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1. Powerfully nilpotent groups
Recall that a finite p-group is if
[G,G] <G (podd), [G,G]<G*(p=2)
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1. Powerfully nilpotent groups

Recall that a finite p-group is if
[G,G] <G (podd), [G,G]<G*(p=2)
Definition. A powerful p-group is if there is an

ascending chain of subgroups
{I}=Hy<H;<---<H,=G

such that [H;,G] < H!_, fori =1,...,n. The smallest possible n is the
of G.
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1. Powerfully nilpotent groups

Recall that a finite p-group is if
[G,G] <G (podd), [G,G]<G*(p=2)
Definition. A powerful p-group is if there is an

ascending chain of subgroups
{I}=Hy<H;<---<H,=G

such that [H;,G] < H!_, fori =1,...,n. The smallest possible n is the
of G.

The upper powerfully central series. Defined recursively by
Z)(G) = {1}, Z,+1(G) ={a € G: [a,x] € Z,_1(G)" for all x € G}.
(Notice that Z,(G) = Z(G)).
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1. Powerfully nilpotent groups

Recall that a finite p-group is if
[G,G] <G (podd), [G,G]<G*(p=2)
Definition. A powerful p-group is if there is an

ascending chain of subgroups
{I}=Hy<H, <---<H,=G
such that [H;,G] < H!_, fori =1,...,n. The smallest possible n is the
of G.

The upper powerfully central series. Defined recursively by
Z)(G) = {1}, Z,+1(G) ={a € G: [a,x] € Z,_1(G)" for all x € G}.
(Notice that Z,(G) = Z(G)).

Definition. A finite p-group is if [G,G] < G

Lemma 1.1. A strongly powerful p-group of exponent p¢ is powerfully
nilpotent. The powerful class is at most e — 1 if e > 2.
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1. Powerfully nilpotent groups

Recall that a finite p-group is if
[G,G] <G (podd), [G,G]<G*(p=2)
Definition. A powerful p-group is if there is an

ascending chain of subgroups
{I}=Hy<H, <---<H,=G
such that [H;,G] < H!_, fori =1,...,n. The smallest possible n is the
of G.

The upper powerfully central series. Defined recursively by
Z)(G) = {1}, Z,+1(G) ={a € G: [a,x] € Z,_1(G)" for all x € G}.
(Notice that Z,(G) = Z(G)).

Definition. A finite p-group is if [G,G] < G

Lemma 1.1. A strongly powerful p-group of exponent p¢ is powerfully
nilpotent. The powerful class is at most e — 1 if e > 2.

Remark. In particular all powerful 2-groups are powerfully nilpotent.
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2. Presentations and growth

Let p be an odd prime. Let G be any powerfully nilpotent p-group of
rank r, exponent p¢ and order p".
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2. Presentations and growth

Let p be an odd prime. Let G be any powerfully nilpotent p-group of
rank r, exponent p¢ and order p".

Theorem 2.1(T, Williams). We can choose the generators ay, ..., a,
such that |G| = o(ay) - - - 0(a,) and such that

(ar,...,a,y > (d,a,...,a)

IV v
(AVARAY

(d ,d,... a°)

is powerfully central.
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2. Presentations and growth

Let p be an odd prime. Let G be any powerfully nilpotent p-group of
rank r, exponent p¢ and order p".

Theorem 2.1(T, Williams). We can choose the generators ay, ..., a,
such that |G| = o(ay) - - - 0(a,) and such that

(ar,...,a,y > (d,a,...,a)

(d ,d,... a°)

IV v
(AVARAY

is powerfully central.

Powerfully nilpotent presentations . With the generators chosen as
above we get relations of the form

ai ] = d" a1 <j<i<r
an =1, 1<i<r

4

where n; = o(a;) and where p|my(i,j). Also p?|my(i,j) when k < i.
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These relations determine the structure of the group. We call such a

presentation a . Conversely any
powerfully nilpotent presentation gives us a powerfully nilpotent group
G. We say that the presentation is if |G| =ny---n,.
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These relations determine the structure of the group. We call such a

presentation a . Conversely any
powerfully nilpotent presentation gives us a powerfully nilpotent group
G. We say that the presentation is if |G| =ny---n,.

Theorem 2.2 (T, Williams) Let p be an odd prime. The number of
powerfully nilpotent groups of exponent p?> and order p" is pon’+olm)

_ 9442
where o = =57
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These relations determine the structure of the group. We call such a

presentation a . Conversely any
powerfully nilpotent presentation gives us a powerfully nilpotent group
G. We say that the presentation is if |G| =ny---n,.

Theorem 2.2 (T, Williams) Let p be an odd prime. The number of
powerfully nilpotent groups of exponent p?> and order p" is pon’+olm)

_ 9442
where o = =57

Remark. The number of all powerful p-groups of exponent p? and
order p" is on the other hand p#"'+o(®),
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.

Defininition. Let G be a powerful p-group of powerful class ¢ and order
p". We define the of G to be the numberd =n — c.
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.

Defininition. Let G be a powerful p-group of powerful class ¢ and order

p". We define the of G to be the numberd =n — c.
The ancestry tree. The are the powerfully nilpotent groups.
The groups G and H are joined by a , H— G, iff

H = G/Z(G)? and G is not abelian.
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.

Defininition. Let G be a powerful p-group of powerful class ¢ and order

p". We define the of G to be the numberd =n — c.
The ancestry tree. The are the powerfully nilpotent groups.
The groups G and H are joined by a , H— G, iff

H = G/Z(G)? and G is not abelian.
Let p be a fixed prime. For any powerful p-group G we let r = r(G) be

the rank of G, ¢ = ¢(G) be the powerful class and p"(%), p¢(©) be the
order and exponent of G. As before the coclass is d(G) = n(G) — ¢(G).
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.

Defininition. Let G be a powerful p-group of powerful class ¢ and order

p". We define the of G to be the numberd =n — c.
The ancestry tree. The are the powerfully nilpotent groups.
The groups G and H are joined by a , H— G, iff

H = G/Z(G)? and G is not abelian.

Let p be a fixed prime. For any powerful p-group G we let r = r(G) be
the rank of G, ¢ = ¢(G) be the powerful class and p"(%), p¢(©) be the
order and exponent of G. As before the coclass is d(G) = n(G) — ¢(G).

Theorem 3.1 (T, Williams) For each prime p and non-negative integer

d, there are finitely many powerfully nilpotent p-group of powerful
coclass d. Furthermore r <d+1lande <d+ 1.
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.

Defininition. Let G be a powerful p-group of powerful class ¢ and order

p". We define the of G to be the numberd =n — c.
The ancestry tree. The are the powerfully nilpotent groups.
The groups G and H are joined by a , H— G, iff

H = G/Z(G)? and G is not abelian.

Let p be a fixed prime. For any powerful p-group G we let r = r(G) be
the rank of G, ¢ = ¢(G) be the powerful class and p"(%), p¢(©) be the
order and exponent of G. As before the coclass is d(G) = n(G) — ¢(G).

Theorem 3.1 (T, Williams) For each prime p and non-negative integer
d, there are finitely many powerfully nilpotent p-group of powerful
coclass d. Furthermore r <d+1lande <d+ 1.

Remark. As n < re < (d + 1)?, the two inequalities imply that there are
only finitely many G with powerful coclass d.
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4. Groups of maximal powerful class
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4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let ¢ be the
largest non-negative integer such that

oy

P=12:0)| =I5 & Z\(Gy
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Definition. Let G be a powerfully nilpotent p-group and let ¢ be the
largest non-negative integer such that

oy

P=12:0)| =I5 & Z\(Gy

We refer to T = Z,(G)” as the tail of G and t as the
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4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let ¢ be the
largest non-negative integer such that

oy

P=12:0)| =I5 & Z\(Gy

We refer to T = Z,(G)” as the tail of G and t as the

Definition. A powerful p-group has if the tail is G”.
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4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let ¢ be the
largest non-negative integer such that

QRN LY
Zl (G)'” thl (G)/’ ’
We refer to T = Z,(G)? as the tail of G and r as the

Definition. A powerful p-group has if the tail is G”.

Definition. A powerful p-group of rank r with maximal tail has
if the powerful classis 1 + r(r — 1)/2.
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4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let ¢ be the
largest non-negative integer such that

|=. = Z,(G)l’
ZGY ' Z (G

p=12(Gy| =]

We refer to T = Z,(G)? as the tail of G and r as the
Definition. A powerful p-group has if the tail is G”.

Definition. A powerful p-group of rank r with maximal tail has
if the powerful classis 1 + r(r — 1)/2.

Theorem 4.1 (T, Williams). Let r be a positive integer and p > r a
prime. There exists a powerfully nilpotent p-group of rank r that is of
maximal powerful class.
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Theorem 4.2 (T, Williams). Let G be a powerfully nilpotent p-group of
rank r where p > r that has maximal powerful class 1 + r(r — 1)/2.
There exists generators by, ..., b,_1,y such that

G=() - (br)- (braa),

With [G] = o(y)o(b1) - o(b,1), o(by) = p', o(y) = p'*!
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Theorem 4.2 (T, Williams). Let G be a powerfully nilpotent p-group of
rank r where p > r that has maximal powerful class 1 + r(r — 1)/2.
There exists generators by, ..., b,_1,y such that

G =)+ (ba) -+ (by),

with |G| = o(y)o(b1) - - - 0(by—1), o(b;) = p', o(y) = p'*! and where,

=
S
>
T
Vv
=
o
=
T
v v
v v
<
= -
<
I

is powerfully central.
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Theorem 4.2 (T, Williams). Let G be a powerfully nilpotent p-group of
rank r where p > r that has maximal powerful class 1 + r(r — 1)/2.
There exists generators by, ..., b,_1,y such that

G =)+ (ba) -+ (by),

with |G| = o(y)o(b1) - - - 0(by—1), o(b;) = p', o(y) = p'*! and where,

v v

is powerfully central. Furthermore

(&) [b1,y] = b, (23] = 85, (2] = By (1,3 = 07
(b) H=Q,(G) = (y*){b1) - - - (by—_1) p-e. G and strongly powerful.

) 6" <Z(G).
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5. Powerfully solvable groups
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5. Powerfully solvable groups

Definition. Let G be a finite p-group. We say that G is
if it has and ascending chain of subgroups

{I}=Hy<H; <---<H,=G

such that [H;, H;] < H?_, fori=1,...,n. The smallest possible n is the
of G.
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5. Powerfully solvable groups

Definition. Let G be a finite p-group. We say that G is
if it has and ascending chain of subgroups

{I}=Hy<H; <---<H,=G

such that [H;, H;] < H?_, fori=1,...,n. The smallest possible n is the
of G.

Theorem 2.2 (T, de las Heras) Let p be an odd prime. The number of
powerfully solvable groups of exponent p? and order p” is p(yn3+r)(n3>1
where a = *1%‘/5
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6. Subgroups of powerfully nilpotent groups
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6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of
exponent p?. There exists a powerfully nilpotent group H of exponent
p? and powerful nilpotency class 2 such that G is powerfully
embedded in H.
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6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of
exponent p?. There exists a powerfully nilpotent group H of exponent
p? and powerful nilpotency class 2 such that G is powerfully
embedded in H.

Remarks.
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6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of
exponent p?. There exists a powerfully nilpotent group H of exponent
p? and powerful nilpotency class 2 such that G is powerfully
embedded in H.

Remarks. (1) It follows that a powerfully embedded subgroup of a

powerfully nilpotent group of powerful nilpotency class 2 doesn’t have
to be powerfully solvable.
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6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of
exponent p?. There exists a powerfully nilpotent group H of exponent
p? and powerful nilpotency class 2 such that G is powerfully
embedded in H.

Remarks. (1) It follows that a powerfully embedded subgroup of a
powerfully nilpotent group of powerful nilpotency class 2 doesn’t have
to be powerfully solvable.

(2) A powerfully nilpotent group of powerful nilpotency class 2 can

have a powerfully nilpotent embedded subgroup of arbitrary large
powerful nilpotency class.
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6. Subgroups of powerfully nilpotent groups

Proposition 2.1.(T, de las Heras) Let G be any powerful p-group of
exponent p?. There exists a powerfully nilpotent group H of exponent
p? and powerful nilpotency class 2 such that G is powerfully
embedded in H.

Remarks. (1) It follows that a powerfully embedded subgroup of a
powerfully nilpotent group of powerful nilpotency class 2 doesn’t have
to be powerfully solvable.

(2) A powerfully nilpotent group of powerful nilpotency class 2 can
have a powerfully nilpotent embedded subgroup of arbitrary large
powerful nilpotency class.

Propostion 2.2.(T, de las Heras) Let G be any finite p-group of

nilpotency class 2. There exists a powerfully nilpotent group H of
powerful nilpotence class 2 that contains G as a subgroup.
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7. Groups of Type (2,...,2).
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7. Groups of Type (2,...,2).

The class P of groups with a powerful basis consisting of elements of
order p.
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7. Groups of Type (2,...,2).

The class P of groups with a powerful basis consisting of elements of
order p2. (Growth pie +o(r))
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7. Groups of Type (2,...,2).

The class P of groups with a powerful basis consisting of elements of
order p2. (Growth pie +o(r))

Theorem 5.1(T, de las Heras) (a) Let G be a powerfully nilpotent
group in P and H a powerful subgroup of G. Then H is powerfully
nilptotent of powerful nilpotence class at most the powerful
nilptotence class of G.
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7. Groups of Type (2,...,2).

The class P of groups with a powerful basis consisting of elements of
order p2. (Growth pie +o(r))

Theorem 5.1(T, de las Heras) (a) Let G be a powerfully nilpotent
group in P and H a powerful subgroup of G. Then H is powerfully
nilptotent of powerful nilpotence class at most the powerful
nilptotence class of G.

(b) Let G be a powerfully solvable group in P and H a powerful

subgroup of G. Then H is powerfully solvable of powerful derived
length at most the powerful derived length of G.
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8. Powerfully simple groups.

Gunnar Traustason Powerfully nilpotent groups



8. Powerfully simple groups.

Notation. H <p G stands for H pe Gand H,G € P.
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8. Powerfully simple groups.

Notation. H <p G stands for H pe Gand H,G € P.

Definition. G € P is if G#1and H <p G implies
that H = 1.
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8. Powerfully simple groups.

Notation. H <p G stands for H pe Gand H,G € P.

Definition. G € P is if G#1and H <p G implies
that H = 1.

Theorem(T, de las Heras)
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8. Powerfully simple groups.

Notation. H <p G stands for H pe Gand H,G € P.

Definition. G € P is if G#1and H <p G implies
that H = 1.

Theorem(T, de las Heras) Any two composition series for G € P have
the same composition factors.
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