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Well-known theorem of B. H. Neumann

Theorem
Let G be a group in which |HG : H| < ∞ for all subgroups H of G.
Then G is finite-by-abelian.
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Definitions

H ≤ G is f -ascendant if we have

H = G0 ≤ G1 ≤ . . .Gα ≤ . . .Gλ = G

with Gα ◁ Gα+1 or |Gα+1 : Gα| < ∞ (Phillips 1972).

When λ is finite say H is f-subnormal in G.
H is almost subnormal in G if

H ≤ Hn ≤ Hn−1 ≤ · · · ≤ H1 ≤ H0 = G

where H1 = HG,Hi = HG,i = HHi−1 and |Hn : H| < ∞. (Lennox
1977)
H is subnormal-by-finite in G if H contains a subnormal subgroup
S of G such that |H : S| < ∞. May assume S ◁ H.
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Easy Observations

Every subnormal subgroup is f-subnormal.

Every subgroup of a finite group is f-subnormal.
Almost subnormal implies f-subnormal.
(Casolo-Mainardis 2001) If H is f-sn G, then H is sn-by-fte.
Every finite subgroup is normal-by-finite.
If Hr = Hr+1 and Hr−1 ̸= Hr and if |Hr : H| = s say H has near
defect (r , s).
Every subnormal subgroup of defect r has near defect (r ,1).
In S3, (1 2) has near defect (1,3) but is not subnormal
(Casolo-Mainardis) G ∈ LN implies every f-sn subgp is sn.
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More Background

Suppose K = γr+1(G) is finite. If H ≤ G, then HK is sn of defect
at most r in G, so H is of near defect at most (r , |K |). ie all
subgroups of G are of bounded near defect.

Theorem
(Lennox, 1977)
Let r , s be fixed natural numbers. If |Hr : H| ≤ s for all subgroups H of
G, then |γf (r+s)(G)| ≤ s!, for some function f .

Compare this result with the well-known theorem of
Roseblade,1965.
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More Background

Lennox deduced:

Theorem
Let G be a finitely generated group. TFAE:

1 Every f.g. subgroup of G is almost sn of bounded near defect
2 G is finite-by-nilpotent
3 Every f.g. subgroup of G is f-sn.

Such groups have the maximum condition; for D∞ every subgroup is
subnormal-by-finite. Thus even for f.g. groups, if all subgroups are
sn-by-fte this does not imply all subgroups almost sn.
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Deeper Results

Heineken-Mohamed groups: every subgroup is subnormal (so have
finite near defects) but such a group is not finite-by-nilpotent.

If G = Dr
n∈N

Sn is the direct product of restricted symmetric groups of

increasing degree, all finitely generated subgroups have finite near
defect, but G is not finite-by-nilpotent.

Locally nilpotent groups with all subgroups almost subnormal are
hypercentral.

Casolo-Mainardis, 2001 construct a group which is not hypercentral in
which all subgroups H satisfy |H2 : H| < ∞.
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Work of Casolo-Mainardis

Theorem
(Casolo-Mainardis, 2001) Let G be a group. TFAE

1 Every subgp of G is f-sn.
2 Every subgp of G is almost sn
3 Every subgp H of G is contained in a subgp K such that H sn K

and |G : K | < ∞
Every subgroup is subnormal-by-finite.
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Work of Casolo-Mainardis

D(G) = ⟨HN|H is f.g. subgp of G⟩

Theorem
Let G be a gp in which every subgp is f-sn. Then

1 Every subgp of G/D(G) is sn
2 D(G) is fte-by-nilpt
3 G is fte-by-soluble
4 D(G) ∩ GF ≤ ζω(G)

5 every element of GF is right Engel in G
In particular, if G is torsion-free, then G is hypercentral

Recall the theorem of Möhres that a group in which every subgp is sn
is soluble
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Work of Detomi

Theorem
(Detomi 2004) Let G be a periodic group such that |Hn : H| < ∞ for all
subgroups H of G. There is a function g of n such that γg(n) is finite.

Theorem
(Casolo-Mainardis, Detomi) Let G be a torsion-free group. If
|Hn : H| < ∞ for all subgroups H, then there is a function h of n such
that G is nilpotent of class at most h(n).
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Recent work concerning f-subnormal subgroups etc.

Theorem
(M. Ferrara, M. Trombetti, MD)
Let G be a group. Then

(i) G satisfies min-fsn ⇐⇒ G satisfies min-sn;
(ii) G satisfies max-fsn ⇐⇒ G satisfies max-sn;
(iii) G satisfies min-∞-fsn ⇐⇒ G satisfies min-∞-sn;
(iv) G satisfies max-∞-fsn ⇐⇒ G satisfies max-∞-sn;
(v) G satisfies double chain condition on subnormal subgroups ⇐⇒

G satisfies double chain condition on f-subnormal subgroups;
(vi) G satisfies weak double chain condition on subnormal subgroups

⇐⇒ G satisfies weak double chain condition on f-subnormal
subgroups.
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Wielandt Subgroup ω(G)

The Wielandt subgroup and f-Wielandt subgroup of G..

ω(G) =
⋂

{NG(S) : S is subnormal in G}.

ω̄(G) =
⋂

{NG(S) : S is f-subnormal in G},

ω̄(G) ≤ ω(G). Equality does not hold in general (S3). For locally
nilpotent groups G we have ω̄(G) = ω(G).

Theorem
Let G be a group satisfying the minimal condition on subnormal
subgroups. Then |G : ω̄(G)| is finite.
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Wielandt Subgroup

Generalized Wielandt subgroup ωi(G) of a group G:

ωi(G) =
⋂

{NG(H)|H is an infinite subnormal subgroup of G}.

ω(G) ≤ ωi(G); ωi(G) = G if no infinite subnormal subgroups.

Generalized f-Wielandt subgroup

ωi(G) =
⋂

{NG(H)|H is an infinite f-subnormal subgroup of G},

ωi(G) ≤ ωi(G) and ωi(G) = G, if G has no infinite f-subnormal
subgroups.

ω(G) ≤ ωi(G) in general.
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The case when ωi(G) ̸= ω(G)

Theorem

Let G be a group satisfying ωi(G) ̸= ω(G). Then the Baer radical of G
is Prüfer-by-finite and nilpotent.

Proposition

Let G be a group with ωi(G) ̸= ω(G). Then every abelian normal
subgroup of G is Prüfer-by-finite.

Corollary

Let G be a group such that ωi(G) ̸= ω(G) and suppose that H is a
Chernikov f-subnormal subgroup of G. Then H is Prüfer-by-finite.
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Structure of ωi(G)/ω(G)

Vf (G) = ⟨H|H is a fte f-subnormal subgroup of G⟩.

Lemma

Let G be a group in which Vf (G) is Baer-by-finite. Then

(i) ωi(G)/ω(G) is finite;
(ii) There exists a finite normal subgroup N of G such that every

f-subnormal subgroup of ωi(G)/N is a normal subgroup.

Theorem

For all groups G the quotient group ωi(G)/ω(G) is residually finite.
Furthermore, ωi(G) is either finite or ωi(G)/ω(G) is Dedekind.
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Structure of ωi(G)/ω(G) in generalized soluble groups

Theorem

Let G be an infinite subsoluble group such that ωi(G) ̸= ω(G). Then

(i) G is a soluble group with a normal Prüfer p-subgroup P such that
G/P is finite-by-(torsion-free abelian);

(ii) G/ω(G) has finite exponent;
(iii) ωi(G)/ω(G) is a finite abelian {p,p − 1}-group.

By contrast, there is a periodic soluble group in which ωi(G)/ω(G) is
nonabelian an example due to de Giovanni and Franciosi, 1985
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Structure of ωi(G)/ω(G) in generalized soluble groups

Corollary

Let G be an infinite subsoluble group.

(i) If G is finitely generated, then ωi(G) = ω(G).
(ii) If G contains no Prüfer subgroups, then ωi(G) = ω(G).

Corollary

Let G be a group such that ωi(G)/ω(G) is an infinite nonabelian group.
Then ωi(G)/ω(G) has finite exponent.
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Examples

What is the relationship between ω(G), ωi(G), ω(G) and ωi(G)?

There is an infinite group G = ωi(G) such that ωi(G) = ω(G) is finite,
but ω(G) ̸= ωi(G). Furthermore, ωi(G)/ω(G) is not Dedekind.

Let A be a nontrivial finite abelian group. Then there is a finitely
generated infinite group G such that ωi(G)/ω(G) ∼= A × A.

If ωi(G) is finite, then so is ωi(G), but if ωi(G) is finite,then ωi(G) can be
infinite.

If G is a finite Dedekind group, then there is a group R such that
ωi(R)/ω(R) ∼= G ∼= ωi(R)/ω(R).

In fact, can ωi(G)/ω(G) ever be infinite?
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The case when ωi(G) is finite

Theorem
Let G be an infinite group and let ωi(G) be finite. Then

(i) ωi(G) is nilpotent of class at most 2.
(ii) ωi(G)/ω(G) is abelian.

Theorem

If G is an infinite group, then in any case ωi(G)/ω(G) is Dedekind.

Lemma

Let G be a group. Then ωi(G) is finite if and only if ω(G) is finite.
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Bounded Near Defect

Theorem
(De Falco, de Giovanni, Musella 2014) Let G be a radical group in
which every subgroup of infinite rank is nearly normal. Then either G
has finite rank or G′ is finite.

Note that nearly normal means |HG : H| < ∞ (what I would call almost
normal).
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Bounded Near Defect

Let Y0 denote the class of periodic locally graded groups.

Let L,R, Ṕ, P̀ denote the usual closure operations.

For each ordinal α let

Yα+1 = LYα

⋃
RYα

⋃
Ṕyα

⋃
P̀Yα,

and as usual let Yγ =
⋃

β<γ Yβ, for limit ordinals γ.

Set X =
⋃

γ Yγ .
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Bounded Near Defect

Theorem
1 Let G ∈ X have infinite rank. Suppose all subgroups of G of

infinite rank are almost subnormal of bounded near defect at most
(r , s). Then G is finite-by-nilpotent.

2 If G is a periodic group and all subgroups of infinite rank are
almost subnormal of bounded near defect at most (r , s), then
|γh(r+s2)| < (s2)!.

3 If G is a locally nilpotent group and all subgroups of infinite rank
are almost subnormal of bounded near defect at most (r , s), then
there is a function k such that G is nilpotent of class at most
k(r + s).
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Thank you

Thank you very much.

Enjoy the rest of the conference and
have safe journeys home!
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