Hausdorff dimension of some groups of automorphisms of trees

Gustavo A. Fernández-Alcober

(jointly with E. Di Domenico, Ş. Gül, M. Noce, A. Thillaisundaram, A. Zugadi)

University of the Basque Country, Bilbao, Spain

Ischia Group Theory 2022, June 24th

1 Hausdorff dimension in profinite groups

2 Some groups of automorphisms of the *p*-adic tree \mathcal{T}

3 Hausdorff dimension in a Sylow pro-p subgroup of Aut \mathcal{T}

1 Hausdorff dimension in profinite groups

2 Some groups of automorphisms of the *p*-adic tree \mathcal{T}

3 Hausdorff dimension in a Sylow pro-p subgroup of Aut \mathcal{T}

Let G be a finite group, and H a subgroup of G. Then we can use

to measure the relative size of H inside G.

If G is a finite p-group, then

 $\frac{\log|H|}{\log|G|}$

may be a more suitable choice.

Let G be a countably based profinite group, and $\{G_n\}_{n\in\mathbb{N}}$ a base of neighbourhoods of 1 of open normal subgroups. Then

$$G\cong \varprojlim_{n\in\mathbb{N}} G/G_n.$$

If H is a closed subgroup of G, then $H \cong \varprojlim_{n \in \mathbb{N}} HG_n/G_n$.

So *H* can be recovered from its images in the finite groups G/G_n , and the relative size of these images is

$$\frac{\log |HG_n : G_n|}{\log |G : G_n|}$$

It seems reasonable to take the limit as $n \to \infty$ as the relative size of H in G.

Let G be a countably based profinite group, and $\mathcal{G} = \{G_n\}_{n \in \mathbb{N}}$ a basis of neighbourhoods of 1 of open normal subgroups.

Then G is metrizable with the following distance $d_{\mathcal{G}}$: for $x, y \in G$, we set

$$d_{\mathcal{G}}(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1/|G:G_n|, & \text{if } x \neq y, \end{cases}$$

where $n \in \mathbb{N}$ is minimum such that $xG_n \neq yG_n$.

In a metric space (X, d) we can define the Hausdorff dimension of every subset $Y \subseteq X$.

Let $(G, d_{\mathcal{G}})$ be as above. The corresponding Hausdorff dimension is denoted by $\operatorname{hdim}_{G}^{\mathcal{G}}$.

Theorem (Abercrombie, Barnea-Shalev) Let H be a closed subgroup of G. Then

$$\operatorname{hdim}_{G}^{\mathcal{G}}(H) = \operatorname{lim} \inf_{n \to \infty} \frac{\log |HG_n : G_n|}{\log |G : G_n|}$$

So Hausdorff dimension can be understood as a measure of the relative size of H in G.

Properties of Hausdorff dimension in profinite groups

- It may depend on the choice of \mathcal{G} .
- $\operatorname{hdim}_{G}^{\mathcal{G}}(G) = 1$, so Hausdorff dimension takes values in [0, 1].
- Open subgroups always have Hausdorff dimension 1.
- Countable subsets have Hausdorff dimension 0.

Hausdorff dimension in profinite groups

2 Some groups of automorphisms of the *p*-adic tree \mathcal{T}

(3) Hausdorff dimension in a Sylow pro-p subgroup of Aut \mathcal{T}

The *p*-adic tree

• Here p = 3. We denote this tree by T_p , or only T if p is fixed.

• Vertices are words in the alphabet $\{1, \ldots, p\}$, and \mathcal{T} is structured into *levels* of vertices of the same length.

An automorphism of \mathcal{T} is a bijection of the vertices that preserves incidence. All automorphisms of \mathcal{T} form a group Aut \mathcal{T} .

If $f \in Aut \mathcal{T}$, then

- f preserves the root \emptyset , and more generally the levels of \mathcal{T} .
- *f* sends the descendants of a vertex *v* to the descendants of its image: if *v* → *w* then

$$\begin{cases} vx \mid x = 1, \dots, p \} & \stackrel{f}{\longrightarrow} & \{wx \mid x = 1, \dots, p \} \\ vx & \longmapsto & w(x\sigma), \end{cases}$$

for some $\sigma \in S_p$. We call σ the label of f at v.

• The labels of f at all vertices fully determine f.

A rooted automorphism

What is for example, the automorphism with label $\sigma = (1 \ 2 \ \dots \ p)$ at the root, and 1 elsewhere?

It permutes rigidly the *p* subtrees under the root as indicated by σ . This is the rooted automorphism corresponding to σ .

Another example

All labels are 1 except for vertices of the form p.^{*n*}.p1 and p.^{*n*}.p2 for $i \ge 0$, which are σ and σ^{-1} , respectively.

Every subtree of \mathcal{T} hanging from the first level is isomorphic to \mathcal{T} .

We can define

$$\begin{array}{rcl} \psi & : & \operatorname{Aut} \mathcal{T} & \longrightarrow & \operatorname{Aut} \mathcal{T} \wr S_p \\ & f & \longmapsto & (f_1, \dots, f_p)\sigma, \end{array}$$

where f_i comes from the action of f on the *i*th subtree hanging from the first level and σ is the label of f at the root.

Then ψ is an isomorphism: Aut $\mathcal{T} \cong \operatorname{Aut} \mathcal{T} \wr S_p$.

Let p be odd, and define $a, b \in Aut \mathcal{T}$ as follows:

- *a* is the rooted automorphism corresponding to $(1 \ 2 \ \dots \ p)$.
- *b* is the second automorphism we defined.

Then both a and b are of order p.

Definition

Then $G = \langle a, b \rangle$ is the Gupta-Sidki group for the prime *p*.

It is a counterexample to the General Burnside Problem: it is finitely generated, periodic, but infinite.

Generalising the automorphism b

Let $\boldsymbol{e} = (e_i)$ be a vector in \mathbb{F}_p^{p-1} . We define $b_{\boldsymbol{e}}$ via labels:

All labels are 1 except for vertices $p.\overset{n}{.}.pj$, which are σ^{e_j} .

Note that *b* corresponds to $\boldsymbol{e} = (1, -1, 0, \dots, 0)$.

Let **E** be a subspace of \mathbb{F}_p^{p-1} . We define the multi-GGS-group corresponding to **E** as

$$G_{\boldsymbol{E}} = \langle \boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{e}} \mid \boldsymbol{e} \in \boldsymbol{E} \rangle.$$

If dim $\boldsymbol{E} = r$ then $G_{\boldsymbol{E}}$ can be generated by r + 1 elements.

When dim E = 1 then we say that G_E is a GGS-group. If $e \in E$ is a non-zero vector then

$$G_{\boldsymbol{E}} = \langle \boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{e}} \rangle.$$

The ordinary Gupta-Sidki group is the GGS-group corresponding to $\boldsymbol{E} = \langle (1, -1, 0, \dots, 0) \rangle.$

A variation of the automorphism b_e

Let $\boldsymbol{e} = (e_i)$ be a vector in \mathbb{F}_{p}^{p-1} . We define $c_{\boldsymbol{e}}$ via labels:

All labels are 1 except for vertices 1.?.1j, $j \neq 1$, which are $\sigma^{e_1}, \ldots, \sigma^{e_{p-1}}$.

In all generality, given $\boldsymbol{e} \in \mathbb{F}_p^{p-1}$ and $\ell \in \{1, \dots, p\}$, we can similarly define

$$b_{\boldsymbol{e}}^{(\ell)}\in \mathsf{\Gamma}$$

by using the path with vertices ℓ .^{*n*}. ℓ .

So all labels are 1, except at vertices ℓ .^{*n*}. ℓj for $j \neq \ell$, where we place in order the labels $\sigma^{e_1}, \ldots, \sigma^{e_{p-1}}$.

For every $\ell \in \{1, \dots, p\}$, let $\boldsymbol{E}(\ell)$ be a subspace of \mathbb{F}_p^{p-1} , and set $\boldsymbol{E}(*) = (\boldsymbol{E}(1), \dots, \boldsymbol{E}(p)).$

We define the multi-EGS group corresponding to $\boldsymbol{E}(*)$ as

$$G_{\boldsymbol{E}(*)} = \langle \boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{e}(\ell)}^{(\ell)} \mid \boldsymbol{e}(\ell) \in \boldsymbol{E}(\ell) \rangle.$$

An important property

Let **C** be the subspace of \mathbb{F}_p^{p-1} consisting of constant vectors.

Theorem

Let $G_{E(*)}$ be a multi-EGS-group and assume that not all subspaces $E(\ell)$ are equal to C. Then:

$$\gamma_3(G) \times \cdots \times \gamma_3(G) \subseteq \psi(\gamma_3(G)). \tag{1}$$

If furthermore one of the $\mathbf{E}(\ell)$ contains a non-symmetric vector, or else dim $\langle \mathbf{E}(1), \ldots, \mathbf{E}(p) \rangle \geq 2$, then

$$G' \times \cdots \times G' \subseteq \psi(G').$$
 (2)

We say $G_{E(*)}$ is regular branch over $\gamma_3(G)$ or over G' according as (1) or (2) holds.

Consider the automorphisms $s,t\in\operatorname{\mathsf{Aut}}\mathcal{T}$ defined recursively via

 $\psi(s) = (1, \stackrel{p-1}{\ldots}, 1, t), \quad \text{and} \psi(t) = (1, \stackrel{p-1}{\ldots}, 1, s)\sigma.$

Definition

The group $B = \langle s, t \rangle$ is called the Basilica *p*-group.

If p = 2 then we obtain the well-known Basilica group.

Hausdorff dimension in profinite groups

2 Some groups of automorphisms of the p-adic tree ${\cal T}$

3 Hausdorff dimension in a Sylow pro-p subgroup of Aut \mathcal{T}

Theorem If $\mathcal{T}(n)$ is the tree \mathcal{T} truncated at the nth level then

$$\operatorname{Aut} \mathcal{T} \cong \varprojlim_{n \to \infty} \operatorname{Aut} \mathcal{T}(n).$$

So $\operatorname{Aut} \mathcal{T}$ is a profinite group.

Definition

The *n*th level stabiliser, st(n), is the subgroup of Aut T of all automorphisms that fix every vertex at the *n*th level.

Theorem

We have $\operatorname{Aut} \mathcal{T}(n) \cong \operatorname{Aut} \mathcal{T}/\operatorname{st}(n)$ and $\{\operatorname{st}(n)\}_{n \in \mathbb{N}}$ is a base of neighbourhoods of 1 in $\operatorname{Aut} \mathcal{T}$.

We can study Hausdorff dimension of subgroups of Aut \mathcal{T} with respect to the canonical base of neighbourhoods $\mathcal{S} = {\operatorname{st}(n)}_{n \in \mathbb{N}}$. We then delete \mathcal{S} from $\operatorname{hdim}_{\operatorname{Aut} \mathcal{T}}^{\mathcal{S}}$.

If H is a closed subgroup of Aut \mathcal{T} and $\operatorname{st}_H(n) = \operatorname{st}(n) \cap H$:

$$\operatorname{hdim}_{\operatorname{Aut}\mathcal{T}}(H) = \liminf_{n \to \infty} \ \frac{\log |H : \operatorname{st}_H(n)|}{\log |\operatorname{Aut}\mathcal{T} : \operatorname{st}(n)|}.$$

If H is an arbitrary subgroup of Aut \mathcal{T} then

$$\operatorname{hdim}_{\operatorname{Aut} \mathcal{T}}(\overline{H}) = \liminf_{n \to \infty} \frac{\log |H : \operatorname{st}_{H}(n)|}{\log |\operatorname{Aut} \mathcal{T} : \operatorname{st}(n)|}.$$

Thus the Hausdorff dimension of the closure \overline{H} can be determined just from H, without knowing explicitly the closure.

Let Γ be the set of $f \in \operatorname{Aut} \mathcal{T}$ with the property that all labels of f are powers of $\sigma = (1 \ 2 \ \dots \ p)$. All multi-EGS-groups and the Basilica *p*-groups are subgroups of Γ .

Theorem Γ is a Sylow pro-p subgroup of Aut \mathcal{T} .

For an arbitrary $G \leq \Gamma$ we have

$$\operatorname{hdim}_{\operatorname{Aut} \mathcal{T}}(\overline{G}) = \frac{1}{\log_p(p!)} \operatorname{hdim}_{\Gamma}(\overline{G}),$$

where hdim_{Γ} is calculated wrt $\{st_{\Gamma}(n)\}_{n\in\mathbb{N}}$, and

$$\operatorname{hdim}_{\Gamma}(\overline{G}) = (p-1)\liminf_{n \to \infty} \frac{\log_p |G/\operatorname{st}_G(n)|}{p^n}$$

Let G be a GGS-group defined by a non-zero vector e.

Theorem (F-A & Zugadi-Reizabal, 2014)

If C is the circulant matrix whose first row is (e, 0) then

hdim
$$\overline{G_e} = \frac{(p-1)t}{p^2} - \frac{\delta}{p^2} - \frac{\varepsilon}{(p-1)p^2},$$

where t is the rank of C, and

$$\delta = \begin{cases} 1, & \text{if e is symmetric,} \\ 0, & \text{otherwise,} \end{cases} \quad \text{and} \quad \varepsilon = \begin{cases} 1, & \text{if e is constant,} \\ 0, & \text{otherwise.} \end{cases}$$

We actually calculate the order of the quotients of G by its level stabilisers, an interesting result on its own.

Definition

A subspace of \mathbb{F}_p^p is circulant if it is invariant under the shift $(a_1, a_2, \ldots, a_p) \mapsto (a_p, a_1, \ldots, a_{p-1}).$

- There is exactly one circulant subspace C_i of every dimension 0 ≤ i ≤ p, and they form a chain.
- If V is an arbitrary subspace of \mathbb{F}_p^p , of dimension r, then the chain

 $\{0\} = V \cap C_0 \subseteq V \cap C_1 \subseteq \cdots \subseteq V \cap C_p$

contains exactly r strict inclusions.

• If $t_1 < \cdots < t_r$ are the indices for which $V \cap C_{t_i} \subsetneq V \cap C_{t_i+1}$ then we call (t_1, \ldots, t_r) the circulant weight of V. Let $G_{\boldsymbol{E}(*)}$ be a multi-EGS-group that is regular branch over G'. If $V = \langle \boldsymbol{E}(1), \dots, \boldsymbol{E}(p) \rangle$ then we say that $G_{\boldsymbol{V}}$ is the multi-GGS group associated to $G_{\boldsymbol{E}(*)}$.

Theorem (F-A & Gül & Thillaisundaram, 2022) hdim_{Γ}($\overline{G_{E(*)}}$) = hdim_{Γ}($\overline{G_{V}}$). So we reduce to multi-GGS-groups in this case.

Theorem (F-A & Gül & Thillaisundaram, 2022) Let G_E be a multi-GGS group that is regular branch over G', with dim E = r. Then

$$\mathsf{hdim}_{\mathsf{F}}(\overline{G_{\mathsf{E}}}) = (p-1)\Big(\frac{t_1}{p^2} + \frac{t_2}{p^3} + \dots + \frac{t_r}{p^{r+1}}\Big),$$

where (t_1, \ldots, t_r) is the circulant weight of **E**.

Let $G_{E(*)}$ be a multi-EGS group regular branch only over $\gamma_3(G)$.

Then every subspace $E(\ell)$ has dimension ≤ 1 and consists of symmetric vectors.

We may assume there are at least two non-trivial subspaces (otherwise we have a GGS-group).

Theorem (F-A & Gül & Thillaisundaram, 2022)

In these circumstances, we have

$$\mathsf{hdim}_{\mathsf{\Gamma}}(\overline{G_{\boldsymbol{E}(*)}}) = \frac{(p-1)t}{p^2} + \frac{1}{p^3}.$$

Note that in all cases we actually obtain the order of $|G/\operatorname{st}_G(n)|$.

Theorem (Di Domenico & F-A & Noce & Thillaisundaram) If B is the Basilica p-group then

$$\mathsf{hdim}_{\Gamma}(\overline{B}) = \frac{p}{p+1}.$$

This case is substantially different from multi-EGS-groups, since Basilica *p*-groups are not regular branch over any subgroup of finite index.