Coprime Automorphisms of Finite Groups

Cristina Acciarri
University of Modena and Reggio Emilia
22/6/22 - Ischia Group Theory 2022

Joint work with

Robert Guralnick (USC)

Pavel Shumyatsky (UnB)

Initial settings

An automorphism α of a finite group G is said to be coprime if

$$
(|G|,|\alpha|)=1
$$

Denote by

- $C_{G}(\alpha)$ the fixed-point subgroup $\left\{x \in G ; x^{\alpha}=x\right\}$;
- $I_{G}(\alpha)$ the set of all commutators $g^{-1} g^{\alpha}$, where $g \in G$;
- $[G, \alpha]$ the subgroup generated by $I_{G}(\alpha)$.

Then $G=[G, \alpha] C_{G}(\alpha) \quad$ and $\quad\left|I_{G}(\alpha)\right|=\left[G: C_{G}(\alpha)\right]$.
Vague duality between $C_{G}(\alpha)$ and $I_{G}(\alpha)$: since $|G|=\left|C_{G}(\alpha)\right|\left|I_{G}(\alpha)\right|$, if one of $C_{G}(\alpha), I_{G}(\alpha)$ is large then the other is small.

If N is any α-invariant normal subgroup of G we have:
(i) $C_{G / N}(\alpha)=C_{G}(\alpha) N / N$, and $I_{G / N}(\alpha)=\left\{g N \mid g \in I_{G}(\alpha)\right\}$;
(ii) If $N=C_{N}(\alpha)$, then $[G, \alpha]$ centralizes N.

Influence of $C_{G}(\alpha)$ on G

Theorem (Thompson, 1959)

If α has prime order and $C_{G}(\alpha)=1$, then G is nilpotent.
This was generalized in several directions.

Theorem (Khukhro, 1990)

If G admits an automorphism α of prime order p with $C_{G}(\alpha)$ of order m, then G has a nilpotent subgroup of (m, p)-bounded index and p-bounded class.

Theorem (Khukhro, 2008)

If G admits a coprime automorphism α of prime order p with $C_{G}(\alpha)$ of rank r, then G has characteristic subgroups $R \leq N$ such that N / R is nilpotent of p-bounded class, while R and G / N have (p, r)-bounded ranks.

The rank of a finite group G is the least number r such that each subgroup of G can be generated by at most r elements.

Dual problem with $I_{G}(\alpha)$

Also properties of $I_{G}(\alpha)$ may strongly impact the structure of G.

If $\left|I_{G}(\alpha)\right| \leq m$, then the order of $[G, \alpha]$ is m-bounded.

Since $\left|I_{G}(\alpha)\right| \leq m$, the index of the centralizer $\left[G: C_{G}(\alpha)\right] \leq m$. We can choose a normal subgroup $N \leq C_{G}(\alpha)$ such that $[G: N] \leq m$! Note that $[G, \alpha]$ commutes with N and so $[[G, \alpha]: Z([G, \alpha])] \leq m$!. The Schur theorem yields that $\left|[G, \alpha]^{\prime}\right|$ is m-bounded. We can pass to $G /[G, \alpha]^{\prime}$ and assume that $[G, \alpha]$ is abelian. Then $[G, \alpha]=I_{G}(\alpha)$ and so $|[G, \alpha]| \leq m$.

A rank condition on the set $I_{G}(\alpha)$

The usual concept of rank does not apply to $I_{G}(\alpha)$.
We consider the condition that each subgroup of G generated by a subset of $I_{G}(\alpha)$ can be generated by at most r elements.

Theorem 1

Let G be a finite group admitting a coprime automorphism α of order e and suppose that any subgroup generated by a subset of $I_{G}(\alpha)$ can be generated by r elements. Then $[G, \alpha]$ has (e, r)-bounded rank.

The proof is rather technical and proceeds in several steps:

- the result for nilpotent groups: reduction to p-groups, powerful p-groups;
- for soluble groups: one key step is to show that there exists an (e, r)-bounded number f such that the f th term of the derived series of $[G, \alpha]$ is nilpotent (Zassenhaus' theorem on the derived length of any soluble subgroup of $G L_{n}(k)$ and Hartley-Isaacs result on representation theory). Then the Fitting height $h([G, \alpha])$ is (e, r)-bounded and $[G, \alpha]$ is generated by (e, r)-boundedly many elements from $I_{G}(\alpha) ;$
- the general case: after a long reduction it is sufficient to prove the result in the case where G is soluble-by-semisimple-by-soluble. It depends on CFSG, on facts about conjugacy classes and characters of $P G L_{2}(q)$ and also on the following result (of independent interest)

Theorem 2

Let G be a finite group admitting a coprime automorphism α such that $g^{-1} g^{\alpha}$ has odd order for every $g \in G$. Then $[G, \alpha] \leq O(G)$.

Here $O(G)$ stands for the maximal normal subgroup of odd order of G. The assumption that α is coprime in Theorem 2 is really necessary.

Some conditions on solubility for $[G, \alpha]$

It is well known that if any pair of elements of a finite group generates a soluble subgroup, then the whole group is soluble (Thompson, 1968).

Theorem 3

Let G be a finite group admitting a coprime automorphism α. If any pair of elements from $I_{G}(\alpha)$ generates a soluble subgroup, then $[G, \alpha]$ is soluble.

More on solubility criteria

In a very recent work (arXiv:2206.03403) we get more interested on criteria for solubility and nilpotency of $[G, \alpha]$.

For technical reasons we look at a different set of elements

Let $J_{G}(\alpha)$ denote the set of all commutators $[x, \alpha]$, where x belongs to an α-invariant Sylow subgroup of G.

- $J_{G}(\alpha) \subset I_{G}(\alpha)$, and
- the elements of $J_{G}(\alpha)$ have prime power order;
- $J_{G}(\alpha)$ is a generating set for $[G, \alpha]$;
- If N is any α-invariant normal subgroup of G, we have $J_{G / N}(\alpha)=\left\{g N \mid g \in J_{G}(\alpha)\right\}$.

It turns out that properties of G are pretty much determined by those of subgroups generated by elements of coprime orders from $J_{G}(\alpha)$.

More on solubility criteria (cont.)

We extend Theorem 3 as follows

Theorem 4

Let G be a finite group admitting a coprime automorphism α. Then $[G, \alpha]$ is soluble if and only if any subgroup generated by a pair of elements of coprime orders from $J_{G}(\alpha)$ is soluble.

Insight of the proof

Suppose the result is false and let $G=[G, \alpha]$ be a counterexample of minimal order. Recall that by hypothesis any subgroup generated by a pair of elements of coprime orders from $J_{G}(\alpha)$ is soluble.

We may assume that α has prime order, say e (arguing by induction on the order of α).

Our goal: to show that there are α-invariant subgroups P and Q of coprime prime power orders such that $[x, \alpha]$ and $[y, \alpha]$ generate a nonsoluble subgroup for some $x \in P$ and $y \in Q$.

Let M be a minimal α-invariant normal subgroup of G. By induction G / M is soluble. It is enough to consider M semisimple. Then M is a direct product of isomorphic simple groups, say $M=S_{1} \times \cdots \times S_{k}$, and α transitively permutes the simple factors. Because of minimality $G=M$.

After some work we are reduced to the case where G is simple.
$G=L(q)$ is a group of Lie type, say over the field of $q=p^{s}$ elements and α is a field automorphism of coprime order e. The centralizer $C_{G}(\alpha)$ is the group of the same Lie type (and Lie rank) defined over the subfield of $q_{0}=p^{s / e}$ elements.
For any α-invariant subgroup H of G the subgroup $[H, \alpha]$ is soluble.
Note that s is a e-power. Write $s=s_{1} s_{2}$ where s_{1} is a e-power and s_{2} is coprime to e. Since α nontrivially acts on the subgroup $L\left(p^{s_{1}}\right)$, because of minimality we conclude that $q=p^{s_{1}}$.

We eventually can reduce to consider

- $G=\operatorname{PSL}_{2}(q)$ with $q=p^{s}$ for s odd and $s \geq 5$ or
- $G=\operatorname{Sz}(q)$ with $q=2^{s}$ for odd $s>1$.

If $G=\mathrm{PSL}_{2}(q)$, take U to be an α-invariant Sylow p-subgroup and note that $[U, \alpha] \neq 1$. Any element in $[U, \alpha]$ is a commutator $[u, \alpha]$ with $u \in U$.

Let r be a primitive prime divisor of $q+1$, i.e. r does not divide $p^{i}+1$ for $i<s$ (that always exists by Zsigmondy's Theorem -1892).
Let R be an α-invariant Sylow r-subgroup. Since r does not divide the order of $C_{G}(\alpha)$ (and of any subfield subgroup), we have $[R, \alpha]=R$.

Let $1 \neq x \in[R, \alpha]$ and let $1 \neq y \in[U, \alpha]$. It follows that $G=\langle x, y\rangle$ since there is no proper subgroup of order divisible by $p r$, a contradiction.

If $G=\operatorname{Sz}(q)$, where $q=2^{s}$ for odd $s>1 .|G|=q^{2}(q-1)\left(q^{2}+1\right)$.
The maximal subgroups of G are (up to conjugacy) a Borel subgroup of order $q^{2}(q-1)$, a dihedral subgroup of order $2(q-1)$, subfield subgroups, and two subgroups of the form $T .4$, where T is cyclic of order $q \pm l+1$ with $l^{2}=2 q$, i.e. of order $2^{s} \pm 2^{(s+1) / 2}+1$. Note that $(q+l+1)(q-l+1)=q^{2}+1$.

Let r be a primitive prime divisor of $q^{2}+1=2^{2 s}+1$. Let R be an α-invariant Sylow r-subgroup.
Let t be a primitive prime divisor of $q-1=2^{s}-1$. Then t does not divide the order of any subfield subgroup and so also t does not divide $q^{2}+1$.
Let S be an α-invariant Sylow t-subgroup.

There is no proper subgroup of G whose order is divisible by $r t$ Neither of R and S intersects $C_{G}(\alpha)$, whence $[R, \alpha]=R$ and $[S, \alpha]=S$. Moreover any element in R or S is a commutator with α. It follows that G is generated by $[x, \alpha]$ and $[y, \alpha]$ with $x \in R$ and $y \in S$, a contradiction.

Thank you!

