type $(2, \ldots, 2)$.

The class \mathcal{P} of groups with a powerful basis consisting of elements of order p^{2}. (Growth $p^{\frac{1}{15} n^{3}+o\left(n^{3}\right)}$)

Theorem 5.1 (T, de las Heras) (a) Let G be a powerfully nilpotent group in \mathcal{P} and H a powerful subgroup of G. Then H is powerfully nilptotent of powerful nilpotence class at most the powerful nilptotence class of G.

7. Groups of Type (2, ... 2).

The class \mathcal{P} of groups with a powerful basis consisting of elements of order p^{2}. (Growth $p^{\frac{1}{16} n^{3}+o\left(n^{3}\right)}$)

Theorem 5.1 (T, de las Heras) (a) Let G be a powerfully nilpotent group in \mathcal{P} and H a powerful subgroup of G. Then H is powerfully nilptotent of powerful nilpotence class at most the powerful nilptotence class of G.
(b) Let G be a powerfully solvable group in \mathcal{P} and H a powerful subgroup of G. Then H is powerfully solvable of powerful derived length at most the powerful derived length of G.

8. Powerfully simple groups.

8. Powerfully simple groups.

Notation. $H \unlhd_{\mathcal{P}} G$ stands for H pe G and $H, G \in \mathcal{P}$.

8. Powerfully simple groups.

Notation. $H \unlhd_{\mathcal{P}} G$ stands for H pe G and $H, G \in \mathcal{P}$.
Definition. $G \in \mathcal{P}$ is powerfully simple if $G \neq 1$ and $H \unlhd_{\mathcal{P}} G$ implies that $H=1$.

8. Powerfully simple groups.

Notation. $H \unlhd_{\mathcal{P}} G$ stands for H pe G and $H, G \in \mathcal{P}$.
Definition. $G \in \mathcal{P}$ is powerfully simple if $G \neq 1$ and $H \unlhd_{\mathcal{P}} G$ implies that $H=1$.

Theorem(T, de las Heras)

8. Powerfully simple groups.

Notation. $H \unlhd_{\mathcal{P}} G$ stands for H pe G and $H, G \in \mathcal{P}$.
Definition. $G \in \mathcal{P}$ is powerfully simple if $G \neq 1$ and $H \unlhd_{\mathcal{P}} G$ implies that $H=1$.

Theorem(T, de las Heras) Any two composition series for $G \in \mathcal{P}$ have the same composition factors.

