MICHA

A Chain of Normalizers, Partitions
 and a Modular Idealizer CHAin

Norberto Gavioli
Joint work(s) with R. Aragona, R. Civino e C.M. Scoppola

Ischia Group Theory-IJne 2022

The Normalizer Chain

From Riccardo Aragona's talk

The Normalizer Chain

From Riccardo Aragona's talk

We consider an elementary abelian regular 2-subgroup T of $\operatorname{Sym}\left(2^{n}\right)$

The Normalizer Chain

From Riccardo Aragona's talk

\Rightarrow We consider an elementary abelian regular 2-subgroup T of $\operatorname{Sym}\left(2^{n}\right)$
$\geqslant T$ is clearly a normal subgroup of the Sylow 2-subgroup U of the affine group AGL(2, n)

The Normalizer Chain

From Riccardo Aragona's talk

\Rightarrow We consider an elementary abelian regular 2-subgroup T of $\operatorname{Sym}\left(2^{n}\right)$
$\rangle T$ is clearly a normal subgroup of the Sylow 2-subgroup U of the affine group AGL(2, n)
$>$ Given a Sylow 2-subgroup Σ of of $\operatorname{Sym}\left(2^{n}\right)$ containing U we define $N_{n}^{0}=U$ and recursively

$$
N_{n}^{i}=N_{\Sigma}\left(N_{n}^{i-1}\right)
$$

The Normalizer Chain

n	$\log _{2}\left\|N_{n}^{i}: N_{n}^{i-1}\right\|$ for $1 \leq i \leq 14$													
3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	2	1	1	0	0	0	0	0	0	0	0	0	0
5	1	2	4	1	2	2	1	1	1	1	0	0	0	0
6	1	2	4	7	2	4	4	1	1	2	2	2	2	1
7	1	2	4	7	11	4	7	3	4	2	2	4	4	4
8	1	2	4	7	11	16	7	5	6	2	6	6	3	3
9	1	2	4	7	11	16	23	4	9	4	11	4	12	9
10	1	2	4	7	11	16	23	32	4	14	5	20	7	19
11	1	2	4	7	11	16	23	32	43	5	22	7	32	4
12	1	2	4	7	11	16	23	32	43	57	7	32	12	43
13	1	2	4	7	11	16	23	32	43	57	74	12	42	18
14	1	2	4	7	11	16	23	32	43	57	74	95	8	24
15	1	2	4	7	11	16	23	32	43	57	74	95	121	8

TABLE 3. Values of $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ for small i and n. For $i \leq n-2$ these numbers do not depend on n and in the table are represented by highlighted digits.

1

The Normalizer Chain

n	$\log _{2}\left\|N_{n}^{i}: N_{n}^{i-1}\right\|$ for $1 \leq i \leq 14$														
3	1		0	0	0	0	0	0	0	0	0	0	0	0	
4	1		1	1	0	0	0	0	0	0	0	0	0	0	
5	1		4	1	2	2	1	1	1	1	0	0	0	0	
6	1		4	7	2	4	4	1	1	2	2	2	2	1	
7	1		4	7	11	4	7	3	4	2	2	4	4	4	
8	1		4	7	11	16	7	5	6	2	6	6	3	3	
9	1		4	7	11	16	23	4	9	4	11	4	12	9	
10	1		4	7	11	16	23	32	4	14	5	20	7	19	
11	1		4	7	11	16	23	32	43	5	22	7	32	4	
12	1		4	7	11	16	23	32	43	57	7	32	12	43	
13	1		4	7	11	16	23	32	43	57	74	12	42	18	
14	1		4	7	11	16	23	32	43	57	74	95	8	24	
15			4	7	11	16	23	32	43	57	74	95	121	8	

TABLE 3. Values of $\log _{2}\left|N_{n}^{i}: N_{n}^{i-1}\right|$ for small i and n. For $i \leq n-2$ these numbers do not depend on n and in the table are represented by highlighted digits.

The sequence in light blue looks like to be the one of the partial sum of the number of partitions of i into distinct parts.
osm

The Normalizer Chain

The highlighted sequence looks like to be the one of the partial sum of the number of partitions of i into distinct parts: found via OEIS. Is it a chance?

The OEIS is supported by the many generous donors to the OEIS Foundation.


```
A317910 Expansion of -1/(1-x)^2 + (1/(1-x))*Product_{k>=1}(1+ x^k).
    0, 0, 0, 1, 2, 4, 7, 11, 16, 23, 32, 43, 57, 74, 95, 121, 152, 189, 234, 287, 350, 425, 513, 616,
    737, 878, 1042, 1233, 1454, 1709, 2004, 2343, 2732, 3179, 3690, 4274, 4941, 5700, 6563, 7544, 8656,
    9915, 11340, 12949, 14764, 16811, 19114, 21703, 24612, 27875, 31532, 35628, 40209 (list; graph; refs; listen;
    history; text; internal format)
    OFFSET
            0,5
    COMMENTS Partial sums of A111133.
```

osem

The Normalizer Chain

The highlighted sequence looks like to be the one of the partial sum of the number of partitions of i into distinct parts: found via OEIS. Is it a chance?

Of course it's not

The OEIS is supported by the many generous donors to the OEIS Foundation.


```
A317910 Expansion of -1/(1-x)^2 + (1/(1-x))*Product_{k>=1}(1+x^k). 
    0, 0, 0, 1, 2, 4, 7, 11, 16, 23, 32, 43, 57, 74, 95, 121, 152, 189, 234, 287, 350, 425, 513, 616,
    737, 878, 1042, 1233, 1454, 1709, 2004, 2343, 2732, 3179, 3690, 4274, 4941, 5700, 6563, 7544, 8656,
    9915, 11340, 12949, 14764, 16811, 19114, 21703, 24612, 27875, 31532, 35628, 40209 (list; graph; refs; listen;
    history; text; internal format)
    OFFSET
            0,5
    COMMENTS Partial sums of A111133.
```

asim

The Sylow 2-Subgroup Σ_{n} of $\operatorname{Sym}\left(2^{n}\right)$

$\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is the automorphism group of the rooted binary tree with 2^{n} leaves. It is also the iterated wreath product $\left\langle s_{n}\right\rangle\langle\cdots\rangle\left\langle s_{1}\right\rangle$.

The Sylow 2-Subgroup Σ_{n} of $\operatorname{Sym}\left(2^{n}\right)$

$\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is the automorphism group of the rooted binary tree with 2^{n} leaves. It is also the iterated wreath product $\left.\left\langle s_{n}\right\rangle 2 \cdots\right\rangle\left\langle s_{1}\right\rangle$.

The Sylow 2-Subgroup Σ_{n} of $\operatorname{Sym}\left(2^{n}\right)$

$\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is the automorphism group of the rooted binary tree with 2^{n} leaves. It is also the iterated wreath product $\left.\left\langle s_{n}\right\rangle 2 \cdots\right\rangle\left\langle s_{1}\right\rangle$.
> The i-th base subgroup

$$
S_{i}=\left\langle s_{i}\right\rangle^{\Sigma_{i}}
$$

is the normal closure of $\left\langle s_{i}\right\rangle$ in $\left.\Sigma_{i}=\left\langle s_{i}\right\rangle \imath \cdots\right\rangle\left\langle s_{1}\right\rangle$ and it is an elementary abelian 2-group generated by commuting conjugates of s_{i}. So that

$$
\Sigma_{n}=S_{1} \ltimes \cdots \ltimes S_{n} .
$$

The Sylow 2-Subgroup Σ_{n} of $\operatorname{Sym}\left(2^{n}\right)$

$>\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is the automorphism group of the rooted binary tree with 2^{n} leaves. It is also the iterated wreath product $\left.\left\langle s_{n}\right\rangle \imath \cdots\right\rangle\left\langle s_{1}\right\rangle$.
> The i-th base subgroup

$$
S_{i}=\left\langle s_{i}\right\rangle^{\Sigma_{i}}
$$

is the normal closure of $\left\langle s_{i}\right\rangle$ in $\left.\Sigma_{i}=\left\langle s_{i}\right\rangle \imath \cdots\right\rangle\left\langle s_{1}\right\rangle$ and it is an elementary abelian 2-group generated by commuting conjugates of s_{i}. So that

$$
\Sigma_{n}=S_{1} \ltimes \cdots \ltimes S_{n} .
$$

> The subgroup S_{i} has a special set of independent generators, i.e. the left normed commutators

$$
\left[s_{i}, s_{i_{2}} \ldots, s_{i_{k}}\right]
$$

where $n \geq i_{1}>\cdots>i_{1} \geq 1$, that are called rigid commutators.

Rigid Commutators

> For the sake of simplicity we denote a rigid commutator only by the indices, i.e.

$$
[6,5,2]:=\left[s_{6}, s_{5}, s_{2}\right],
$$

Rigid Commutators

-For the sake of simplicity we denote a rigid commutator only by the indices, i.e.

$$
[6,5,2]:=\left[s_{6}, s_{5}, s_{2}\right]
$$

\geqslant or in the dual punctured form, where the first and the missing digits are displayed

$$
\vee[6 ; 4,3,1]:=\left[s_{6}, s_{5}, s_{2}\right]
$$

also written as $\vee[6 ; X]$, where $X=\{1,2,4\}$ is the set of missing digits.

Rigid Commutators

-For the sake of simplicity we denote a rigid commutator only by the indices, i.e.

$$
[6,5,2]:=\left[s_{6}, s_{5}, s_{2}\right],
$$

\geqslant or in the dual punctured form, where the first and the missing digits are displayed

$$
\vee[6 ; 4,3,1]:=\left[s_{6}, s_{5}, s_{2}\right]
$$

also written as $\vee[6 ; X]$, where $X=\{1,2,4\}$ is the set of missing digits.
$>$ RIGID COMMUTATOR MACHINERY. Suppose that $a \geq b$ then

$$
[\vee[a ; X], \vee[b ; Y]]= \begin{cases}1=[] & \text { if } b \notin X \\ \vee[a ; Y \cup(X \backslash\{b\})] & \text { if } b \in X\end{cases}
$$

Saturated Subgroups

A subgroup H of Σ_{n} is saturated if it is generated by rigid commutators.

Saturated Subgroups

A subgroup H of Σ_{n} is saturated if it is generated by rigid commutators.
> The regular elementary abelian subgroup T is saturated being generated by $[1],[2,1], \ldots,[n, \ldots, 2,1]$.

Saturated Subgroups

A subgroup H of Σ_{n} is saturated if it is generated by rigid commutators.

* The regular elementary abelian subgroup T is saturated being generated by [1], $[2,1], \ldots,[n, \ldots, 2,1]$.
> The Sylow 2-subgroup U of $\operatorname{AGL}(2, n)$ contained in Σ_{n} is saturated generated by T and the rigid commutators of the form $\vee[a,\{b\}]$, where $1 \leq b<a \leq n$.

Saturated Subgroups

Theorem

If H is a saturated subgroup of Σ_{n} containing exactly m nontrivial rigid commutators then $|H|=2^{m}$.

Saturated Subgroups

Theorem

If H is a saturated subgroup of Σ_{n} containing exactly m nontrivial rigid commutators then $|H|=2^{m}$.

Theorem

The normalizer N of a saturated subgroup H is saturated provided that $T \leq H$. Also N is generated by the rigid commutators c such that $[c, d] \in H$ for all rigid commutators $d \in H$.

Saturated Subgroups

Theorem

If H is a saturated subgroup of Σ_{n} containing exactly m nontrivial rigid commutators then $|H|=2^{m}$.

Theorem

The normalizer N of a saturated subgroup H is saturated provided that $T \leq H$. Also N is generated by the rigid commutators c such that $[c, d] \in H$ for all rigid commutators $d \in H$.

In particular, as expected, $|T|=2^{n}$ and $|U|=22_{\binom{n+1}{2} \text {. }}$

Back to the Normalizer Chain: an example $n=5$

> The group T is generated by the rigid commutators $\vee[5 ; \emptyset], \vee[4 ; \emptyset], \vee[4 ; \emptyset], \vee[3 ; \emptyset], \vee[1 ; \emptyset]$

Back to the Normalizer Chain: an example $n=5$

> The group T is generated by the rigid commutators $\vee[5 ; \emptyset], \vee[4 ; \emptyset], \vee[4 ; \emptyset], \vee[3 ; \emptyset], \vee[1 ; \emptyset]$
> The group U is generated by adding to the previous the rigid commutators
$\vee[5 ;\{1\}], \vee[5 ;\{2\}], \vee[5 ;\{3\}], \vee[5 ;\{4\}]$,
$\vee[4 ;\{1\}], \vee[4 ;\{2\}], \vee[4 ;\{3\}]$,
$\vee[3 ;\{1\}], \vee[3 ;\{2\}]$,
$\vee[2 ;\{1\}]$.

Back to the Normalizer Chain: an example $n=5$

The group $N_{5}^{1}=N_{\Sigma_{5}}(U)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,2\}]$ Partition(s) of 3 into distinct parts

Back to the Normalizer Chain: an example $n=5$

The group $N_{5}^{1}=N_{\Sigma_{5}}(U)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,2\}]$ Partition(s) of 3 into distinct parts
> The group $N_{5}^{2}=N_{\Sigma_{5}}\left(N_{5}^{1}\right)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,3\}]$ Partition(s) of 4 into distinct parts $\vee[4 ;\{1,2\}]$ Partition(s) of 3 into distinct parts

Back to the Normalizer Chain: an example $n=5$

The group $N_{5}^{1}=N_{\Sigma_{5}}(U)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,2\}]$ Partition(s) of 3 into distinct parts
The group $N_{5}^{2}=N_{\Sigma_{5}}\left(N_{5}^{1}\right)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,3\}]$ Partition(s) of 4 into distinct parts $\vee[4 ;\{1,2\}]$ Partition(s) of 3 into distinct parts
The group $N_{5}^{3}=N_{\Sigma_{5}}\left(N_{5}^{2}\right)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,4\}], \vee[5 ;\{2,3\}]$ Partitions of 5 into distinct parts
$\vee[4 ;\{1,3\}]$ Partition(s) of 4 into distinct parts $\vee[3 ;\{1,2\}]$ Partition(s) of 3 into distinct parts

Back to the Normalizer Chain: an example $n=5$

The group $N_{5}^{1}=N_{\Sigma_{5}}(U)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,2\}]$ Partition(s) of 3 into distinct parts
The group $N_{5}^{2}=N_{\Sigma_{5}}\left(N_{5}^{1}\right)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,3\}]$ Partition(s) of 4 into distinct parts $\vee[4 ;\{1,2\}]$ Partition(s) of 3 into distinct parts
The group $N_{5}^{3}=N_{\Sigma_{5}}\left(N_{5}^{2}\right)$ by adding to the previous the rigid commutator $\vee[5 ;\{1,4\}], \vee[5 ;\{2,3\}]$ Partitions of 5 into distinct parts
$\vee[4 ;\{1,3\}]$ Partition(s) of 4 into distinct parts $\vee[3 ;\{1,2\}]$ Partition(s) of 3 into distinct parts
By way of the rigid commutators machinery it is possible to show that in general $\left|N_{n}^{i}: N_{n}^{i-1}\right|=2^{b_{i+2}}$, for $i=1, \ldots n-2$, where b_{i} is the i-th term of the partial sum sequence of the sequence $\left\{a_{i}\right\}$ of partitions into distinct parts.

Lie Rings

We set

$$
A_{m}= \begin{cases}(\mathbb{Z} / m \mathbb{Z}) & \text { if } m \neq 0 \\ \mathbb{Z} & \text { if } m=0\end{cases}
$$

Let $\Lambda=\left\{\lambda_{i}\right\}_{i \geq 1}$ be a sequence of non-negative integers such that $\lambda_{i}=0$ for $i \geq k$ and let L_{n} be the free A_{m}-module spanned by the non-trivial symbols

$$
x^{\wedge} \partial_{k}=\left(\prod_{i=1}^{k-1} x_{i}^{\lambda_{i}}\right) \partial_{k}
$$

where $1 \leq k \leq n$ and $x_{i}^{m}=0$ if $m>0$.
The weight of Λ is defined as $w t(\lambda)=\sum_{i \geq 1} i \lambda_{i}$.

Lie Rings

\Rightarrow The set L_{n} can be made into a Lie ring by A_{m}-bilinearly extending the Lie-product

$$
\left[x^{\wedge} \partial_{k}, x^{\Theta} \partial_{h}\right]=\left(\frac{\partial}{\partial_{h}}\left(x^{\wedge}\right) x^{\Theta}\right) \partial_{k}-\left(x^{\wedge} \frac{\partial}{\partial_{k}}\left(x^{\Theta}\right)\right) \partial_{h}
$$

Lie Rings

\Rightarrow The set L_{n} can be made into a Lie ring by A_{m}-bilinearly extending the Lie-product

$$
\left[x^{\wedge} \partial_{k}, x^{\Theta} \partial_{h}\right]=\left(\frac{\partial}{\partial_{h}}\left(x^{\wedge}\right) x^{\Theta}\right) \partial_{k}-\left(x^{\wedge} \frac{\partial}{\partial_{k}}\left(x^{\Theta}\right)\right) \partial_{h}
$$

> If $m=p$ is a prime then L_{p} is actually the Lie algebra associated to the lower central series of the iterated wreath product $\Sigma_{n}=2^{n} C_{p}$, i.e. the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$.

Lie Rings

The set L_{n} can be made into a Lie ring by A_{m}-bilinearly extending the Lie-product

$$
\left[x^{\wedge} \partial_{k}, x^{\Theta} \partial_{h}\right]=\left(\frac{\partial}{\partial_{h}}\left(x^{\wedge}\right) x^{\Theta}\right) \partial_{k}-\left(x^{\wedge} \frac{\partial}{\partial_{k}}\left(x^{\Theta}\right)\right) \partial_{h}
$$

> If $m=p$ is a prime then L_{p} is actually the Lie algebra associated to the lower central series of the iterated wreath product $\Sigma_{n}=2^{n} C_{p}$, i.e. the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$.
The analog of the regular elementary abelian subgroup is the subalgebra

$$
T=\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle
$$

Modular Idealizer CHAin

> As above we let

Modular Idealizer CHAin

> As above we let
$>I_{n}^{0}=U$ to be the idealizer of T in L_{n},

Modular Idealizer CHAin

> As above we let
$>I_{n}^{0}=U$ to be the idealizer of T in L_{n},
> I_{n}^{1} to be the idealizer of U in L_{n},

Modular Idealizer CHAin

> As above we let
$>I_{n}^{0}=U$ to be the idealizer of T in L_{n},
$>I_{n}^{1}$ to be the idealizer of U in L_{n},
$>I_{n}^{i}$ to be the idealizer of I_{n}^{i-1} in L_{n} for $i \geq 2$.

Modular Idealizer CHAin

> As above we let
$>I_{n}^{0}=U$ to be the idealizer of T in L_{n},
$>I_{n}^{1}$ to be the idealizer of U in L_{n},
$>I_{n}^{i}$ to be the idealizer of I_{n}^{i-1} in L_{n} for $i \geq 2$.

Theorem (M.I.CHA. $m>2$)

Let $m>2$ and $1 \leq i \leq n-1$, then $\left|I^{i}: I^{i-1}\right|=m^{b_{p, i+1}}$, where $\left\{b_{m, i}\right\}_{i \geq 2}$ is the partial sums sequence of the sequence $\left\{a_{m, i}\right\}_{i \geq 2}$ of the number of partitions of i in at least 2 parts, every part occurring with multiplicity at most $m-1$.

Modular Idealizer CHAin

> As above we let
$>I_{n}^{0}=U$ to be the idealizer of T in L_{n},
$>I_{n}^{1}$ to be the idealizer of U in L_{n},
$>I_{n}^{i}$ to be the idealizer of I_{n}^{i-1} in L_{n} for $i \geq 2$.

Theorem (M.I.CHA. $m=2$)

Let $m=2$ and $1 \leq i \leq n-2$, then $\left|I^{i}: I^{i-1}\right|=2^{b_{i+2}}$.

Modular Idealizer CHAin

> As above we let
$>I_{n}^{0}=U$ to be the idealizer of T in L_{n},
$>I_{n}^{1}$ to be the idealizer of U in L_{n},
$>I_{n}^{i}$ to be the idealizer of I_{n}^{i-1} in L_{n} for $i \geq 2$.

Theorem (M.I.CHA. $m=2$ and $i=n-1$)
Let $m=2$ then $\left|I^{n-1}: I^{n-2}\right|=2^{u}$, where u is the number of base elements $x^{\wedge} \partial_{k}$ such that Λ is an unrefinabile partition of $k+1$ into distinct parts not larger than $k-1$, and such that $k \geq n-e$, where e is the minimum excludant of Λ.

Finding, for $m=2$, the same result as in the case of the normalizer chain in Σ_{n}.
M.I.CHA. an example: $n=5, m=0$
index 1, grades [[4, 1]]
["x1^2*D5"
index 2, grades [[4, 2], [3, 1]]

index 3, grades [[4, 4], [3, 2], [2, 1]]
["x1^4*D5", "x1^2*x2^1*D5", "x1^1*x3^1*D5", "x2^2*D5", "x1^3*D4", "x1^1*x2^1*D4", "x1^2*D3"]
index 4, grades [[4, 6], [3, 4], [2, 2], [1, 1]]

\qquad
13
index 5, grades [[4, 1]]
["x1^6*D5"]

$$
1,3,7,14,26,45,75, \ldots
$$

index 6, grades [[4, 2], [3, 1]]
["x1^7*D5", "x1^4*x2^1*D5", "x1^5*D4"]
index 7, grades [[4, 4], [3, 2], [2, 1]]
["x1^8*D5", "x1^5*x2^1*D5", "x1^3*x3^1*D5", "x1^2*x2^2*D5", "x1^1^*D4", "x1^3*x2^1*D4", "x1^4*D3"]
7
index 8, grades [[4, 7], [3, 4], [2, 2], [1, 1]]
["x1^9*D5", "x1^6*x2^1*D5", "x1^4*x3^1*D5", "x1^3*x2^2*D5", "x1^2*x4^1*D5", "x1^1*x2^1*x3^1*D5", "x2^3*D5", "x1^7*D4", "x1^4*x2^1*D4", "x1^2*x3^1*D4", "x1^1*x2^2*D4", "x1^5*D3", "x1^2*x2^1*D3", "x1^3*D2"]

M.I.CHA. an example: $n=5, m=0$

The OEIS is supported by the many generous donors to the OEIS Foundation.

Search: seq:1,3,7,14,26,45,75

Displaying 1-1 of 1 result found.
Sort: relevance \mid references \mid number \mid modified \mid created Format: long \mid short \mid data
A014153 Expansion of $1 /\left((1-x)^{\wedge} 2 *{\left.\text { Product_ }\{\mathrm{k}>=1\}\left(1-\mathrm{x}^{\wedge} \mathrm{k}\right)\right) \text {. }+30}_{29}\right.$
$1,3,7,14,26,45,75,120,187,284,423,618,890,1263,1771,2455,3370,4582,6179$, $8266,10980,14486,18994,24757,32095,41391,53123,67865,86325,109350,137979,173450$, $217270,271233,337506,418662,517795,638565,785350,963320,1178628$ (list; graph; refs; listen; history; text; internal format)

OFFSET

COMMENTS
0,2
Number of partitions of n with three kinds of 1. E.g., $a(2)=7$ because we have 2 , 1+1, 1+1', 1+1", 1'+1', 1'+1", 1"+1". - Emeric Deutsch, Mar 222005
Partial sums of the partial sums of the partition numbers A000041. Partial sums of A000070. Euler transform of $3,1,1,1, \ldots$

Modular Idealizer CHAin

*When $m=0$ the Lie ring L_{n} has infinite rank as a \mathbb{Z}-module and is not nilpotent.

Modular Idealizer CHAin

When $m=0$ the Lie ring L_{n} has infinite rank as a \mathbb{Z}-module and is not nilpotent.
$>$ Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the sequence whose term a_{n} is equal to the number of partitions of n. Also let $b_{n}=\sum_{i=0}^{n} a_{i}$, for $n \geq 0$ and $c_{n}=\sum_{i=0}^{n} b_{n}$.

Modular Idealizer CHAin

*Wen $m=0$ the Lie ring L_{n} has infinite rank as a \mathbb{Z}-module and is not nilpotent.
$>$ Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the sequence whose term a_{n} is equal to the number of partitions of n. Also let $b_{n}=\sum_{i=0}^{n} a_{i}$, for $n \geq 0$ and $c_{n}=\sum_{i=0}^{n} b_{n}$.

* We set

$$
\begin{aligned}
r_{i} & :=((i-1) \bmod n-1)+1 \quad \operatorname{wd}\left(x^{\wedge}\right):=\operatorname{wt}(\Lambda)-\operatorname{deg}\left(x^{\wedge}\right)+n-k \\
h_{i} & :=\left\lfloor\frac{i-1}{n-1}\right\rfloor+1
\end{aligned}
$$

Modular Idealizer CHAin

When $m=0$ the Lie ring L_{n} has infinite rank as a \mathbb{Z}-module and is not nilpotent.
$>$ Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the sequence whose term a_{n} is equal to the number of partitions of n. Also let $b_{n}=\sum_{i=0}^{n} a_{i}$, for $n \geq 0$ and $c_{n}=\sum_{i=0}^{n} b_{n}$.

* We set

$$
\begin{aligned}
r_{i} & :=((i-1) \bmod n-1)+1 \quad \operatorname{wd}\left(x^{\wedge}\right):=\operatorname{wt}(\Lambda)-\operatorname{deg}\left(x^{\wedge}\right)+n-k \\
h_{i} & :=\left\lfloor\frac{i-1}{n-1}\right\rfloor+1
\end{aligned}
$$

Theorem (M.I.CHA. $m=0$)

The element $x^{\wedge} \partial_{k}$ belongs to $I_{n}^{i} \backslash I_{n}^{i-1}$ iff $n-k \leq \operatorname{wd}\left(x^{\wedge} \partial_{k}\right)<r_{i}$ and $i=h_{i} \operatorname{wd}\left(x^{\wedge} \partial_{k}\right)+\operatorname{deg}\left(x^{\wedge}\right)-1$.

Modular Idealizer CHAin

When $m=0$ the Lie ring L_{n} has infinite rank as a \mathbb{Z}-module and is not nilpotent.
$>$ Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the sequence whose term a_{n} is equal to the number of partitions of n. Also let $b_{n}=\sum_{i=0}^{n} a_{i}$, for $n \geq 0$ and $c_{n}=\sum_{i=0}^{n} b_{n}$.

* We set

$$
\begin{aligned}
r_{i} & :=((i-1) \bmod n-1)+1 \quad \operatorname{wd}\left(x^{\wedge}\right):=\operatorname{wt}(\Lambda)-\operatorname{deg}\left(x^{\wedge}\right)+n-k \\
h_{i} & :=\left\lfloor\frac{i-1}{n-1}\right\rfloor+1
\end{aligned}
$$

Theorem (M.I.CHA. $m=0$)

Let $m=0$. If $i>(n-4)(n-1)$ then I^{i} / I^{i-1} is a free \mathbb{Z}-module of rank $c_{r_{i}-1}$. In particular the rank of I^{i} / I^{i-1} is a definitely periodic sequence.

Modular Idealizer CHAin

When $m=0$ the Lie ring L_{n} has infinite rank as a \mathbb{Z}-module and is not nilpotent.
$>$ Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the sequence whose term a_{n} is equal to the number of partitions of n. Also let $b_{n}=\sum_{i=0}^{n} a_{i}$, for $n \geq 0$ and $c_{n}=\sum_{i=0}^{n} b_{n}$.
> We set

$$
\begin{aligned}
r_{i} & :=((i-1) \bmod n-1)+1 \quad \operatorname{wd}\left(x^{\wedge}\right):=\operatorname{wt}(\Lambda)-\operatorname{deg}\left(x^{\wedge}\right)+n-k \\
h_{i} & :=\left\lfloor\frac{i-1}{n-1}\right\rfloor+1
\end{aligned}
$$

For $n \geq 3$ it is possible to see that $x_{2}^{3} \partial_{3} \notin I^{i}$ for all $i \geq 0$. In particular

$$
L_{n} \neq \cup_{i} I^{i}
$$

Open problems and proposals for future research

* When $m=2$ through the rigid commutators machinery it's possible to see that the modular ideal chain in L_{n} and the normalizer chain in Σ_{n} have the same sequence of indices. What can be said when $m=p$ is an odd prime? Is the sequence of indices of the idealizer and normalizer chain the same in L_{n} and in the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$?

Open problems and proposals for future research

* When $m=2$ through the rigid commutators machinery it's possible to see that the modular ideal chain in L_{n} and the normalizer chain in Σ_{n} have the same sequence of indices. What can be said when $m=p$ is an odd prime? Is the sequence of indices of the idealizer and normalizer chain the same in L_{n} and in the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$?
> Is there a suitable definition of rigid commutators in the in the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$ that gives rise to a generating set that is closed taking commutators and that allows to extend easily the results obtained for $m=2$?

Open problems and proposals for future research

*When $m=2$ through the rigid commutators machinery it's possible to see that the modular ideal chain in L_{n} and the normalizer chain in Σ_{n} have the same sequence of indices. What can be said when $m=p$ is an odd prime? Is the sequence of indices of the idealizer and normalizer chain the same in L_{n} and in the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$?
> Is there a suitable definition of rigid commutators in the in the Sylow p-subgroup of $\operatorname{Sym}\left(p^{n}\right)$ that gives rise to a generating set that is closed taking commutators and that allows to extend easily the results obtained for $m=2$?
Study the case wen the normalizer chain start from a regular subgroup that is not necessarily elementary abelian.

References

R Riccardo Aragona, Roberto Civino, Norberto Gavioli, Carlo Maria Scoppola (2022). Unrefinable partitions into distinct parts in a normalizer chain. DISCRETE MATHEMATICS LETTERS, vol. 8, p. 72-77
Ricardo Aragona, Roberto Civino, Norberto Gavioli, Carlo Maria Scoppola (2021). A Chain of Normalizers in the Sylow 2-subgroups of the symmetric group on 2^{n} letters. INDIAN JOURNAL OF PURE \& APPLIED MATHEMATICS, vol. 52, p. 735-746

R Riccardo Aragona, Roberto Civino, Norberto Gavioli, Carlo Maria Scoppola (2021). Rigid commutators and a normalizer chain. MONATSHEFTE FÜR MATHEMATIK, vol. 196, p. 431-455

R Riccardo Aragona, Roberto Civino, Norberto Gavioli, Carlo Maria Scoppola (2022). A Modular Idealizer CHAin. In preparation

Thank you!

