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The exponential of a derivation

Let A be a (finite-dimensional) non-associative algebra over a field F

• A derivation of A is a linear map D : A→ A such that
D ◦m = m ◦ (D ⊗ id + id⊗D), where m : A⊗ A→ A is the
multiplication map.

Lemma
Assume char(F) = 0. If D is a nilpotent derivation of A, then
exp(D) =

∑∞
i=0(Di/i!) is an automorphism of A.

• Proof: set X = D ⊗ id and Y = id⊗D and use that
exp(X ) · exp(Y ) = exp(X + Y ) when X and Y commute.
• For F (X ) ∈ F[[X ]] with F ′(0) = 1 either the functional equation
F (X + Y ) = F (X ) · F (Y ) or the differential equation F ′(X ) = F (X )
determine F (X ) = exp(X ).
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The exponential of a derivation

From now on assume char(F) = p > 0

• if Dp = 0

exp(D) =
p−1∑
i=0

Di

i!
• for every derivation D, consider the truncated exponential

E(D) =
p−1∑
i=0

Di

i!

Direct computation shows that

E (D)(a) · E (D)(b)− E (D)(ab) =
2p−2∑
t=p

p−1∑
i=t+1−p

(Dia)(Dt−ib)
i!(t − i)! (1)

for every a, b ∈ A.
In particular, if p is odd and D

p+1
2 = 0, then E(D) = exp(D) is an

automorphism of A.
Marina Avitabile (MiB) Grading switching Ischia Group Theory 2022 4 / 23



The exponential of a derivation

The truncated exponential E (X ) =
∑p−1

i=0 X i/i! satisfies the congruence

E(X ) · E(Y ) ≡ E(X + Y )

1 +
p−1∑
i=1

(−1)iX iY p−i/i

 (mod Xp,Y p)

in the polynomial ring Fp[X ,Y ].
Setting X = D ⊗ id and Y = id⊗D we recover Equation (1)

E (D)a · E (D)b − E (D)(ab) =
2p−2∑
t=p

p−1∑
i=t+1−p

(Dia)(Dt−ib)
i!(t − i)! .

E(D) has the property of sending a grading of A into another grading of A
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Gradings of non-associative algebras

• Grading: direct sum decomposition A = ⊕g∈GAg , G an abelian
group, such that AgAh ⊆ Ag+h

Theorem (Grading switching with Dp = 0, S. Mattarei)

• Let A = ⊕kAk be a Z/mZ-grading of A;
• let D be a derivation of A, homogeneous of degree d, that is
D(Ak) ⊆ Ak+d , for every k
• let m | pd and Dp = 0

Then
A = ⊕k exp(D)Ak

is a Z/mZ-grading of A.
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Gradings of non-associative algebras
Theorem (Grading switching with Dp = 0, S. Mattarei)

• Let A = ⊕kAk be a Z/mZ-grading of A;
• let D be a derivation of A, homogeneous of degree d, with m | pd
such that Dp = 0.

Then
A = ⊕k exp(D)Ak

is a Z/mZ-grading of A.

Proof.
Check that exp(D)As · exp(D)At ⊆ exp(D)As+t . Let a ∈ As and b ∈ At ,
then Di(a) · Dp−i(b) ∈ As+t+pd = As+t . Then

exp(D)a · exp(D)b = exp(D)(ab)︸ ︷︷ ︸
exp(D)(As+t)

+ exp(D)

p−1∑
i=0

(−1)i

i Dia · Dp−ib


︸ ︷︷ ︸

exp(D)(As+t)
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Grading switching

Grading switching tool: a technique for modular, non-associative algebras,
whose aim is to produce a new grading of an algebra from a given one
• exp(D) = E(D) with Dp = 0
• Tensor product device: X = D ⊗ id and Y = id⊗D
• The congruence

E(X ) · E(Y ) ≡ E(X + Y )

1 +
p−1∑
i=1

(−1)iX iY p−i/i

 (mod Xp,Y p)

in the polynomial ring Fp[X ,Y ].
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Artin-Hasse exponential of a derivation

The Artin-Hasse exponential series is defined as

Ep(X ) = exp
( ∞∑

i=0
Xpi

/pi
)

=
∞∏

i=0
exp(Xpi

/pi) ∈ Z(p)[[X ]]

Theorem (S. Mattarei)

There exist aij ∈ Fp with aij = 0 unless p | i + j , such that

Ep(X ) · Ep(Y ) = Ep(X + Y )
(
1 +

∞∑
i ,j=1

aijX iY j
)

in the power series ring Fp[[X ,Y ]].
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Grading-switching with D nilpotent

Let D be a nilpotent derivation of A, thus Ep(D) is a finite sum

Theorem (Grading-switching with D nilpotent, S. Mattarei)

• Let A = ⊕kAk be a Z/mZ-grading of A;
• let D be a nilpotent derivation of A, homogeneous of degree d with
m | pd.

Then
A = ⊕k Ep(D)Ak

is a Z/mZ-grading of A.
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Laguerre polynomials

The classical (generalized) Laguerre polynomial of degree n ≥ 0 is defined
as

L(α)
n (X ) =

n∑
k=0

(
α+ n
n − k

)
(−X )k

k! ∈ Q[α,X ].

• for α > −1 and n 6= m∫ ∞
0

Xα exp(−X )L(α)
n (X )L(α)

m (X )dX = 0

• Y = L(α)
n (X ) ∈ R[X ] satisfies the differential equation

XY ′′ + (α+ 1− X )Y ′ + nY = 0
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Laguerre polynomials modulo p

Fixed a prime p, set n = p − 1

L(α)
p−1(X ) = (1− αp−1)

p−1∑
k=0

X k

(1 + α)(2 + α) · · · (k + α) ∈ Fp[α,X ].

Special cases:
• α = 0

L(0)
p−1(X ) =

p−1∑
k=0

X k

k! = E(X )

• α = −
∑∞

i=1 Xpi

L(−
∑∞

i=1 Xpi )
p−1 (X ) = Ep(X )G(Xp)

for some G(X ) ∈ 1 + XFp[[X ]]
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A modular differential equation
The polynomial L(α)

p−1(X ) satisfies the modular differential equation

X d
dX (L(α)

p−1(X )) = (X − α)L(α)
p−1(X ) + Xp − (αp − α)

• Special cases:
• α = 0

X d
dX E(X ) ≡ X E(X ) (mod X p)

• α = −
∑∞

i=1 X pi

X d
dX L

(−
∑∞

i=1
Xpi

)
p−1 (X ) =

( ∞∑
i=0

X pi

)
L

(−
∑∞

i=1
Xpi

)
p−1 (X )

• Taking a further derivative we recover for Y = L(α)
p−1(X ) the classical

differential equation

XY ′′ + (α+ 1− X )Y ′ − Y = 0
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A modular functional equation
An analogue of the functional equation exp(X ) · exp(Y ) = exp(X + Y ).

Theorem (Exponential-like property of L(α)
p−1(X ))

Let α, β,X ,Y be indeterminates over Fp. There exist rational expressions
ci(α, β) ∈ Fp(α, β), such that

L(α)
p−1(X ) · L(β)

p−1(Y ) ≡ L(α+β)
p−1 (X + Y )·

·
(
c0(α, β) +

p−1∑
i=1

ci(α, β)X iY p−i
)

in Fp(α, β)[X ,Y ], modulo the ideal generated by Xp − (αp − α) and
Y p − (βp − β).

• α = 0 = β, L(0)
p−1(X ) = E (X ), we recover

E(X ) · E(Y ) ≡ E(X + Y )

1 +
p−1∑
i=1

(−1)iX iY p−i/i

 (mod Xp,Y p)
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Characterization of the Laguerre polynomials
Characterization of the Laguerre polynomials of degree p − 1

Theorem
Let α, β,X ,Y be indeterminates over Fp and let P(α)(X ) be a polynomial
in Fp[α][X ] of degree less than p with P0(0) 6= 0. The following
conditions are equivalent:
i) There exist rational expressions c i(α, β) ∈ Fp(α, β), defined even

specializing α or β to zero, such that

P(α)(X ) ·P(β)(Y ) ≡ P(α+β)(X +Y ) ·
(
c0(α, β)+

p−1∑
i=1

c i(α, β)X iY p−i
)

in Fp(α, β)[X ,Y ] modulo the ideal generated by Xp − (αp − α) and
Y p − (βp − β).

ii) P(α)(X ) = d(α)L(cα)
p−1 (cX ) for some d(α) ∈ Fp[α] with d(0) 6= 0, and

for some c ∈ Fp.
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Grading switching: a model special case

Theorem
• Let A =

⊕
k Ak be a Z/mZ-grading of A;

• let D ∈ Der(A), homogeneous of degree d, with m | pd, such that
Dp2 = Dp;
• let A =

⊕
a∈Fp A

(a) be the decomposition of A into generalized
eigenspaces for D;
• assuming Fpp ⊆ F, fix γ ∈ F with γp − γ = 1;
• let LD : A→ A be the linear map on A whose restriction to A(a)

coincides with L(aγ)
p−1(D).

Then A =
⊕

k LD(Ak) is a Z/mZ-grading of A.

General case: the only assumption on D is Dpr semisimple with finitely
many eigenvalues, for some r
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Toral switching

• Replacing a torus T of a restricted Lie algebra L with another torus,
which is more suitable for further study of L

• It relies an a delicate adaptation of the exponential of a derivation
• D. J. Winter, R. E. Block, R. L. Wilson, A. A. Premet
• Grading of L: root space decomposition of L attached to any torus
• The toral switching process can be viewed as a special instance of the

grading switching
Grading switching versus toral switching
• applies to non-associative algebras
• is not restricted to gradings over groups of exponent p
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Motivation: thin Lie algebras

Thin Lie algebra: an infinite-dimensional Lie algebra L =
⊕∞

i=1 Li such
that
1) dim(L1) = 2
2) for every graded ideal I of L, Li+1 ⊆ I ⊆ Li , for some i (covering

property)

A. Caranti, S. Mattarei, M. F. Newman, C. M. Scoppola
Thin groups of prime-power order and thin Lie algebras
Quart. J. Math. Oxford Ser. (2) 47 (1996), 279–296
• Example: the graded Lie algebra associated to the Nottingham group
N (Fp) w.r.t. its lower central series
• Periodic ones: loop algebras of certain simple, finite-dimensional Lie
algebras of Cartan type
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Further directions: finite polylogarithms
The truncated logarithm is defined in Fp[X ] as

£1(X ) =
p−1∑
k=1

X k

k

• Truncated version of the series Li1(X ) = − log(1− X ) =
∑∞

k=1 X k/k
• For p odd

−£1(E(X )) ≡ X (mod Xp)
The finite polylogarithm of order d ∈ Z is defined in Fp[X ] as

£d(X ) =
p−1∑
k=1

X k

kd

• Truncated version of the ordinary polylogarithm of order d

Lid(X ) =
∞∑

k=1

X k

kd .
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Basic properties

•
£d(X ) = £p−1+d(X ) 0 ≤ d < p − 1;

•
X d
dX £d(X ) = £d−1(X )

• Inversion relation
£d(X ) = −Xp · £d(1/X )

• (A special instance of the) Distribution relation:

£d(Xh) ≡ hd£d(X ) mod Xp − 1, 0 < d , h < p − 1

• Powers

£1(X )d ≡ (−1)d−1d!£d(X ) mod Xp − 1, 0 < d < p − 1

M. Mirimanoff, 1900, Fermat’s Last Theorem
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Generalized truncated logarithm
Inverting the Laguerre polynomials

E(X ) = L(0)
p−1(X )  L(α)

p−1(X )

£1(X )  £(α)
1 (X )

Theorem
There is a unique polynomial £(α)

1 (X ) of degree less than p in Fp(α)[X ]
such that

−£(α)
1
(
L(α)

p−1(X )
)
≡ X (mod Xp − (αp − α)).

• £(α)
1 (X ) gives also rise to a functional right-inverse of L(α)

p−1(X ), w.r.t.
an appropriate modulus

• Special case: when α = 0, £(0)
1 (X ) = £1(X )
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Generalized finite polylogarithms

• For every d ∈ Z, define the generalized finite polylogarithm of order d
£(α)

d (X ) ∈ Fp(α)[X ] according to

X d
dX £(α)

d (X ) = £(α)
d−1(X )

• Special case: when α = 0

£(0)
d (X ) = £d(X )

• (Congruential) functional equations for £(α)
d (X ): inversion relation,

distribution relation, powers
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