Grading switching for modular non-associative algebras

Marina Avitabile

Università di Milano - Bicocca

Ischia Group Theory 2022

- Grading switching tool:
- early version based on the Artin-Hasse exponential series (due to Sandro Mattarei (University of Lincoln, UK))
- general version based on certain Laguerre polynomials (joint work with S. Mattarei)
- Motivation
- Further directions: generalized finite polylogarithms (joint work with S. Mattarei)

Let A be a (finite-dimensional) non-associative algebra over a field \mathbb{F}

- A derivation of A is a linear map $D: A \rightarrow A$ such that $D \circ m=m \circ(D \otimes \mathrm{id}+\mathrm{id} \otimes D)$, where $m: A \otimes A \rightarrow A$ is the multiplication map.

Lemma

Assume char $(\mathbb{F})=0$. If D is a nilpotent derivation of A, then $\exp (D)=\sum_{i=0}^{\infty}\left(D^{i} / i!\right)$ is an automorphism of A.

- Proof: set $X=D \otimes$ id and $Y=\mathrm{id} \otimes D$ and use that $\exp (X) \cdot \exp (Y)=\exp (X+Y)$ when X and Y commute.
- For $F(X) \in \mathbb{F}[[X]]$ with $F^{\prime}(0)=1$ either the functional equation $F(X+Y)=F(X) \cdot F(Y)$ or the differential equation $F^{\prime}(X)=F(X)$ determine $F(X)=\exp (X)$.
- if $D^{p}=0$

$$
\exp (D)=\sum_{i=0}^{p-1} \frac{D^{i}}{i!}
$$

- for every derivation D, consider the truncated exponential

$$
\mathrm{E}(D)=\sum_{i=0}^{p-1} \frac{D^{i}}{i!}
$$

Direct computation shows that

$$
\begin{equation*}
E(D)(a) \cdot E(D)(b)-E(D)(a b)=\sum_{t=p}^{2 p-2} \sum_{i=t+1-p}^{p-1} \frac{\left(D^{i} a\right)\left(D^{t-i} b\right)}{i!(t-i)!} \tag{1}
\end{equation*}
$$

for every $a, b \in A$.
In particular, if p is odd and $D^{\frac{p+1}{2}}=0$, then $\mathrm{E}(D)=\exp (D)$ is an automorphism of A.

The truncated exponential $E(X)=\sum_{i=0}^{p-1} X^{i} / i$! satisfies the congruence

$$
\mathrm{E}(X) \cdot \mathrm{E}(Y) \equiv \mathrm{E}(X+Y)\left(1+\sum_{i=1}^{p-1}(-1)^{i} X^{i} Y^{p-i} / i\right) \quad\left(\bmod X^{p}, Y^{p}\right)
$$

in the polynomial ring $\mathbb{F}_{p}[X, Y]$.
Setting $X=D \otimes$ id and $Y=\mathrm{id} \otimes D$ we recover Equation (1)

$$
E(D) a \cdot E(D) b-E(D)(a b)=\sum_{t=p}^{2 p-2} \sum_{i=t+1-p}^{p-1} \frac{\left(D^{i} a\right)\left(D^{t-i} b\right)}{i!(t-i)!} .
$$

$\mathrm{E}(D)$ has the property of sending a grading of A into another grading of A

- Grading: direct sum decomposition $A=\oplus_{g \in G} A_{g}, G$ an abelian group, such that $A_{g} A_{h} \subseteq A_{g+h}$

Theorem (Grading switching with $D^{p}=0, \mathrm{~S}$. Mattarei)

- Let $A=\oplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let D be a derivation of A, homogeneous of degree d, that is $D\left(A_{k}\right) \subseteq A_{k+d}$, for every k
- let $m \mid p d$ and $D^{p}=0$

Then

$$
A=\oplus_{k} \exp (D) A_{k}
$$

is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.

Gradings of non-associative algebras

Theorem (Grading switching with $D^{p}=0, \mathrm{~S}$. Mattarei)

- Let $A=\oplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let D be a derivation of A, homogeneous of degree d, with $m \mid p d$ such that $D^{p}=0$.

Then

$$
A=\oplus_{k} \exp (D) A_{k}
$$

is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.

Proof.

Check that $\exp (D) A_{s} \cdot \exp (D) A_{t} \subseteq \exp (D) A_{s+t}$. Let $a \in A_{s}$ and $b \in A_{t}$, then $D^{i}(a) \cdot D^{p-i}(b) \in A_{s+t+p d}=A_{s+t}$. Then

$$
\exp (D) a \cdot \exp (D) b=\underbrace{\exp (D)(a b)}_{\exp (D)\left(A_{s+t}\right)}+\underbrace{\exp (D)\left(\sum_{i=0}^{p-1} \frac{(-1)^{i}}{i} D^{i} a \cdot D^{p-i} b\right)}_{\exp (D)\left(A_{s+t}\right)}
$$

Grading switching tool: a technique for modular, non-associative algebras, whose aim is to produce a new grading of an algebra from a given one

- $\exp (D)=\mathrm{E}(D)$ with $D^{p}=0$
- Tensor product device: $X=D \otimes$ id and $Y=\mathrm{id} \otimes D$
- The congruence

$$
\mathrm{E}(X) \cdot \mathrm{E}(Y) \equiv \mathrm{E}(X+Y)\left(1+\sum_{i=1}^{p-1}(-1)^{i} X^{i} Y^{p-i} / i\right) \quad\left(\bmod X^{p}, Y^{p}\right)
$$

in the polynomial ring $\mathbb{F}_{p}[X, Y]$.

Artin-Hasse exponential of a derivation

The Artin-Hasse exponential series is defined as

$$
\mathrm{E}_{p}(X)=\exp \left(\sum_{i=0}^{\infty} X^{p^{i}} / p^{i}\right)=\prod_{i=0}^{\infty} \exp \left(X^{p^{i}} / p^{i}\right) \in \mathbb{Z}_{(p)}[[X]]
$$

Theorem (S. Mattarei)

There exist $a_{i j} \in \mathbb{F}_{p}$ with $a_{i j}=0$ unless $p \mid i+j$, such that

$$
E_{p}(X) \cdot E_{p}(Y)=E_{p}(X+Y)\left(1+\sum_{i, j=1}^{\infty} a_{i j} X^{i} Y^{j}\right)
$$

in the power series ring $\mathbb{F}_{p}[[X, Y]]$.

Let D be a nilpotent derivation of A, thus $\mathrm{E}_{p}(D)$ is a finite sum
Theorem (Grading-switching with D nilpotent, S. Mattarei)

- Let $A=\oplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let D be a nilpotent derivation of A, homogeneous of degree d with $m \mid p d$.
Then

$$
A=\oplus_{k} \mathrm{E}_{p}(D) A_{k}
$$

is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.

Laguerre polynomials

The classical (generalized) Laguerre polynomial of degree $n \geq 0$ is defined as

$$
L_{n}^{(\alpha)}(X)=\sum_{k=0}^{n}\binom{\alpha+n}{n-k} \frac{(-X)^{k}}{k!} \in \mathbb{Q}[\alpha, X] .
$$

- for $\alpha>-1$ and $n \neq m$

$$
\int_{0}^{\infty} X^{\alpha} \exp (-X) L_{n}^{(\alpha)}(X) L_{m}^{(\alpha)}(X) d X=0
$$

- $Y=L_{n}^{(\alpha)}(X) \in \mathbb{R}[X]$ satisfies the differential equation

$$
X Y^{\prime \prime}+(\alpha+1-X) Y^{\prime}+n Y=0
$$

Laguerre polynomials modulo p

Fixed a prime p, set $n=p-1$

$$
L_{p-1}^{(\alpha)}(X)=\left(1-\alpha^{p-1}\right) \sum_{k=0}^{p-1} \frac{X^{k}}{(1+\alpha)(2+\alpha) \cdots(k+\alpha)} \in \mathbb{F}_{p}[\alpha, X] .
$$

Special cases:

- $\alpha=0$

$$
L_{p-1}^{(0)}(X)=\sum_{k=0}^{p-1} \frac{X^{k}}{k!}=\mathrm{E}(X)
$$

- $\alpha=-\sum_{i=1}^{\infty} X^{p^{i}}$

$$
L_{p-1}^{\left(-\sum_{i=1}^{\infty} x^{p^{i}}\right)}(X)=\mathrm{E}_{p}(X) G\left(X^{p}\right)
$$

for some $G(X) \in 1+X \mathbb{F}_{p}[[X]]$

A modular differential equation

The polynomial $L_{p-1}^{(\alpha)}(X)$ satisfies the modular differential equation

$$
X \frac{d}{d X}\left(L_{p-1}^{(\alpha)}(X)\right)=(X-\alpha) L_{p-1}^{(\alpha)}(X)+X^{p}-\left(\alpha^{p}-\alpha\right)
$$

- Special cases:
- $\alpha=0$

$$
X \frac{d}{d X} \mathrm{E}(X) \equiv X \mathrm{E}(X) \quad\left(\bmod X^{p}\right)
$$

- $\alpha=-\sum_{i=1}^{\infty} \chi^{p^{i}}$

$$
X \frac{d}{d X} L_{p-1}^{\left(-\sum_{i=1}^{\infty} X^{p^{i}}\right)}(X)=\left(\sum_{i=0}^{\infty} X^{p^{\prime}}\right) L_{p-1}^{\left(-\sum_{i=1}^{\infty} x^{p^{i}}\right)}(X)
$$

- Taking a further derivative we recover for $Y=L_{p-1}^{(\alpha)}(X)$ the classical differential equation

$$
X Y^{\prime \prime}+(\alpha+1-X) Y^{\prime}-Y=0
$$

A modular functional equation

An analogue of the functional equation $\exp (X) \cdot \exp (Y)=\exp (X+Y)$.
Theorem (Exponential-like property of $\left.L_{p-1}^{(\alpha)}(X)\right)$
Let α, β, X, Y be indeterminates over \mathbb{F}_{p}. There exist rational expressions $c_{i}(\alpha, \beta) \in \mathbb{F}_{p}(\alpha, \beta)$, such that

$$
\begin{aligned}
L_{p-1}^{(\alpha)}(X) \cdot L_{p-1}^{(\beta)}(Y) \equiv L_{p-1}^{(\alpha+\beta)}(X+Y) & \\
& \cdot\left(c_{0}(\alpha, \beta)+\sum_{i=1}^{p-1} c_{i}(\alpha, \beta) X^{i} Y^{p-i}\right)
\end{aligned}
$$

in $\mathbb{F}_{p}(\alpha, \beta)[X, Y]$, modulo the ideal generated by $X^{p}-\left(\alpha^{p}-\alpha\right)$ and $Y^{p}-\left(\beta^{p}-\beta\right)$.

- $\alpha=0=\beta, L_{p-1}^{(0)}(X)=E(X)$, we recover

$$
\mathrm{E}(X) \cdot \mathrm{E}(Y) \equiv \mathrm{E}(X+Y)\left(1+\sum_{\text {Grading switching }}^{p-1}(-1)^{i} X^{i} Y^{p-i} / i\right)\left(\bmod X^{p}, Y^{p}\right)
$$

Characterization of the Laguerre polynomials

Characterization of the Laguerre polynomials of degree $p-1$

Theorem

Let α, β, X, Y be indeterminates over \mathbb{F}_{p} and let $P^{(\alpha)}(X)$ be a polynomial in $\mathbb{F}_{p}[\alpha][X]$ of degree less than p with $P^{0}(0) \neq 0$. The following conditions are equivalent:
i) There exist rational expressions $\bar{c}_{i}(\alpha, \beta) \in \mathbb{F}_{p}(\alpha, \beta)$, defined even specializing α or β to zero, such that

$$
P^{(\alpha)}(X) \cdot P^{(\beta)}(Y) \equiv P^{(\alpha+\beta)}(X+Y) \cdot\left(\bar{c}_{0}(\alpha, \beta)+\sum_{i=1}^{p-1} \bar{c}_{i}(\alpha, \beta) X^{i} Y^{p-i}\right)
$$

in $\mathbb{F}_{p}(\alpha, \beta)[X, Y]$ modulo the ideal generated by $X^{p}-\left(\alpha^{p}-\alpha\right)$ and $Y^{p}-\left(\beta^{p}-\beta\right)$.
ii) $P^{(\alpha)}(X)=d(\alpha) L_{p-1}^{(c \alpha)}(c X)$ for some $d(\alpha) \in \mathbb{F}_{p}[\alpha]$ with $d(0) \neq 0$, and for some $c \in \mathbb{F}_{p}$.

Grading switching: a model special case

Theorem

- Let $A=\bigoplus_{k} A_{k}$ be a $\mathbb{Z} / m \mathbb{Z}$-grading of A;
- let $D \in \operatorname{Der}(A)$, homogeneous of degree d, with $m \mid p d$, such that $D^{p^{2}}=D^{p}$;
- let $A=\bigoplus_{a \in \mathbb{F}_{p}} A^{(a)}$ be the decomposition of A into generalized eigenspaces for D;
- assuming $\mathbb{F}_{p^{p}} \subseteq \mathbb{F}$, fix $\gamma \in \mathbb{F}$ with $\gamma^{p}-\gamma=1$;
- let $\mathcal{L}_{\mathcal{D}}: A \rightarrow A$ be the linear map on A whose restriction to $A^{(a)}$ coincides with $L_{p-1}^{(a \gamma)}(D)$.
Then $A=\bigoplus_{k} \mathcal{L}_{\mathcal{D}}\left(A_{k}\right)$ is a $\mathbb{Z} / m \mathbb{Z}$-grading of A.
General case: the only assumption on D is $D^{p^{r}}$ semisimple with finitely many eigenvalues, for some r
- Replacing a torus T of a restricted Lie algebra L with another torus, which is more suitable for further study of L
- It relies an a delicate adaptation of the exponential of a derivation
- D. J. Winter, R. E. Block, R. L. Wilson, A. A. Premet
- Grading of L : root space decomposition of L attached to any torus
- The toral switching process can be viewed as a special instance of the grading switching
Grading switching versus toral switching
- applies to non-associative algebras
- is not restricted to gradings over groups of exponent p

Motivation: thin Lie algebras

Thin Lie algebra: an infinite-dimensional Lie algebra $L=\bigoplus_{i=1}^{\infty} L_{i}$ such that

1) $\operatorname{dim}\left(L_{1}\right)=2$
2) for every graded ideal I of $L, L^{i+1} \subseteq I \subseteq L^{i}$, for some i (covering property)
A. Caranti, S. Mattarei, M. F. Newman, C. M. Scoppola Thin groups of prime-power order and thin Lie algebras Quart. J. Math. Oxford Ser. (2) 47 (1996), 279-296

- Example: the graded Lie algebra associated to the Nottingham group $\mathcal{N}\left(\mathbb{F}_{p}\right)$ w.r.t. its lower central series
- Periodic ones: loop algebras of certain simple, finite-dimensional Lie algebras of Cartan type

The truncated logarithm is defined in $\mathbb{F}_{p}[X]$ as

$$
£_{1}(X)=\sum_{k=1}^{p-1} \frac{X^{k}}{k}
$$

- Truncated version of the series $\mathrm{Li}_{1}(X)=-\log (1-X)=\sum_{k=1}^{\infty} X^{k} / k$
- For p odd

$$
-£_{1}(\mathrm{E}(X)) \equiv X \quad\left(\bmod X^{p}\right)
$$

The finite polylogarithm of order $d \in \mathbb{Z}$ is defined in $\mathbb{F}_{p}[X]$ as

$$
£_{d}(X)=\sum_{k=1}^{p-1} \frac{X^{k}}{k^{d}}
$$

- Truncated version of the ordinary polylogarithm of order d

$$
\mathrm{Li}_{d}(X)=\sum_{k=1}^{\infty} \frac{X^{k}}{k^{d}}
$$

$$
\begin{gathered}
£_{d}(X)=£_{p-1+d}(X) \rightsquigarrow 0 \leq d<p-1 ; \\
X \frac{d}{d X} £_{d}(X)=£_{d-1}(X)
\end{gathered}
$$

- Inversion relation

$$
£_{d}(X)=-X^{p} \cdot £_{d}(1 / X)
$$

- (A special instance of the) Distribution relation:

$$
£_{d}\left(X^{h}\right) \equiv h^{d} £_{d}(X) \quad \bmod X^{p}-1, \quad 0<d, h<p-1
$$

- Powers

$$
£_{1}(X)^{d} \equiv(-1)^{d-1} d!£_{d}(X) \quad \bmod X^{p}-1, \quad 0<d<p-1
$$

M. Mirimanoff, 1900, Fermat's Last Theorem

Generalized truncated logarithm

Inverting the Laguerre polynomials

$$
\begin{array}{ccc}
\mathrm{E}(X)=L_{p-1}^{(0)}(X) & \rightsquigarrow & L_{p-1}^{(\alpha)}(X) \\
£_{1}(X) & \rightsquigarrow & £_{1}^{(\alpha)}(X)
\end{array}
$$

Theorem

There is a unique polynomial $£_{1}^{(\alpha)}(X)$ of degree less than p in $\mathbb{F}_{p}(\alpha)[X]$ such that

$$
-£_{1}^{(\alpha)}\left(L_{p-1}^{(\alpha)}(X)\right) \equiv X \quad\left(\bmod X^{p}-\left(\alpha^{p}-\alpha\right)\right)
$$

- $£_{1}^{(\alpha)}(X)$ gives also rise to a functional right-inverse of $L_{p-1}^{(\alpha)}(X)$, w.r.t. an appropriate modulus
- Special case: when $\alpha=0, £_{1}^{(0)}(X)=£_{1}(X)$
- For every $d \in \mathbb{Z}$, define the generalized finite polylogarithm of order d $£_{d}^{(\alpha)}(X) \in \mathbb{F}_{p}(\alpha)[X]$ according to

$$
X \frac{d}{d X} £_{d}^{(\alpha)}(X)=£_{d-1}^{(\alpha)}(X)
$$

- Special case: when $\alpha=0$

$$
£_{d}^{(0)}(X)=£_{d}(X)
$$

- (Congruential) functional equations for $£_{d}^{(\alpha)}(X)$: inversion relation, distribution relation, powers

References

S. Mattarei

Artin-Hasse exponentials of derivations
J. Algebra 294 (2005), 1-18
M. Avitabile and S. Mattarei

Laguerre polynomials of derivations
Israel J. Math. 205 (2015), 109-126

- M. Avitabile and S. Mattarei

Grading switching for modular non-associative algebras Contemp. Math. 652 (2015), 1-14

围 M. Avitabile and S. Mattarei
A generalized truncated logarithm
Aequationes Math. 93 (2019), 711-734
围 M. Avitabile and S. Mattarei
Generalized finite polylogarithms
Glasg. Math. J. 63 (2021), 66-80

