Elementary abelian regular subgroups of $Sym(2^n)$

Riccardo Aragona joint work^{*} with R. Civino, N. Gavioli, C. M. Scoppola

University of L'Aquila

Ischia Group Theory 2022

^{*}Aragona, R., Civino, R., Gavioli, N., Scoppola, C. M.: Regular subgroups with large intersection. Ann. Mat. Pura Appl. 198(6), 2043–2057 (2019)

Aragona, R., Civino, R., Gavioli, N., Scoppola, C.M.: A chain of normalizers in the Sylow 2-subgroups of the symmetric group on 2^n letters. Indian J. Pure Appl. Math. 52(3), 735–746 (2021)

Conjugates of an elementary abelian regular subgroup of $Sym(2^n)$

Let $V \stackrel{\text{\tiny def}}{=} (\mathbb{F}_2)^n$ and T be the translation group on V,

$$T \stackrel{\text{\tiny def}}{=} \left\{ \sigma_b \mid b \in V, x \mapsto x + b \right\},\$$

then

$$a+b=a\sigma_b.$$

Conjugates of an elementary abelian regular subgroup of $Sym(2^n)$

Let $V \stackrel{\text{\tiny def}}{=} (\mathbb{F}_2)^n$ and T be the translation group on V,

$$T \stackrel{\text{\tiny def}}{=} \left\{ \sigma_b \mid b \in V, x \mapsto x + b \right\},\$$

then

$$a + b = a\sigma_b.$$

Analogously, if $T^g < \text{Sym}(V)$ is conjugated to T in Sym(V), i.e. another elementary abelian regular subgroup of Sym(V).

Let τ_b be the unique element in T^g which maps 0 into b, then

$$T^{g}=\left\{ \tau_{b}\mid b\in V\right\} ,$$

and another operation induced by T^g is defined on V as

$$a \circ b \stackrel{\text{\tiny def}}{=} a \tau_b$$

Let $V \stackrel{\text{\tiny def}}{=} (\mathbb{F}_2)^n$ be the message space Block cipher

A block cipher C is a set of permutations of V (encryption functions)

 $\{\varphi_k\}_{k\in\mathcal{K}}\subseteq \operatorname{Sym}(V),$

each of which is individuated by a key k in the space $\mathcal{K} = (\mathbb{F}_2)^{\kappa}$.

Let $V \stackrel{\text{\tiny def}}{=} (\mathbb{F}_2)^n$ be the message space Block cipher

A block cipher C is a set of permutations of V (encryption functions)

 $\{\varphi_k\}_{k\in\mathcal{K}}\subseteq \operatorname{Sym}(V),$

each of which is individuated by a key k in the space $\mathcal{K} = (\mathbb{F}_2)^{\kappa}$.

Each encryption function is usually obtained as the composition of different layers. Some of those layers provide entropy to the encryption process by bitwise addition mod 2 with round keys in V, computed starting from the user-selected key in \mathcal{K} .

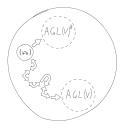
The encryption functions should be chosen judiciously: some choices may offer the possibility for a successful attack

In particular, the encryption functions should lie "far" from the set $\operatorname{AGL}(V) \cong N_{\operatorname{Sym}(V)}(\mathcal{T})$

for avoiding, for example, differential cryptanalysis*.

^{*}Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Crypt. 4(1), 3–72 (1991)

However, several isomorphic copies of AGL(V), its conjugates, are contained in Sym(V), and so the encryptions functions could be approximate by elements of $AGL(V)^g \cong N_{Sym(V)}(T^g)$, for some $g \in Sym(V)$



This fact is exploited by Civino, Blondeau and Sala^{**} for designing a cipher which is resistant to the classical differential cryptanalysis but may be attacked using the operation on V created from $T^g < AGL(V)$, for some $g \in Sym(V)$ such that $|T \cap T^g| = 2^{n-2}$.

^{**}Civino, R., Blondeau, C., Sala, M.: Differential attacks: using alternative operations. Designs Codes Cryptogr. 87(2–3), 225–247 (2019)

 T^g conjugated to T such that $|T \cap T^g| = 2^{n-2}$, are called second-maximal intersection subgroups (2MI)

 $^{^{*}}$ Calderini, M., Civino, R., Sala, M.: On properties of translation groups in the affine general linear group with applications to cryptography. J. Algebra 569, 658–680 (2021)

 T^g conjugated to T such that $|T \cap T^g| = 2^{n-2}$, are called second-maximal intersection subgroups (2MI)

On the one hand, it is known^{*} that $|T \cap T^g| \leq 2^{n-2}$.

 $^{^{*}}$ Calderini, M., Civino, R., Sala, M.: On properties of translation groups in the affine general linear group with applications to cryptography. J. Algebra 569, 658–680 (2021)

 T^g conjugated to T such that $|T \cap T^g| = 2^{n-2}$, are called second-maximal intersection subgroups (2MI)

On the one hand, it is known^{*} that $|T \cap T^g| \leq 2^{n-2}$.

On the other hand

Theorem (A, Civino, Gavioli, Scoppola)

Let $g \in Sym(V)$ such that T^g is a 2MI subgroup, then $T^g < AGL(V)$

 $^{^{*}}$ Calderini, M., Civino, R., Sala, M.: On properties of translation groups in the affine general linear group with applications to cryptography. J. Algebra 569, 658–680 (2021)

 T^g conjugated to T such that $|T \cap T^g| = 2^{n-2}$, are called second-maximal intersection subgroups (2MI)

On the one hand, it is known^{*} that $|T \cap T^g| \leq 2^{n-2}$.

On the other hand

Theorem (A, Civino, Gavioli, Scoppola)

Let $g \in Sym(V)$ such that T^g is a 2MI subgroup, then $T^g < AGL(V)$

In the case when |T ∩ T^g| < 2ⁿ⁻², there are some examples for which T^g < Sym(V) \ AGL(V)</p>

 $^{^{*}}$ Calderini, M., Civino, R., Sala, M.: On properties of translation groups in the affine general linear group with applications to cryptography. J. Algebra 569, 658–680 (2021)

 T^g conjugated to T such that $|T \cap T^g| = 2^{n-2}$, are called second-maximal intersection subgroups (2MI)

On the one hand, it is known^{*} that $|T \cap T^g| \leq 2^{n-2}$.

On the other hand

Theorem (A, Civino, Gavioli, Scoppola)

Let $g \in Sym(V)$ such that T^g is a 2MI subgroup, then $T^g < AGL(V)$

- In the case when |T ∩ T^g| < 2ⁿ⁻², there are some examples for which T^g < Sym(V) \ AGL(V)</p>
- 2MI subgroups play a role in the way Sylow 2-subgroups of AGL(V) are structured

 $^{^{*}}$ Calderini, M., Civino, R., Sala, M.: On properties of translation groups in the affine general linear group with applications to cryptography. J. Algebra 569, 658–680 (2021)

2MI subgroups and the Sylow 2-subgroups of AGL(V)

Theorem (A, Civino, Gavioli, Scoppola)

Every Sylow 2-subgroup Σ of AGL(V) contains exactly one elementary abelian regular subgroup T_{Σ} intersecting T in a second-maximal subgroup of T and which is normal in Σ

... conversely

Theorem (A, Civino, Gavioli, Scoppola)

If \overline{T} is an elementary abelian regular subgroup of AGL(V) such that $|\overline{T} \cap T| = 2^{n-2}$, then there exists a Sylow 2-subgroup Σ of AGL(V) such that $\overline{T} = T_{\Sigma} \leq \Sigma$

Elementary abelian regular normal subgroups in the Σ

Theorem (A, Civino, Gavioli, Scoppola)

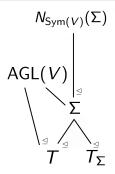
Let $g \in Sym(V)$ and let Σ a Sylow 2-subgroup be of AGL(V) containing T^g . The subgroup T^g is normal in Σ if and only if $T^g \in \{T, T_{\Sigma}\}$

Sylow 2-subgroups and their normalizers

Corollary

Every $g\in \textit{N}_{Sym(\textit{V})}(\Sigma)\setminus \mathsf{AGL}(\textit{V})$ interchanges by conjugation T and T_Σ

Theorem (A, Civino, Gavioli, Scoppola) If Σ is a Sylow 2-subgroup of AGL(V), then $|N_{Svm(V)}(\Sigma) : \Sigma| = 2$



Self-normalising

It was already know to P. Hall that the Sylow 2-subgroups of Sym(V) are self-normalising. Similarly:

Theorem (A, Civino, Gavioli, Scoppola)

If Σ is a Sylow 2-subgroup of AGL(V), then $N_{AGL(V)}(\Sigma) = \Sigma$.

Proof.

Since $|N_{\text{Sym}(V)}(\Sigma) : \Sigma| = 2$, if $|\text{AGL}(V)| = 2^m t$, with t an odd integer, then we have $|\Sigma| = 2^m$ and $|N_{\text{Sym}(V)}(\Sigma)| = 2^{m+1}$. Since $N_{\text{AGL}(V)}(\Sigma) \le \text{AGL}(V)$ and $N_{\text{AGL}(V)}(\Sigma) \le N_{\text{Sym}(V)}(\Sigma)$, then $|N_{\text{AGL}(V)}(\Sigma)| = 2^m$.

A normalizer chain

Let S_n be a Sylow 2-subgroup of $Sym(2^n)$. Notice that

$$\Sigma_n = \operatorname{AGL}(V) \cap S_n = N_{\operatorname{Sym}(2^n)}(T) \cap S_n = N_{S_n}(T)$$

A normalizer chain

Let S_n be a Sylow 2-subgroup of $Sym(2^n)$. Notice that

$$\Sigma_n = \operatorname{AGL}(V) \cap S_n = N_{\operatorname{Sym}(2^n)}(T) \cap S_n = N_{S_n}(T)$$

Let us define the sequence $\{N_n^k\}_{k\geq 0}$, where

$$N_n^0 \stackrel{\text{\tiny def}}{=} \Sigma_n, \quad N_n^1 \stackrel{\text{\tiny def}}{=} N_{\operatorname{Sym}(2^n)}(\Sigma_n),$$

and recursively, for k > 1,

$$N_n^k \stackrel{\text{\tiny def}}{=} N_{\operatorname{Sym}(2^n)}(N_n^{k-1}).$$

A chain of 2-groups

Theorem (A, Civino, Gavioli, Scoppola)

For every $k \ge 1$, we have $N_n^k = N_{S_n}(N_n^{k-1})$. In particular, N_n^k is a 2-group.

Spoiler of Norberto's talk

Using GAP we have computed $|N_n^i:N_n^{i-1}|$ up to n=11, and we have obtained the following table

n	2	3	4	5	6	7	8	9	10	11	
$\log_2 \Sigma_n $	3	6	10	15	21	28	36	45	55	66	
$\log_2 N_n^1 $	-	7	11	16	22	29	37	46	56	67	+1
$\log_2 N_n^2 $	-	-	13	18	24	31	39	48	58	69	+2
$\log_2 N_n^3 $	-	-	14	22	28	35	43	52	62	73	+4
$\log_2 N_n^4 $	-	-	15	23	35	42	50	59	69	80	+7
$\log_2 N_n^5 $	-	-	-	25	37	53	61	70	80	91	+11
$\log_2 N_n^6 $	-	-	-	27	41	57	77	86	96	107	+16
$\log_2 N^7_{,n} $	-	-	-	28	45	64	84	109	119	130	+23
$\log_2 N_n^8 $	-	-	-	29	46	67	89	113	151	162	+32
$\log_2 N_n^9 $	-	-	-	30	47	71	95	122	155	205	+43

The logarithm of the size of the normalizers, when $n \leq 11$

Spoiler of Norberto's talk

We looked up at *The On-Line Encyclopedia of Integer Sequences* at https://oeis.org/A317910 and found out that the numbers that appear in the last column, i.e. $\log_2 |N_n^i : N_n^{i-1}|$ with $1 \le i \le n-2$, coincide with the (i+2)-th terms of the sequence of the partial sums $\{a_j\}_{j\ge 1}$ of the sequence $\{b_j\}_{j\ge 1}$ counting the number of partitions of j into at least two distinct parts.

	j	1	2	3	4	5	6	7	8	9	10	11	12	13	14
_	bj	0	0	1	1	2	3	4 11	5	7	9	11	14	17	21
	a _j	0	0	1	2	4	7	11	16	23	32	43	57	74	95

First values of the sequences a_j and b_j

Thanks for your attention!