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All groups in this talk will be finite.

Main concern
Extension of the notion of crown for isomorphic chief factors.
An upper bound for the number of maximal subgroups of a
given index of a group.
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Gaschütz, 1962: If G is a soluble group and A is a
G-module, there exists a normal section of G,
called the A-crown of G, which is a completely
reducible and homogeneous G-module and
the length of its G-composition series is the
number of complemented chief factors of G
which are G-isomorphic to A in a given chief
series of G.
The A-crowns are complemented sections of
G.
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Every soluble group has a characteristic conjugacy class
of subgroups: the prefrattini subgroups.

W. Gaschütz
Praefrattinigruppen.
Arch. Math., 13:418–426, 1962.
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Hawkes, 1973: The notion of crown gives rise to a new closure
operator for Schunck classes of finite soluble
groups.

T. Hawkes
Closure operations for Schunck classes.
J. Austral. Math. Soc. Ser. A, 16(3):316–318, 1973.
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Lafuente, 1984: Introduction of crowns associated with
non-Frattini chief factors of arbitrary groups.
G-connection between non-Frattini chief
factors is the key concept in his approach.

J. Lafuente
Nonabelian crowns and Schunck classes of finite groups.
Arch. Math. (Basel), 42(1):32–39, 1984.
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Definition (Lafuente)
Two chief factors of a group G are G-connected (or
G-equivalent) when they are G-isomorphic or there exists a
normal subgroup N of G such that G/N is a primitive group of
type 3 whose minimal normal subgroups are G-isomorphic to
the given chief factors.
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Lafuente, 1984, 1985: Existence of normal sections
associated with non-Frattini chief factors with
similar properties to Gaschütz’s crowns.
A new closure operator for Schunck classes
of arbitrary groups which allows us to discover
new realtions between Schunck classes and
saturated formations.
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J. Lafuente.
Nonabelian crowns and Schunck classes of finite groups.
Arch. Math. (Basel), 42(1):32–39, 1984.

J. Lafuente.
Crowns and centralizers of chief factors of finite groups.
Comm. Algebra, 13(3):657–668, 1985.

J. Lafuente.
Eine Note über nichtalbelsche Hauptfaktoren und maximale
Untergruppen einer endlichen Gruppen.
Comm. Algebra, 13(9):2025–2036, 1985.
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Crowns are have been used to
Förster, 1988: Give an alternative approach of the generalised

Jordan-Hölder theorem.
B-B and Ezquerro, 1991: Introduce prefrattini subgroups in

every arbitrary group.

P. Förster
Chief factors, crowns, and the generalised Jordan-Hölder theorem.
Comm. Algebra, 16(8):1627–1638, 1988.

A. Ballester-Bolinches and L. M. Ezquerro
On maximal subgroups of finite groups.
Comm. Algebra, 19(8):2373–2394, 1991.
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Crowns are also very useful in probabilistic group theory and
generation of groups.
Hall in 1936 gave a formula for the probability PG(t) that t
random elements generate a group G, t a non-negative integer.
If N is a normal subgroup of G and t ≥ d(G/N), define
PG,N(t) = PG(t)/PG/N(t); this is the probability that a t-tuple
generates G, given that it generates G modulo N. Gaschütz in
1959 gave a formula for PG,N(t), generalising Hall’s formula.
Detomi and Lucchini obtained in 2003 factorisations of PG(t).
Crowns turned out to crucial in their work.
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P. Hall
The Eulerian functions of a group.
Quart. J. Math., 7(1):134–151, 1936.

W. Gaschütz
Die Eulersche Funktion endlicher auflösbarer Gruppen.
Illinois J. Math., 3(4):469–476, 1959.

E. Detomi and A. Lucchini.
Crowns and factorization of the probabilistic zeta function of a finite
group.
J. Algebra, 265(2):651–668, 2003.
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Lucchini, Marion and Tracy, 2020: Crowns’ machinery to
determine the minimal number of generators
requiered to generate a maximal subgroup of an
almost simple group with simple socle an
excepcional group of Lie type. It improves a result
of T. C. Burness, M. W. Liebeck and A. Shalev
[Adv. Math. 248, 59-95 (2013)].

A. Lucchini, C. Marion and G. Tracey
Generating maximal subgroups of finite almost simple groups.
Forum Math. Sigma, 8:67 pp., 2020.
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Definition
A primitive group is a group with a core-free maximal subgroup.

If M is a maximal subgroup of G, then M/MG is a core-free
maximal subgroup of G/MG and so G/MG is primitive.
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Theorem (Baer, 1957)
Let G be a primitive group and let U be a core-free maximal
subgroup of G. Exactly one of the following statements holds:

1 Soc(G) = S is a self-centralising abelian minimal normal
subgroup of G, G = US and U ∩ S = 1 (type 1).

2 Soc(G) = S is a non-abelian minimal normal subgroup of
G, G = US. In this case, CG(S) = 1 (type 2).

3 Soc(G) = A× B, where A and B are the two unique
minimal normal subgroups of G, G = AU = BU and
A ∩ U = B ∩ U = A ∩ B = 1. In this case, A = CG(B),
B = CG(A), and A ∼= B ∼= AB ∩ U are non-abelian (type 3).
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R. Baer
Classes of finite groups and their properties.
Illinois J. Math., 1:115-187, 1957.
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We say that a maximal subgroup M of a group G is of type i , if
the primitive group G/MG is of type i , 1 ≤ i ≤ 3; if M is of type 1
or 2, we say that M is a monolithic maximal subgroup of G and
G/MG is a monolithic primitive group.
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Definition
The primitive group [H/K ] ∗G associated with a chief factor
H/K of G is:

1 the semidirect product [H/K ]
(
G/CG(H/K )

)
if H/K is

abelian, or
2 the quotient group G/CG(H/K ) if H/K is non-abelian.
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Definition
Let H/K be a non-Frattini chief factor of a group G. Let E
denote the set of all cores MG of all monolithic maximal
subgroups M of G such that M supplements chief factors
G-connected with H/K , let

R =
⋂
{N | N ∈ E},

and let C = H CG(H/K ). We say that the factor C/R is the
crown of G associated with H/K .
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Theorem
Let C/R be the crown of G associated with the non-Frattini
chief factor H/K . Then C/R = Soc(G/R). Furthermore,

1 every minimal normal subgroup of G/R is a n on-Frattini
chief factor of G which is G-connected with H/K , and

2 no non-Frattini chief factor of G over C or below R is
G-connected with H/K .
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Dalla Volta and Lucchini, 1998: Given a monolithic primitive
group L with a unique minimal normal subgroup A,
for each positive integer k we consider the direct
product Lk of k copies of L. The subgroup

Lk = {(l1, . . . , lk ) ∈ Lk | l1 ≡ · · · ≡ lk (mod A)},

is called the kth crown-based power of L.

F. Dalla Volta and A. Lucchini
Finite groups that need more generators than any proper quotient.
J. Austral. Math. Soc. Ser. A, 64(1):82-91, 1998.
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Theorem
Let H/K be a non-Frattini chief factor of a group G and let C/R
be its crown. Then G/R is isomorphic to a crown-based power
Lk , where L = [H/K ] ∗G and k is the number of chief factors of
G that are G-related to H/K in a given chief series of G.

E. Detomi and A. Lucchini.
Crowns and factorization of the probabilistic zeta function of a finite
group.
J. Algebra, 265(2):651–668, 2003.
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To present an extension of the notion of crown for
isomorphic chief factors, not necessarily related by
connectedness.
To establish a relation between the number of non-Frattini
chief factors isomorphic to a characteristically simple group
A in a given chief series and the A-rank rkA(G), defined as
the largest number k such that G has a normal section that
is the direct product of k non-Frattini chief factors of G that
are isomorphic to A.
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Theorem B

Let A be a non-Frattini chief factor of a group G and suppose
that in a given chief series of G there are k non-Frattini chief
factors isomorphic to A. Then there exist two normal subgroups
C and R of G such that R ≤ C and C/R is isomorphic to a
direct product of k minimal normal subgroups of G/R
isomorphic to A.

In particular, rkA(G) is the number of non-Frattini chief factors
of G isomorphic to A in a given chief series of G.

Adolfo Ballester-Bolinches Large characteristically simple sections of finite groups



Introduction
Large characteristically simple sections of a group

The upper bound

Large characteristically simple sections of a group

Theorem

Let G be a monolithic primitive group with a unique minimal
normal subgroup B. Then G/B has no chief factors isomorphic
to B.

Adolfo Ballester-Bolinches Large characteristically simple sections of finite groups



Introduction
Large characteristically simple sections of a group

The upper bound

Large characteristically simple sections of a group

Let G be a primitive group of type 2.
B = Soc(G) = S1 × · · · × Sn, Si

∼= S simple groups.
N = NG(S1), C = CG(S1).
X = N/C is almost simple, Soc(X ) = S1C/C.
There exists a transitive subgroup Pn ≤ Sym(n) with G
isomorphic to a subgroup of X o Pn.
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Theorem

If G is a primitive group with a unique minimal normal subgroup
of order q = pd , where p is a prime, then the number of
composition factors of G of order p is at most d +

εpd−1
p−1 , where

εp =

{
p

p−1 if p is a Fermat prime,
1 otherwise.

M. Giudici, S. P. Glasby, C. H. Li, and G. Verret
The number of composition factors of order p in completely reducible
groups of characteristic p.
J. Algebra, 490:241–255, 2017.
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Since

〈x1, . . . , xr 〉 6= G ⇐⇒ ∃M l G such that 〈x1, . . . , xr 〉 ≤ M.

In fact,

Prob(〈x1, . . . , xr 〉 ≤ M) =
r∏

i=1

Prob(xi ∈ M)

=

(
|M|
|G|

)r

=
1

|G : M|r

The number mn(G) of maximal subgroups of G of a given index
n is relevant here.
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Theorem (Lubotzky, 2002)
If G is a group with r chief factors in a given chief series, then

mn(G) ≤ r2nd(G)+2.

A. Lubotzky.
The expected number of random elements to generate a finite group.
J. Algebra, 257:452–459, 2002.
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Theorem

Let G be a non-cyclic group with r chief factors in a given chief
series. For every natural n ≥ 2, mn(G) ≤ rnd(G)+2.
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