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Question (Wu, 2017) Suppose G is a noncyclic finite p group of
order pn, with p > 2, and C1, . . . ,Cm is a set of cyclic subgroups
such that for every cyclic subgroup C of G there exists g ∈ G such
that gCg−1 ≤ Ci for some i then is it true that m ≥ n?

The question arose from his joint work with von Puttkamer on
classifying spaces of familes of subgroups of infinite groups.



Question (Wu, 2017) Suppose G is a noncyclic finite p group of
order pn, with p > 2, and C1, . . . ,Cm is a set of cyclic subgroups
such that for every cyclic subgroup C of G there exists g ∈ G such
that gCg−1 ≤ Ci for some i then is it true that m ≥ n?

Question (von Puttkamer, 2018) Does the number of conjugacy
classes of maximal cyclic subgroups of a noncyclic finite p-group,
for p > 2, grow with the order of the group?

Von Puttkamer then studied groups where this number is small.



Note this is not true for p = 2. Consider the family of dihedral
2-groups

D2n = 〈x , y : x2
n−1

= 1 = y2, yxy−1 = x−1〉.

Then, for all n ≥ 2, there are exactly 3 conjugacy classes of
maximal cyclic subgroups, with representatives 〈x〉, 〈y〉 and 〈xy〉.



Recall a set {Hi} of proper subgroups of a group G is a called a
covering of G if G =

⋃
Hi (Hi called components).

Note a covering has size at least 3.

Mathematicians have studied coverings of groups for a long time.



Scorza 1926 Considered groups with a covering of size 3.

Cohn 1994 Considered groups with a minimal covering of size 3, 4
and 5. For example:

A group has a minimal covering of size 3 iff it posseses at least 2
subgroups of index 2.

In particular people look for coverings of minimal size.



We call a covering a normal covering if it is invariant under
G -conjugation.

The normal covering number, γ(G ) is the smallest number of
conjugacy classes of proper subgroups in a normal covering of G .

An old result due to Burnside (or Jordan) shows that γ(G ) is at
least 2.



More recently:

Bubboloni & Praeger 2011 Considered normal coverings of finite
symmetric and alternating groups.

Crestani & Lucchini 2011 Normal coverings of finite soluble groups
(for each n ≥ 2 there exists a finite soluble group with γ(G ) = n).

They comment that computing the normal covering number seems
to require different techniques to studying the covering number.



Our question considers normal coverings of finite p-groups where
the components (subgroups) of the partition are required to be
cyclic.

We denote the normal covering number of a group G where the
components are cyclic by NCC (G ) (to stand for normal cyclic
cover).



Remarks. (i) NCC (D2n) = 3. Similarly NCC = 3 for the
semidihedral groups and generalised quaternions.

(ii) Let N be a normal subgroup of G then

NCC (G/N) ≤ NCC (G ).

(iii) Suppose G is a finite p-group with d generators,

NCC (G ) ≥ NCC (G/G ′Gp) = NCC (Cp × · · · × Cp︸ ︷︷ ︸
d

) =
pd − 1

p − 1
.

Thus NCC grows with the number of generators of G .



(iv) If NCC (G/N) = NCC (G ) we show that N ≤ G ′ and
N ≤ G {p} = {gp : g ∈ G}.

Corollary (MB, RC, ML, EP) Suppose |G | = pn with n ≥ 2 and G
noncyclic. Suppose either G has exponent p or G abelian then
NCC (G ) ≥ n + p − 1.

Proof is by induction on n. If n = 2, then G ∼= Cp × Cp so
NCC (G ) = p + 1.
For n > 2 we can choose z ∈ G central of order p such that G/〈z〉
is noncyclic. Then by previous results NCC (G/〈z〉) < NCC (G )
and the result follows.

So the question has an affirmative answer in these cases.



(v) Let N E G . If N is central then NCC (G ) ≥ NCC (N) and if
|G : N| = k then NCC (G ) ≥ NCC (N)/k .

Where to look next? Given the examples in (i) we decided to look
at metacyclic p-groups more generally.



Theorem (MB, RC, ML 2022) Let G be a metacyclic p-group of
order pn that is not a dihedral, generalised quaternion or
semidihedral group. Then NCC (G ) ≥ n − 2.

For metacyclic p-groups of positive type we show that
NCC (G ) = NCC (G/G ′).



There is also a nice correspondence with nilpotency class.

Theorem (MB, RC, ML 2022) Let G be a noncyclic p-group of
nilpotency class c then NCC (G ) ≥ (p − 1)(n/c − 2) + p + 1.



• Conjugacy classes of maximal cyclic subgroups, MB, RC, EP, ML, arxiv.

• Conjugacy classes of maximal cyclic subgroups of metacyclic p-groups,

MB, RC, ML, arxiv

• Conjugacy classes of maximal cyclic subgroups and nilpotence class of

p-groups, MB, RC, ML, Bull. Aust. Math. Soc. online.

However we were failing to prove the result in general, but yet
didn’t have any counterexamples for p odd. Maybe considering
pro-p groups would be useful.



Recall a pro-p group G is an inverse limit of finite p-groups. That
is given an inverse system of finite p-groups, i.e. a family of finite
p-groups Pi such that there exists homomorphisms πi ,j : Pi → Pj

whenever i > j , such that πi ,i = id and πi ,jπj ,k = πi ,k , then you
can construct

G = lim
←

Pi = {(gi ) ∈ ΠPi : πi ,j(gi ) = gj}.

The Pi are given the discrete topology and G the induced product
topology.

Standard example is the p-adic integers Zp = lim← Z/pnZ.

Also have lim←D2n , the pro-2 completion of the infinite dihedral
group.

Thus if we study a pro-p group then we are studying a whole
family of p-groups at the same time.



For G a pro-p group we consider coverings by procyclic pro-p
groups, an infinite procyclic pro-p group is isomorphic to Zp.

The following are equivalent (call the property (∗)):

(i) there are infinitely many noncyclic finite p-groups P with
NCC (P) ≤ k .

(ii) there exists an infinite nonprocyclic pro-p group G with
NCC (G ) ≤ k.



Lemma Suppose that for some k there are infinitely many
noncyclic finite p-groups P with NCC (P) ≤ k. Then there exists
an infinite non-procyclic pro-p group G with NCC (G ) ≤ k.

Sketch. Let Γk(p) be the oriented graph with vertices noncyclic
finite p-groups with NCC (P) ≤ k . There is an oriented edge from
P to Q iff Q ∼= P/Z with |Z | = p. We claim that Γk(p) has
finitely many connected components. Since there are only finitely
many abelian finite p-groups with NCC bounded by k , but each
component contains an abelian group.

So we choose an infinite connected component and an infinite path
in this graph, P1 ← P2 ← P3 ← · · · , then the inverse limit of these
Pi is a pro-p group G . Furthermore NCC (G ) ≤ k (since the covers
form an inverse system). �



Recall a pro-p group is just infinite if all its proper continuous
quotients are finite.

Lemma An infinite pro-p group with finite NCC is just infinite.

Sketch: First note such a G must be finitely generated. Suppose
we can find a normal subgroup H such that G/H is infinite, then
we can find an element of infinite order in this quotient. Let g be
the preimage of this element and let h ∈ H. We consider the
infinite sequence of elements {gpkh} and claim they cannot lie in
conjugate procyclic subgroups. �



A pro-p group is p-adic analytic if it has an analytic structure over
Qp, but there are also algebraic characterisations.

For example a pro-p group is p-adic analytic iff Dn(G ) = Dn+1(G )
for some n where Dn(G ) are the dimension subgroups.

That is, Dn(G ) = {g ∈ G : g ≡ 1 mod I n} where I is the
augmentation ideal of the group algebra Fp[G ].

In particular:

[Dn,Dm] ⊆ Dn+m and

Dp
n ⊆ Dnp.



Theorem (YB, RC, ME, ML 2022) Let G be a pro-p group with
finite NCC. Then G is p-adic analytic.

Sketch: We show that Dn(G ) = Dn−1(G ). Suppose G has finite
NCC then there exists {x1, . . . , xk} such that every element of G is
conjugate to xλi for some i and some λ ∈ Zp.
For 1 6= x there exists n such that x ∈ Dn \ Dn+1, call this deg(x).

Let deg(xp
j

i ) = di ,j , it follows that the degree of any nonidentity
element of G is di ,j for some i and j .
However di ,j ≥ pjdi . So for N ∈ N there are at most
k(blogp(N)c+ 1) possible degrees of elements of G of degree ≤ N.
For sufficiently large N, k(blogp(N)c+ 1) < N so there exists an n
which is not a degree of an element of G and thus
Dn(G ) = Dn−1(G ) and G is p-adic analytic. �



Theorem (YB, RC, ME, ML 2022) Let p be a prime and G a pro-p
group. Then G has finite NCC iff one of the following holds:

(i) G is finite.

(ii) G is infinite procyclic or p = 2 and G is infinite prodihedral
(that is the pro-2 completion of the infinite dihedral group).

(iii) G is isomorphic to an open torsion-free subgroup of PGL1(D)
where D is the unique degree 2 central division algebra over Qp.

Thus the answer to Wu and von Puttkamer’s question is No.



Furthermore, let NCCmin denote the smallest k such that (∗) holds.

Theorem (YB, RC, ME, ML 2022)

NCCmin(p) =


3 if p = 2
9 if p = 3
p + 2 if p > 3.

• On groups that can be covered by conjugates of finitely many cyclic or

procyclic subgroups, YB, RC, ME, ML.


