Grading switching for modular non-associative algebras

Marina Avitabile

Università di Milano - Bicocca

Ischia Group Theory 2022

- Grading switching tool:
 - early version based on the Artin-Hasse exponential series (due to Sandro Mattarei (University of Lincoln, UK))
 - general version based on certain Laguerre polynomials (joint work with S. Mattarei)
- Motivation
- Further directions: generalized finite polylogarithms (joint work with S. Mattarei)

Let A be a (finite-dimensional) non-associative algebra over a field ${\mathbb F}$

 A derivation of A is a linear map D : A → A such that D ∘ m = m ∘ (D ⊗ id + id ⊗D), where m : A ⊗ A → A is the multiplication map.

Lemma

Assume char(\mathbb{F}) = 0. If *D* is a nilpotent derivation of *A*, then $\exp(D) = \sum_{i=0}^{\infty} (D^i/i!)$ is an automorphism of *A*.

- *Proof:* set $X = D \otimes id$ and $Y = id \otimes D$ and use that $exp(X) \cdot exp(Y) = exp(X + Y)$ when X and Y commute.
- For $F(X) \in \mathbb{F}[[X]]$ with F'(0) = 1 either the functional equation $F(X + Y) = F(X) \cdot F(Y)$ or the differential equation F'(X) = F(X) determine $F(X) = \exp(X)$.

The exponential of a derivation

From now on assume $\operatorname{char}(\mathbb{F}) = p > 0$

• if $D^p = 0$

$$\exp(D) = \sum_{i=0}^{p-1} \frac{D^i}{i!}$$

• for every derivation D, consider the truncated exponential

$$\mathsf{E}(D) = \sum_{i=0}^{p-1} \frac{D^i}{i!}$$

Direct computation shows that

$$E(D)(a) \cdot E(D)(b) - E(D)(ab) = \sum_{t=p}^{2p-2} \sum_{i=t+1-p}^{p-1} \frac{(D^{i}a)(D^{t-i}b)}{i!(t-i)!}$$
(1)

for every $a, b \in A$. In particular, if p is odd and $D^{\frac{p+1}{2}} = 0$, then $E(D) = \exp(D)$ is an automorphism of A.

Marina Avitabile (MiB)

The truncated exponential $E(X) = \sum_{i=0}^{p-1} X^i / i!$ satisfies the congruence

$$\mathsf{E}(X) \cdot \mathsf{E}(Y) \equiv \mathsf{E}(X+Y) \left(1 + \sum_{i=1}^{p-1} (-1)^i X^i Y^{p-i} / i \right) \pmod{X^p, Y^p}$$

in the polynomial ring $\mathbb{F}_p[X, Y]$. Setting $X = D \otimes \text{id}$ and $Y = \text{id} \otimes D$ we recover Equation (1)

$$E(D)a \cdot E(D)b - E(D)(ab) = \sum_{t=p}^{2p-2} \sum_{i=t+1-p}^{p-1} \frac{(D^ia)(D^{t-i}b)}{i!(t-i)!}.$$

E(D) has the property of sending a grading of A into another grading of A

Gradings of non-associative algebras

• Grading: direct sum decomposition $A = \bigoplus_{g \in G} A_g$, G an abelian group, such that $A_g A_h \subseteq A_{g+h}$

Theorem (Grading switching with $D^{p} = 0$, S. Mattarei)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D be a derivation of A, homogeneous of degree d, that is D(A_k) ⊆ A_{k+d}, for every k
- let $m \mid pd$ and $D^p = 0$

Then

$$A = \oplus_k \exp(D)A_k$$

is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

Gradings of non-associative algebras

Theorem (Grading switching with $D^p = 0$, S. Mattarei)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D be a derivation of A, homogeneous of degree d, with m | pd such that D^p = 0.

Then

$$A = \oplus_k \exp(D)A_k$$

is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

Proof.

Check that $\exp(D)A_s \cdot \exp(D)A_t \subseteq \exp(D)A_{s+t}$. Let $a \in A_s$ and $b \in A_t$, then $D^i(a) \cdot D^{p-i}(b) \in A_{s+t+pd} = A_{s+t}$. Then

$$\exp(D)a \cdot \exp(D)b = \underbrace{\exp(D)(ab)}_{\exp(D)(A_{s+t})} + \underbrace{\exp(D)\left(\sum_{i=0}^{p-1} \frac{(-1)^i}{i} D^i a \cdot D^{p-i} b\right)}_{\exp(D)(A_{s+t})}$$

Grading switching tool: a technique for modular, non-associative algebras, whose aim is to produce a new grading of an algebra from a given one

•
$$\exp(D) = \mathsf{E}(D)$$
 with $D^p = 0$

- Tensor product device: $X = D \otimes id$ and $Y = id \otimes D$
- The congruence

$$\mathsf{E}(X) \cdot \mathsf{E}(Y) \equiv \mathsf{E}(X+Y) \left(1 + \sum_{i=1}^{p-1} (-1)^i X^i Y^{p-i} / i \right) \pmod{X^p, Y^p}$$

in the polynomial ring $\mathbb{F}_{p}[X, Y]$.

Artin-Hasse exponential of a derivation

The Artin-Hasse exponential series is defined as

$$\mathsf{E}_{p}(X) = \exp\left(\sum_{i=0}^{\infty} X^{p^{i}}/p^{i}\right) = \prod_{i=0}^{\infty} \exp(X^{p^{i}}/p^{i}) \in \mathbb{Z}_{(p)}[[X]]$$

Theorem (S. Mattarei)

There exist $a_{ij} \in \mathbb{F}_p$ with $a_{ij} = 0$ unless $p \mid i + j$, such that

$$\mathsf{E}_{p}(X) \cdot \mathsf{E}_{p}(Y) = \mathsf{E}_{p}(X+Y) \Big(1 + \sum_{i,j=1}^{\infty} \mathsf{a}_{ij} X^{i} Y^{j} \Big)$$

in the power series ring $\mathbb{F}_p[[X, Y]]$.

Grading-switching with D nilpotent

Let D be a nilpotent derivation of A, thus $E_p(D)$ is a finite sum

Theorem (Grading-switching with D nilpotent, S. Mattarei)

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D be a nilpotent derivation of A, homogeneous of degree d with m | pd.

Then

$$A = \oplus_k \mathsf{E}_p(D)A_k$$

is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

The classical (generalized) Laguerre polynomial of degree $n \ge 0$ is defined as

$$L_n^{(\alpha)}(X) = \sum_{k=0}^n \binom{\alpha+n}{n-k} \frac{(-X)^k}{k!} \in \mathbb{Q}[\alpha, X].$$

• for
$$\alpha > -1$$
 and $n \neq m$

$$\int_0^\infty X^\alpha \exp(-X) L_n^{(\alpha)}(X) L_m^{(\alpha)}(X) dX = 0$$

• $Y = L_n^{(\alpha)}(X) \in \mathbb{R}[X]$ satisfies the differential equation

$$XY'' + (\alpha + 1 - X)Y' + nY = 0$$

Laguerre polynomials modulo p

Fixed a prime p, set n = p - 1

$$L_{p-1}^{(\alpha)}(X) = (1-\alpha^{p-1})\sum_{k=0}^{p-1} \frac{X^k}{(1+\alpha)(2+\alpha)\cdots(k+\alpha)} \in \mathbb{F}_p[\alpha, X].$$

Special cases:

•
$$\alpha = 0$$

 $L_{p-1}^{(0)}(X) = \sum_{k=0}^{p-1} \frac{X^k}{k!} = \mathsf{E}(X)$

• $\alpha = -\sum_{i=1}^{\infty} X^{p^i}$

$$L_{p-1}^{(-\sum_{i=1}^{\infty} X^{p^{i}})}(X) = \mathsf{E}_{p}(X)G(X^{p})$$

for some $G(X) \in 1 + X \mathbb{F}_{p}[[X]]$

A modular differential equation

The polynomial $L_{p-1}^{(\alpha)}(X)$ satisfies the modular differential equation

$$X\frac{d}{dX}(L_{p-1}^{(\alpha)}(X)) = (X-\alpha)L_{p-1}^{(\alpha)}(X) + X^p - (\alpha^p - \alpha)$$

• Special cases:

• $\alpha = 0$ $X \frac{d}{dX} E(X) \equiv X E(X) \pmod{X^{p}}$ • $\alpha = -\sum_{i=1}^{\infty} X^{p^{i}}$ $X \frac{d}{dX} L_{p-1}^{(-\sum_{i=1}^{\infty} X^{p^{i}})}(X) = \left(\sum_{i=0}^{\infty} X^{p^{i}}\right) L_{p-1}^{(-\sum_{i=1}^{\infty} X^{p^{i}})}(X)$

• Taking a further derivative we recover for $Y = L_{p-1}^{(\alpha)}(X)$ the classical differential equation

$$XY'' + (\alpha + 1 - X)Y' - Y = 0$$

A modular functional equation

An analogue of the functional equation $\exp(X) \cdot \exp(Y) = \exp(X + Y)$.

Theorem (Exponential-like property of $L_{p-1}^{(\alpha)}(X)$)

Let α, β, X, Y be indeterminates over \mathbb{F}_p . There exist rational expressions $c_i(\alpha, \beta) \in \mathbb{F}_p(\alpha, \beta)$, such that

$$\begin{split} L_{p-1}^{(\alpha)}(X) \cdot L_{p-1}^{(\beta)}(Y) &\equiv L_{p-1}^{(\alpha+\beta)}(X+Y) \cdot \\ & \cdot \left(c_0(\alpha,\beta) + \sum_{i=1}^{p-1} c_i(\alpha,\beta) X^i Y^{p-i} \right) \end{split}$$

in $\mathbb{F}_{p}(\alpha,\beta)[X,Y]$, modulo the ideal generated by $X^{p} - (\alpha^{p} - \alpha)$ and $Y^{p} - (\beta^{p} - \beta)$.

•
$$\alpha = 0 = \beta$$
, $L_{p-1}^{(0)}(X) = E(X)$, we recover
 $E(X) \cdot E(Y) \equiv E(X+Y) \left(1 + \sum_{i=1}^{p-1} (-1)^i X^i Y^{p-i} / i \right) \pmod{X^p, Y^p}$

Marina Avitabile (MiB)

Characterization of the Laguerre polynomials

Characterization of the Laguerre polynomials of degree p-1

Theorem

Let α, β, X, Y be indeterminates over \mathbb{F}_p and let $P^{(\alpha)}(X)$ be a polynomial in $\mathbb{F}_p[\alpha][X]$ of degree less than p with $P^0(0) \neq 0$. The following conditions are equivalent:

i) There exist rational expressions $\overline{c}_i(\alpha, \beta) \in \mathbb{F}_p(\alpha, \beta)$, defined even specializing α or β to zero, such that

$$P^{(\alpha)}(X) \cdot P^{(\beta)}(Y) \equiv P^{(\alpha+\beta)}(X+Y) \cdot \left(\overline{c}_0(\alpha,\beta) + \sum_{i=1}^{p-1} \overline{c}_i(\alpha,\beta) X^i Y^{p-i}\right)$$

in $\mathbb{F}_{p}(\alpha,\beta)[X,Y]$ modulo the ideal generated by $X^{p} - (\alpha^{p} - \alpha)$ and $Y^{p} - (\beta^{p} - \beta)$.

ii) $P^{(\alpha)}(X) = d(\alpha)L_{p-1}^{(c\alpha)}(cX)$ for some $d(\alpha) \in \mathbb{F}_p[\alpha]$ with $d(0) \neq 0$, and for some $c \in \mathbb{F}_p$.

Theorem

- Let $A = \bigoplus_k A_k$ be a $\mathbb{Z}/m\mathbb{Z}$ -grading of A;
- let D ∈ Der(A), homogeneous of degree d, with m | pd, such that D^{p²} = D^p;
- let A = ⊕_{a∈𝔽p} A^(a) be the decomposition of A into generalized eigenspaces for D;
- assuming $\mathbb{F}_{p^p} \subseteq \mathbb{F}$, fix $\gamma \in \mathbb{F}$ with $\gamma^p \gamma = 1$;
- let L_D : A → A be the linear map on A whose restriction to A^(a) coincides with L^(aγ)_{p-1}(D).

Then $A = \bigoplus_k \mathcal{L}_{\mathcal{D}}(A_k)$ is a $\mathbb{Z}/m\mathbb{Z}$ -grading of A.

General case: the only assumption on D is D^{p^r} semisimple with finitely many eigenvalues, for some r

- Replacing a torus T of a restricted Lie algebra L with another torus, which is more suitable for further study of L
- It relies an a delicate adaptation of the exponential of a derivation
- D. J. Winter, R. E. Block, R. L. Wilson, A. A. Premet
- Grading of L: root space decomposition of L attached to any torus
- The toral switching process can be viewed as a special instance of the grading switching

Grading switching versus toral switching

- applies to non-associative algebras
- is not restricted to gradings over groups of exponent p

Thin Lie algebra: an infinite-dimensional Lie algebra $L = \bigoplus_{i=1}^{\infty} L_i$ such that

- 1) $\dim(L_1) = 2$
- for every graded ideal *I* of *L*, *Lⁱ⁺¹* ⊆ *I* ⊆ *Lⁱ*, for some *i* (*covering property*)
- A. Caranti, S. Mattarei, M. F. Newman, C. M. Scoppola Thin groups of prime-power order and thin Lie algebras *Quart. J. Math. Oxford Ser. (2)* **47** (1996), 279–296
- Example: the graded Lie algebra associated to the Nottingham group $\mathcal{N}(\mathbb{F}_p)$ w.r.t. its lower central series
- Periodic ones: *loop algebras* of certain simple, finite-dimensional Lie algebras of Cartan type

Further directions: finite polylogarithms

The *truncated logarithm* is defined in $\mathbb{F}_p[X]$ as

$$\mathfrak{L}_1(X) = \sum_{k=1}^{p-1} \frac{X^k}{k}$$

• Truncated version of the series $Li_1(X) = -\log(1-X) = \sum_{k=1}^{\infty} X^k/k$

$$-\pounds_1(\mathsf{E}(X)) \equiv X \pmod{X^p}$$

The *finite polylogarithm* of order $d \in \mathbb{Z}$ is defined in $\mathbb{F}_p[X]$ as

$$\mathfrak{L}_d(X) = \sum_{k=1}^{p-1} \frac{X^k}{k^d}$$

• Truncated version of the ordinary polylogarithm of order d

$$\operatorname{Li}_d(X) = \sum_{k=1}^{\infty} \frac{X^k}{k^d}.$$

Basic properties

$$\mathfrak{L}_d(X) = \mathfrak{L}_{p-1+d}(X) \rightsquigarrow 0 \leq d < p-1;$$

$$X\frac{d}{dX}\mathfrak{L}_d(X)=\mathfrak{L}_{d-1}(X)$$

Inversion relation

$$\pounds_d(X) = -X^p \cdot \pounds_d(1/X)$$

• (A special instance of the) Distribution relation:

$$\mathfrak{L}_d(X^h) \equiv h^d \mathfrak{L}_d(X) \mod X^p - 1, \qquad 0 < d, h < p - 1$$

Powers

$$\mathfrak{L}_1(X)^d \equiv (-1)^{d-1} d! \, \mathfrak{L}_d(X) \mod X^p - 1, \qquad 0 < d < p-1$$

M. Mirimanoff, 1900, Fermat's Last Theorem

Generalized truncated logarithm

Inverting the Laguerre polynomials

$$E(X) = L_{p-1}^{(0)}(X) \quad \rightsquigarrow \qquad L_{p-1}^{(\alpha)}(X)$$
$$\pounds_1(X) \quad \rightsquigarrow \qquad \pounds_1^{(\alpha)}(X)$$

Theorem

There is a unique polynomial $\mathfrak{L}_1^{(\alpha)}(X)$ of degree less than p in $\mathbb{F}_p(\alpha)[X]$ such that

$$-oldsymbol{\pounds}_1^{(lpha)}(L^{(lpha)}_{p-1}(X))\equiv X \pmod{X^p-(lpha^p-lpha)}.$$

• $\mathcal{E}_{1}^{(\alpha)}(X)$ gives also rise to a functional right-inverse of $\mathcal{L}_{p-1}^{(\alpha)}(X)$, w.r.t. an appropriate modulus

• Special case: when $\alpha = 0$, $\mathcal{E}_1^{(0)}(X) = \mathcal{E}_1(X)$

Generalized finite polylogarithms

• For every $d \in \mathbb{Z}$, define the generalized finite polylogarithm of order d $\mathcal{L}_{d}^{(\alpha)}(X) \in \mathbb{F}_{p}(\alpha)[X]$ according to

$$X rac{d}{dX} \pounds_d^{(lpha)}(X) = \pounds_{d-1}^{(lpha)}(X)$$

• Special case: when $\alpha = 0$

$$\pounds_d^{(0)}(X) = \pounds_d(X)$$

• (Congruential) functional equations for $\mathfrak{L}_d^{(\alpha)}(X)$: inversion relation, distribution relation, powers

References

S. Mattarei

Artin-Hasse exponentials of derivations *J. Algebra* **294** (2005), 1–18

- M. Avitabile and S. Mattarei Laguerre polynomials of derivations Israel J. Math. 205 (2015), 109–126
- M. Avitabile and S. Mattarei Grading switching for modular non-associative algebras *Contemp. Math.* 652 (2015), 1–14
- M. Avitabile and S. Mattarei A generalized truncated logarithm *Aequationes Math.* **93** (2019), 711–734
 - M. Avitabile and S. Mattarei Generalized finite polylogarithms *Glasg. Math. J.* **63** (2021), 66–80