A BRIEF SURVEY OF F-SUBNORMAL SUBGROUPS

Martyn R. Dixon¹

¹Department of Mathematics University of Alabama

Groups Ischia 2022

- For our conference organizers
- Represents some joint work with Maria Ferrara and Marco Trombetti

1/23

EN 4 EN

Well-known theorem of B. H. Neumann

Theorem

Let G be a group in which $|H^G : H| < \infty$ for all subgroups H of G. Then G is finite-by-abelian.

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBN Groups Ischia 2022 2/23

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• $H \leq G$ is *f*-ascendant if we have

$${\it H}={\it G}_0\leq {\it G}_1\leq \ldots {\it G}_lpha\leq \ldots {\it G}_\lambda={\it G}_\lambda$$

with $G_{\alpha} \triangleleft G_{\alpha+1}$ or $|G_{\alpha+1} : G_{\alpha}| < \infty$ (Phillips 1972).

(日)

• $H \leq G$ is *f*-ascendant if we have

$${\it H}={\it G}_0\leq {\it G}_1\leq \ldots {\it G}_lpha\leq \ldots {\it G}_\lambda={\it G}_\lambda$$

with $G_{\alpha} \triangleleft G_{\alpha+1}$ or $|G_{\alpha+1} : G_{\alpha}| < \infty$ (Phillips 1972).

• When λ is finite say *H* is f-subnormal in *G*.

• $H \leq G$ is *f*-ascendant if we have

$${\it H}={\it G}_0\leq {\it G}_1\leq \ldots {\it G}_lpha\leq \ldots {\it G}_\lambda={\it G}_\lambda$$

with $G_{\alpha} \triangleleft G_{\alpha+1}$ or $|G_{\alpha+1} : G_{\alpha}| < \infty$ (Phillips 1972).

- When λ is finite say *H* is f-subnormal in *G*.
- H is almost subnormal in G if

$$H \leq H_n \leq H_{n-1} \leq \cdots \leq H_1 \leq H_0 = G$$

3/23

where $H_1 = H^G$, $H_i = H^{G,i} = H^{H_{i-1}}$ and $|H_n : H| < \infty$. (Lennox 1977)

• $H \leq G$ is *f*-ascendant if we have

$${\it H}={\it G}_0\leq {\it G}_1\leq \ldots {\it G}_lpha\leq \ldots {\it G}_\lambda={\it G}_\lambda$$

with $G_{\alpha} \triangleleft G_{\alpha+1}$ or $|G_{\alpha+1} : G_{\alpha}| < \infty$ (Phillips 1972).

- When λ is finite say *H* is f-subnormal in *G*.
- H is almost subnormal in G if

$$H \leq H_n \leq H_{n-1} \leq \cdots \leq H_1 \leq H_0 = G$$

where $H_1 = H^G$, $H_i = H^{G,i} = H^{H_{i-1}}$ and $|H_n : H| < \infty$. (Lennox 1977)

• *H* is subnormal-by-finite in *G* if *H* contains a subnormal subgroup *S* of *G* such that $|H : S| < \infty$. May assume $S \triangleleft H$.

(I) > (A) > (A) > (A) > (A)

• Every subnormal subgroup is f-subnormal.

< ロ > < 同 > < 回 > < 回 >

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.

< ロ > < 同 > < 回 > < 回 >

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.

< ロ > < 同 > < 回 > < 回 >

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.
- (Casolo-Mainardis 2001) If *H* is f-sn *G*, then *H* is sn-by-fte.

A D N A B N A B N A B N

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.
- (Casolo-Mainardis 2001) If *H* is f-sn *G*, then *H* is sn-by-fte.
- Every finite subgroup is normal-by-finite.

A D N A B N A B N A B N

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.
- (Casolo-Mainardis 2001) If *H* is f-sn *G*, then *H* is sn-by-fte.
- Every finite subgroup is normal-by-finite.
- If $H_r = H_{r+1}$ and $H_{r-1} \neq H_r$ and if $|H_r : H| = s$ say H has near defect (r, s).

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.
- (Casolo-Mainardis 2001) If *H* is f-sn *G*, then *H* is sn-by-fte.
- Every finite subgroup is normal-by-finite.
- If $H_r = H_{r+1}$ and $H_{r-1} \neq H_r$ and if $|H_r : H| = s$ say H has near defect (r, s).
- Every subnormal subgroup of defect *r* has near defect (*r*, 1).

(I) > (A) > (A) > (A) > (A)

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.
- (Casolo-Mainardis 2001) If *H* is f-sn *G*, then *H* is sn-by-fte.
- Every finite subgroup is normal-by-finite.
- If $H_r = H_{r+1}$ and $H_{r-1} \neq H_r$ and if $|H_r : H| = s$ say H has near defect (r, s).
- Every subnormal subgroup of defect *r* has near defect (*r*, 1).
- In S₃, (12) has near defect (1,3) but is not subnormal

- Every subnormal subgroup is f-subnormal.
- Every subgroup of a finite group is f-subnormal.
- Almost subnormal implies f-subnormal.
- (Casolo-Mainardis 2001) If *H* is f-sn *G*, then *H* is sn-by-fte.
- Every finite subgroup is normal-by-finite.
- If $H_r = H_{r+1}$ and $H_{r-1} \neq H_r$ and if $|H_r : H| = s$ say H has near defect (r, s).
- Every subnormal subgroup of defect *r* has near defect (*r*, 1).
- In S_3 , (12) has near defect (1,3) but is not subnormal
- (Casolo-Mainardis) $G \in L\mathfrak{N}$ implies every f-sn subgp is sn.

 Suppose K = γ_{r+1}(G) is finite. If H ≤ G, then HK is sn of defect at most r in G, so H is of near defect at most (r, |K|). ie all subgroups of G are of bounded near defect.

< 回 > < 回 > < 回 > .

 Suppose K = γ_{r+1}(G) is finite. If H ≤ G, then HK is sn of defect at most r in G, so H is of near defect at most (r, |K|). ie all subgroups of G are of bounded near defect.

Theorem

(Lennox, 1977) Let r, s be fixed natural numbers. If $|H_r : H| \le s$ for all subgroups H of G, then $|\gamma_{f(r+s)}(G)| \le s!$, for some function f.

 Suppose K = γ_{r+1}(G) is finite. If H ≤ G, then HK is sn of defect at most r in G, so H is of near defect at most (r, |K|). ie all subgroups of G are of bounded near defect.

Theorem (Lennox, 1977) Let r, s be fixed natural numbers. If $|H_r : H| \le s$ for all subgroups H of G, then $|\gamma_{f(r+s)}(G)| \le s!$, for some function f.

 Compare this result with the well-known theorem of Roseblade,1965.

Lennox deduced:

Theorem

Let G be a finitely generated group. TFAE:

- Every f.g. subgroup of G is almost sn of bounded near defect
- G is finite-by-nilpotent
- Every f.g. subgroup of G is f-sn.

A B F A B F

Lennox deduced:

Theorem

Let G be a finitely generated group. TFAE:

- Every f.g. subgroup of G is almost sn of bounded near defect
- G is finite-by-nilpotent
- Every f.g. subgroup of G is f-sn.

Such groups have the maximum condition; for D_{∞} every subgroup is subnormal-by-finite. Thus even for f.g. groups, if all subgroups are sn-by-fte this does not imply all subgroups almost sn.

A B b 4 B b

If $G = \underset{n \in \mathbb{N}}{\text{Dr } S_n}$ is the direct product of restricted symmetric groups of increasing degree, all finitely generated subgroups have finite near defect, but *G* is not finite-by-nilpotent.

4 E N 4 E N

If $G = \underset{n \in \mathbb{N}}{\text{Dr } S_n}$ is the direct product of restricted symmetric groups of increasing degree, all finitely generated subgroups have finite near defect, but *G* is not finite-by-nilpotent.

Locally nilpotent groups with all subgroups almost subnormal are hypercentral.

A D N A B N A B N A B N

If $G = \underset{n \in \mathbb{N}}{\text{Dr } S_n}$ is the direct product of restricted symmetric groups of increasing degree, all finitely generated subgroups have finite near defect, but *G* is not finite-by-nilpotent.

Locally nilpotent groups with all subgroups almost subnormal are hypercentral.

Casolo-Mainardis, 2001 construct a group which is not hypercentral in which all subgroups *H* satisfy $|H_2 : H| < \infty$.

Theorem

(Casolo-Mainardis, 2001) Let G be a group. TFAE

- Every subgp of G is f-sn.
- Every subgp of G is almost sn
- Solution Every subgp H of G is contained in a subgp K such that H sn K and $|G:K| < \infty$

Every subgroup is subnormal-by-finite.

< 6 b

A B A A B A

Work of Casolo-Mainardis

 $D(G) = \langle H^{\mathfrak{N}} | H ext{ is f.g. subgp of } G
angle$

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBM Groups Ischia 2022 9/23

(日)

э

Work of Casolo-Mainardis

 $D(G) = \langle H^{\mathfrak{N}} | H \text{ is f.g. subgp of } G \rangle$

Theorem

Let G be a gp in which every subgp is f-sn. Then

- Every subgp of G/D(G) is sn
- \bigcirc D(G) is fte-by-nilpt
- G is fte-by-soluble
- $D(G) \cap G^{\mathfrak{F}} \leq \zeta_{\omega}(G)$
- **(**) every element of $G^{\mathfrak{F}}$ is right Engel in G

In particular, if G is torsion-free, then G is hypercentral

Recall the theorem of Möhres that a group in which every subgp is sn is soluble

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Theorem

(Detomi 2004) Let G be a periodic group such that $|H_n : H| < \infty$ for all subgroups H of G. There is a function g of n such that $\gamma_{g(n)}$ is finite.

Theorem

(Detomi 2004) Let G be a periodic group such that $|H_n : H| < \infty$ for all subgroups H of G. There is a function g of n such that $\gamma_{g(n)}$ is finite.

Theorem

(Casolo-Mainardis, Detomi) Let G be a torsion-free group. If $|H_n : H| < \infty$ for all subgroups H, then there is a function h of n such that G is nilpotent of class at most h(n).

Recent work concerning f-subnormal subgroups etc.

Theorem

(M. Ferrara, M. Trombetti, MD) Let G be a group. Then

- (i) G satisfies min-fsn \iff G satisfies min-sn;
- (ii) G satisfies max-fsn \iff G satisfies max-sn;
- (iii) G satisfies min- ∞ -fsn \iff G satisfies min- ∞ -sn;
- (iv) G satisfies max- ∞ -fsn \iff G satisfies max- ∞ -sn;
- (v) G satisfies double chain condition on subnormal subgroups ↔
 G satisfies double chain condition on f-subnormal subgroups;
- (vi) G satisfies weak double chain condition on subnormal subgroups

 G satisfies weak double chain condition on f-subnormal subgroups.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

The Wielandt subgroup and f-Wielandt subgroup of G..

The Wielandt subgroup and f-Wielandt subgroup of G..

$$\omega(G) = \bigcap \{ N_G(S) : S \text{ is subnormal in } G \}.$$
$$\bar{\omega}(G) = \bigcap \{ N_G(S) : S \text{ is } f \text{-subnormal in } G \},$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

The Wielandt subgroup and f-Wielandt subgroup of G..

$$\omega(G) = \bigcap \{ N_G(S) : S \text{ is subnormal in } G \}.$$

 $\bar{\omega}(G) = \bigcap \{ N_G(S) : S \text{ is } f \text{-subnormal in } G \},$

 $\bar{\omega}(G) \leq \omega(G)$. Equality does not hold in general (*S*₃). For locally nilpotent groups *G* we have $\bar{\omega}(G) = \omega(G)$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

The Wielandt subgroup and f-Wielandt subgroup of G..

$$\omega(G) = \bigcap \{N_G(S) : S \text{ is subnormal in } G\}.$$

 $\bar{\omega}(G) = \bigcap \{N_G(S) : S \text{ is } f\text{-subnormal in } G\},$

 $\bar{\omega}(G) \leq \omega(G)$. Equality does not hold in general (*S*₃). For locally nilpotent groups *G* we have $\bar{\omega}(G) = \omega(G)$.

Theorem

Let G be a group satisfying the minimal condition on subnormal subgroups. Then $|G : \overline{\omega}(G)|$ is finite.

Wielandt Subgroup

Generalized Wielandt subgroup $\omega_i(G)$ of a group G:

 $\omega_i(G) = \bigcap \{ N_G(H) | H \text{ is an infinite subnormal subgroup of } G \}.$

Wielandt Subgroup

Generalized Wielandt subgroup $\omega_i(G)$ of a group G:

 $\omega_i(G) = \bigcap \{ N_G(H) | H \text{ is an infinite subnormal subgroup of } G \}.$

 $\omega(G) \leq \omega_i(G)$; $\omega_i(G) = G$ if no infinite subnormal subgroups.

Wielandt Subgroup

Generalized Wielandt subgroup $\omega_i(G)$ of a group G:

 $\omega_i(G) = \bigcap \{ N_G(H) | H \text{ is an infinite subnormal subgroup of } G \}.$

 $\omega(G) \leq \omega_i(G)$; $\omega_i(G) = G$ if no infinite subnormal subgroups.

Generalized f-Wielandt subgroup

 $\overline{\omega}_i(G) = \bigcap \{ N_G(H) | H \text{ is an infinite } f \text{-subnormal subgroup of } G \},\$

 $\overline{\omega}_i(G) \leq \omega_i(G)$ and $\overline{\omega}_i(G) = G$, if *G* has no infinite *f*-subnormal subgroups.

Wielandt Subgroup

Generalized Wielandt subgroup $\omega_i(G)$ of a group G:

 $\omega_i(G) = \bigcap \{ N_G(H) | H \text{ is an infinite subnormal subgroup of } G \}.$

 $\omega(G) \leq \omega_i(G)$; $\omega_i(G) = G$ if no infinite subnormal subgroups.

Generalized f-Wielandt subgroup

 $\overline{\omega}_i(G) = \bigcap \{ N_G(H) | H \text{ is an infinite } f \text{-subnormal subgroup of } G \},\$

 $\overline{\omega}_i(G) \leq \omega_i(G)$ and $\overline{\omega}_i(G) = G$, if *G* has no infinite *f*-subnormal subgroups.

 $\overline{\omega}(G) \leq \overline{\omega}_i(G)$ in general.

The case when $\overline{\omega}_i(G) \neq \overline{\omega}(G)$

Theorem

Let G be a group satisfying $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then the Baer radical of G is Prüfer-by-finite and nilpotent.

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBM Groups Ischia 2022 14/23

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The case when $\overline{\omega}_i(G) \neq \overline{\omega}(G)$

Theorem

Let G be a group satisfying $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then the Baer radical of G is Prüfer-by-finite and nilpotent.

Proposition

Let G be a group with $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then every abelian normal subgroup of G is Prüfer-by-finite.

The case when $\overline{\omega}_i(G) \neq \overline{\omega}(G)$

Theorem

Let G be a group satisfying $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then the Baer radical of G is Prüfer-by-finite and nilpotent.

Proposition

Let G be a group with $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then every abelian normal subgroup of G is Prüfer-by-finite.

Corollary

Let G be a group such that $\overline{\omega}_i(G) \neq \overline{\omega}(G)$ and suppose that H is a Chernikov f-subnormal subgroup of G. Then H is Prüfer-by-finite.

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $V_f(G) = \langle H | H \text{ is a fte } f \text{-subnormal subgroup of } G \rangle.$

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBM Groups Ischia 2022 15/23

 $V_f(G) = \langle H | H$ is a fte *f*-subnormal subgroup of $G \rangle$.

Lemma

Let G be a group in which $V_f(G)$ is Baer-by-finite. Then (i) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is finite;

 $V_f(G) = \langle H | H \text{ is a fte } f \text{-subnormal subgroup of } G \rangle.$

Lemma

Let G be a group in which $V_f(G)$ is Baer-by-finite. Then

- (i) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is finite;
- (ii) There exists a finite normal subgroup N of G such that every *f*-subnormal subgroup of $\overline{\omega}_i(G)/N$ is a normal subgroup.

 $V_f(G) = \langle H | H \text{ is a fte } f \text{-subnormal subgroup of } G \rangle.$

Lemma

Let G be a group in which $V_f(G)$ is Baer-by-finite. Then

- (i) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is finite;
- (ii) There exists a finite normal subgroup N of G such that every *f*-subnormal subgroup of $\overline{\omega}_i(G)/N$ is a normal subgroup.

Theorem

For all groups G the quotient group $\overline{\omega}_i(G)/\overline{\omega}(G)$ is residually finite. Furthermore, $\overline{\omega}_i(G)$ is either finite or $\overline{\omega}_i(G)/\overline{\omega}(G)$ is Dedekind.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem

Let G be an infinite subsoluble group such that $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBN Groups Ischia 2022 16/23

< 6 b

★ ∃ > < ∃ >

Theorem

Let G be an infinite subsoluble group such that $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then

 (i) G is a soluble group with a normal Prüfer p-subgroup P such that G/P is finite-by-(torsion-free abelian);

4 E N 4 E N

Theorem

Let G be an infinite subsoluble group such that $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then

- (i) G is a soluble group with a normal Prüfer p-subgroup P such that G/P is finite-by-(torsion-free abelian);
- (ii) $G/\overline{\omega}(G)$ has finite exponent;

4 E N 4 E N

Theorem

Let G be an infinite subsoluble group such that $\overline{\omega}_i(G) \neq \overline{\omega}(G)$. Then

- (i) G is a soluble group with a normal Prüfer p-subgroup P such that G/P is finite-by-(torsion-free abelian);
- (ii) $G/\overline{\omega}(G)$ has finite exponent;

(iii) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is a finite abelian $\{p, p-1\}$ -group.

By contrast, there is a periodic soluble group in which $\omega_i(G)/\omega(G)$ is nonabelian an example due to de Giovanni and Franciosi, 1985

Corollary

Let G be an infinite subsoluble group.

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBM Groups Ischia 2022 17/23

< A

★ ∃ > < ∃ >

Corollary

Let G be an infinite subsoluble group.

(i) If G is finitely generated, then $\overline{\omega}_i(G) = \overline{\omega}(G)$.

< 6 b

4 3 5 4 3 5

Corollary

Let G be an infinite subsoluble group.

- (i) If G is finitely generated, then $\overline{\omega}_i(G) = \overline{\omega}(G)$.
- (ii) If *G* contains no Prüfer subgroups, then $\overline{\omega}_i(G) = \overline{\omega}(G)$.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Corollary

Let G be an infinite subsoluble group.

- (i) If G is finitely generated, then $\overline{\omega}_i(G) = \overline{\omega}(G)$.
- (ii) If G contains no Prüfer subgroups, then $\overline{\omega}_i(G) = \overline{\omega}(G)$.

Corollary

Let G be a group such that $\overline{\omega}_i(G)/\overline{\omega}(G)$ is an infinite nonabelian group. Then $\overline{\omega}_i(G)/\overline{\omega}(G)$ has finite exponent.

What is the relationship between $\overline{\omega}(G), \overline{\omega}_i(G), \omega(G)$ and $\omega_i(G)$?

What is the relationship between $\overline{\omega}(G), \overline{\omega}_i(G), \omega(G)$ and $\omega_i(G)$?

There is an infinite group $G = \omega_i(G)$ such that $\overline{\omega}_i(G) = \overline{\omega}(G)$ is finite, but $\omega(G) \neq \omega_i(G)$. Furthermore, $\omega_i(G)/\omega(G)$ is not Dedekind.

What is the relationship between $\overline{\omega}(G), \overline{\omega}_i(G), \omega(G)$ and $\omega_i(G)$?

There is an infinite group $G = \omega_i(G)$ such that $\overline{\omega}_i(G) = \overline{\omega}(G)$ is finite, but $\omega(G) \neq \omega_i(G)$. Furthermore, $\omega_i(G)/\omega(G)$ is not Dedekind.

Let *A* be a nontrivial finite abelian group. Then there is a finitely generated infinite group *G* such that $\overline{\omega}_i(G)/\overline{\omega}(G) \cong A \times A$.

What is the relationship between $\overline{\omega}(G), \overline{\omega}_i(G), \omega(G)$ and $\omega_i(G)$?

There is an infinite group $G = \omega_i(G)$ such that $\overline{\omega}_i(G) = \overline{\omega}(G)$ is finite, but $\omega(G) \neq \omega_i(G)$. Furthermore, $\omega_i(G)/\omega(G)$ is not Dedekind.

Let *A* be a nontrivial finite abelian group. Then there is a finitely generated infinite group *G* such that $\overline{\omega}_i(G)/\overline{\omega}(G) \cong A \times A$.

If $\omega_i(G)$ is finite, then so is $\overline{\omega}_i(G)$, but if $\overline{\omega}_i(G)$ is finite, then $\omega_i(G)$ can be infinite.

What is the relationship between $\overline{\omega}(G), \overline{\omega}_i(G), \omega(G)$ and $\omega_i(G)$?

There is an infinite group $G = \omega_i(G)$ such that $\overline{\omega}_i(G) = \overline{\omega}(G)$ is finite, but $\omega(G) \neq \omega_i(G)$. Furthermore, $\omega_i(G)/\omega(G)$ is not Dedekind.

Let *A* be a nontrivial finite abelian group. Then there is a finitely generated infinite group *G* such that $\overline{\omega}_i(G)/\overline{\omega}(G) \cong A \times A$.

If $\omega_i(G)$ is finite, then so is $\overline{\omega}_i(G)$, but if $\overline{\omega}_i(G)$ is finite, then $\omega_i(G)$ can be infinite.

If *G* is a finite Dedekind group, then there is a group *R* such that $\overline{\omega}_i(R)/\overline{\omega}(R) \cong G \cong \omega_i(R)/\omega(R)$.

What is the relationship between $\overline{\omega}(G), \overline{\omega}_i(G), \omega(G)$ and $\omega_i(G)$?

There is an infinite group $G = \omega_i(G)$ such that $\overline{\omega}_i(G) = \overline{\omega}(G)$ is finite, but $\omega(G) \neq \omega_i(G)$. Furthermore, $\omega_i(G)/\omega(G)$ is not Dedekind.

Let *A* be a nontrivial finite abelian group. Then there is a finitely generated infinite group *G* such that $\overline{\omega}_i(G)/\overline{\omega}(G) \cong A \times A$.

If $\omega_i(G)$ is finite, then so is $\overline{\omega}_i(G)$, but if $\overline{\omega}_i(G)$ is finite, then $\omega_i(G)$ can be infinite.

If *G* is a finite Dedekind group, then there is a group *R* such that $\overline{\omega}_i(R)/\overline{\omega}(R) \cong G \cong \omega_i(R)/\omega(R)$.

In fact, can $\overline{\omega}_i(G)/\overline{\omega}(G)$ ever be infinite?

Theorem

Let G be an infinite group and let $\overline{\omega}_i(G)$ be finite. Then

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBN Groups Ischia 2022 19/23

A B F A B F

Theorem

Let G be an infinite group and let $\overline{\omega}_i(G)$ be finite. Then

(i) $\overline{\omega}_i(G)$ is nilpotent of class at most 2.

A B b 4 B b

Theorem

Let G be an infinite group and let $\overline{\omega}_i(G)$ be finite. Then

(i) $\overline{\omega}_i(G)$ is nilpotent of class at most 2.

(ii) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is abelian.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let G be an infinite group and let $\overline{\omega}_i(G)$ be finite. Then

- (i) $\overline{\omega}_i(G)$ is nilpotent of class at most 2.
- (ii) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is abelian.

Theorem

If G is an infinite group, then in any case $\overline{\omega}_i(G)/\overline{\omega}(G)$ is Dedekind.

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Theorem

Let G be an infinite group and let $\overline{\omega}_i(G)$ be finite. Then

- (i) $\overline{\omega}_i(G)$ is nilpotent of class at most 2.
- (ii) $\overline{\omega}_i(G)/\overline{\omega}(G)$ is abelian.

Theorem

If G is an infinite group, then in any case $\overline{\omega}_i(G)/\overline{\omega}(G)$ is Dedekind.

Lemma

Let G be a group. Then $\overline{\omega}_i(G)$ is finite if and only if $\overline{\omega}(G)$ is finite.

Theorem

(De Falco, de Giovanni, Musella 2014) Let G be a radical group in which every subgroup of infinite rank is nearly normal. Then either G has finite rank or G' is finite.

Note that nearly normal means $|H^G : H| < \infty$ (what I would call almost normal).

4 3 5 4 3 5 5

Let \mathfrak{Y}_0 denote the class of periodic locally graded groups. Let L, R, \dot{P}, \dot{P} denote the usual closure operations. For each ordinal α let

$$\mathfrak{Y}_{\alpha+1} = L\mathfrak{Y}_{\alpha} \bigcup R\mathfrak{Y}_{\alpha} \bigcup \dot{P}\mathfrak{Y}_{\alpha} \bigcup \dot{P}\mathfrak{Y}_{\alpha},$$

and as usual let $\mathfrak{Y}_{\gamma} = \bigcup_{\beta < \gamma} \mathfrak{Y}_{\beta}$, for limit ordinals γ .

Set $\mathfrak{X} = \bigcup_{\gamma} \mathfrak{Y}_{\gamma}$.

A D A A B A A B A A B A B B

Bounded Near Defect

Theorem

 Let G ∈ X have infinite rank. Suppose all subgroups of G of infinite rank are almost subnormal of bounded near defect at most (r, s). Then G is finite-by-nilpotent.

A (10) A (10)

Bounded Near Defect

Theorem

- Let G ∈ X have infinite rank. Suppose all subgroups of G of infinite rank are almost subnormal of bounded near defect at most (r, s). Then G is finite-by-nilpotent.
- If G is a periodic group and all subgroups of infinite rank are almost subnormal of bounded near defect at most (r, s), then |γ_{h(r+s²)}| < (s²)!.

4 3 5 4 3 5 5

Bounded Near Defect

Theorem

- Let G ∈ X have infinite rank. Suppose all subgroups of G of infinite rank are almost subnormal of bounded near defect at most (r, s). Then G is finite-by-nilpotent.
- If G is a periodic group and all subgroups of infinite rank are almost subnormal of bounded near defect at most (r, s), then |γ_{h(r+s²)}| < (s²)!.
- If G is a locally nilpotent group and all subgroups of infinite rank are almost subnormal of bounded near defect at most (r, s), then there is a function k such that G is nilpotent of class at most k(r + s).

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Thank you very much.

Enjoy the rest of the conference and have safe journeys home!

Martyn R. Dixon (University of Alabama) SOME TOPICS IN THE THEORY OF F-SUBM Groups Ischia 2022

4 3 5 4 3 5 5

23/23