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Initial settings

An automorphism α of a finite group G is said to be coprime if

(|G|, |α|) = 1.

Denote by

CG(α) the fixed-point subgroup {x ∈ G; xα = x};
IG(α) the set of all commutators g−1gα, where g ∈ G;

[G,α] the subgroup generated by IG(α).

Then G = [G,α]CG(α) and |IG(α)| = [G : CG(α)].

Vague duality between CG(α) and IG(α): since |G| = |CG(α)||IG(α)|, if
one of CG(α), IG(α) is large then the other is small.

If N is any α-invariant normal subgroup of G we have:

(i) CG/N (α) = CG(α)N/N , and IG/N (α) = {gN | g ∈ IG(α)};
(ii) If N = CN (α), then [G,α] centralizes N .



Influence of CG(α) on G

Theorem (Thompson, 1959)

If α has prime order and CG(α) = 1, then G is nilpotent.

This was generalized in several directions.

Theorem (Khukhro, 1990)

If G admits an automorphism α of prime order p with CG(α) of order m,
then G has a nilpotent subgroup of (m, p)-bounded index and p-bounded
class.

Theorem (Khukhro, 2008)

If G admits a coprime automorphism α of prime order p with CG(α) of
rank r, then G has characteristic subgroups R ≤ N such that N/R is
nilpotent of p-bounded class, while R and G/N have (p, r)-bounded ranks.

The rank of a finite group G is the least number r such that each
subgroup of G can be generated by at most r elements.



Dual problem with IG(α)

Also properties of IG(α) may strongly impact the structure of G.

If |IG(α)| ≤ m, then the order of [G,α] is m-bounded.

Since |IG(α)| ≤ m, the index of the centralizer [G : CG(α)] ≤ m.
We can choose a normal subgroup N ≤ CG(α) such that [G : N ] ≤ m!
Note that [G,α] commutes with N and so [[G,α] : Z([G,α])] ≤ m!.
The Schur theorem yields that |[G,α]′| is m-bounded.
We can pass to G/[G,α]′ and assume that [G,α] is abelian.
Then [G,α] = IG(α) and so |[G,α]| ≤ m.



A rank condition on the set IG(α)

The usual concept of rank does not apply to IG(α).
We consider the condition that each subgroup of G generated by a subset
of IG(α) can be generated by at most r elements.

Theorem 1

Let G be a finite group admitting a coprime automorphism α of order e
and suppose that any subgroup generated by a subset of IG(α) can be
generated by r elements. Then [G,α] has (e, r)-bounded rank.

The proof is rather technical and proceeds in several steps:

the result for nilpotent groups: reduction to p-groups, powerful
p-groups;
for soluble groups: one key step is to show that there exists an
(e, r)-bounded number f such that the fth term of the derived series
of [G,α] is nilpotent (Zassenhaus’ theorem on the derived length of
any soluble subgroup of GLn(k) and Hartley-Isaacs result on
representation theory).Then the Fitting height h([G,α]) is
(e, r)-bounded and [G,α] is generated by (e, r)-boundedly many
elements from IG(α);



the general case: after a long reduction it is sufficient to prove the
result in the case where G is soluble-by-semisimple-by-soluble. It
depends on CFSG, on facts about conjugacy classes and characters of
PGL2(q) and also on the following result (of independent interest)

Theorem 2

Let G be a finite group admitting a coprime automorphism α such that
g−1gα has odd order for every g ∈ G. Then [G,α] ≤ O(G).

Here O(G) stands for the maximal normal subgroup of odd order of G.
The assumption that α is coprime in Theorem 2 is really necessary.



Some conditions on solubility for [G,α]

It is well known that if any pair of elements of a finite group generates a
soluble subgroup, then the whole group is soluble (Thompson, 1968).

Theorem 3

Let G be a finite group admitting a coprime automorphism α. If any pair
of elements from IG(α) generates a soluble subgroup, then [G,α] is
soluble.



More on solubility criteria

In a very recent work (arXiv:2206.03403) we get more interested on
criteria for solubility and nilpotency of [G,α].

For technical reasons we look at a different set of elements

Let JG(α) denote the set of all commutators [x, α], where x belongs to an
α-invariant Sylow subgroup of G.

JG(α) ⊂ IG(α), and

the elements of JG(α) have prime power order;

JG(α) is a generating set for [G,α];

If N is any α-invariant normal subgroup of G, we have
JG/N (α) = {gN | g ∈ JG(α)}.

It turns out that properties of G are pretty much determined by those of
subgroups generated by elements of coprime orders from JG(α).

https://doi.org/10.48550/arXiv.2206.03403


More on solubility criteria (cont.)

We extend Theorem 3 as follows

Theorem 4

Let G be a finite group admitting a coprime automorphism α. Then [G,α]
is soluble if and only if any subgroup generated by a pair of elements of
coprime orders from JG(α) is soluble.



Insight of the proof

Suppose the result is false and let G = [G,α] be a counterexample of
minimal order. Recall that by hypothesis any subgroup generated by a pair
of elements of coprime orders from JG(α) is soluble.

We may assume that α has prime order, say e (arguing by induction on
the order of α).

Our goal: to show that there are α-invariant subgroups P and Q of
coprime prime power orders such that [x, α] and [y, α] generate a
nonsoluble subgroup for some x ∈ P and y ∈ Q.

Let M be a minimal α-invariant normal subgroup of G. By induction
G/M is soluble. It is enough to consider M semisimple. Then M is a
direct product of isomorphic simple groups, say M = S1 × · · · × Sk, and α
transitively permutes the simple factors. Because of minimality G =M .



After some work we are reduced to the case where G is simple.

G = L(q) is a group of Lie type, say over the field of q = ps elements and
α is a field automorphism of coprime order e. The centralizer CG(α) is the
group of the same Lie type (and Lie rank) defined over the subfield of
q0 = ps/e elements.

For any α-invariant subgroup H of G the subgroup [H,α] is soluble.

Note that s is a e-power. Write s = s1s2 where s1 is a e-power and s2 is
coprime to e. Since α nontrivially acts on the subgroup L(ps1), because of
minimality we conclude that q = ps1 .

We eventually can reduce to consider

G = PSL2(q) with q = ps for s odd and s ≥ 5 or

G = Sz(q) with q = 2s for odd s > 1.



If G = PSL2(q), take U to be an α-invariant Sylow p-subgroup and note
that [U,α] 6= 1. Any element in [U,α] is a commutator [u, α] with u ∈ U .

Let r be a primitive prime divisor of q + 1, i.e. r does not divide pi + 1 for
i < s (that always exists by Zsigmondy’s Theorem -1892).
Let R be an α-invariant Sylow r-subgroup. Since r does not divide the
order of CG(α) (and of any subfield subgroup), we have [R,α] = R.

Let 1 6= x ∈ [R,α] and let 1 6= y ∈ [U,α]. It follows that G = 〈x, y〉 since
there is no proper subgroup of order divisible by pr, a contradiction.



If G = Sz(q), where q = 2s for odd s > 1. |G| = q2(q − 1)(q2 + 1).

The maximal subgroups of G are (up to conjugacy) a Borel subgroup of
order q2(q − 1), a dihedral subgroup of order 2(q − 1), subfield subgroups,
and two subgroups of the form T.4, where T is cyclic of order q ± l + 1
with l2 = 2q, i.e. of order 2s ± 2(s+1)/2 + 1. Note that
(q + l + 1)(q − l + 1) = q2 + 1.

Let r be a primitive prime divisor of q2 + 1 = 22s + 1. Let R be an
α-invariant Sylow r-subgroup.
Let t be a primitive prime divisor of q− 1 = 2s− 1. Then t does not divide
the order of any subfield subgroup and so also t does not divide q2 + 1.
Let S be an α-invariant Sylow t-subgroup.

There is no proper subgroup of G whose order is divisible by rt Neither of
R and S intersects CG(α), whence [R,α] = R and [S, α] = S. Moreover
any element in R or S is a commutator with α. It follows that G is
generated by [x, α] and [y, α] with x ∈ R and y ∈ S, a contradiction.



Thank you!


	

