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From Riccardo Aragona’s talk

We consider an elementary abelian regular 2-subgroup T of Sym(2n)

T is clearly a normal subgroup of the Sylow 2-subgroup U of the affine
group AGL(2, n)

Given a Sylow 2-subgroup Σ of of Sym(2n) containing U we define N0
n = U

and recursively
N i
n = NΣ(N

i−1
n )
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The sequence in light blue looks like to be the one of the partial sum of the
number of partitions of i into distinct parts.
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Σn = ⟨s1, . . . , sn⟩ is the automorphism group of the rooted binary tree with 2n

leaves. It is also the iterated wreath product ⟨sn⟩ ≀ · · · ≀ ⟨s1⟩.

Σn = ⟨s1, . . . , sn⟩ is the automorphism group of the rooted binary tree with
2n leaves. It is also the iterated wreath product ⟨sn⟩ ≀ · · · ≀ ⟨s1⟩.

The i -th base subgroup
Si = ⟨si ⟩Σi

is the normal closure of ⟨si ⟩ in Σi = ⟨si ⟩ ≀ · · · ≀ ⟨s1⟩ and it is an elementary
abelian 2-group generated by commuting conjugates of si . So that

Σn = S1 ⋉ · · ·⋉ Sn.

The subgroup Si has a special set of independent generators, i.e. the left
normed commutators

[si , si2 . . . , sik ] ,

where n ≥ i1 > · · · > i1 ≥ 1, that are called rigid commutators.
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For the sake of simplicity we denote a rigid commutator only by the
indices, i.e.

[6, 5, 2] := [s6, s5, s2] ,

or in the dual punctured form, where the first and the missing digits are
displayed

∨[6; 4, 3, 1] := [s6, s5, s2] ,

also written as ∨[6;X ], where X = {1, 2, 4} is the set of missing digits.
RIGID COMMUTATOR MACHINERY. Suppose that a ≥ b then

[
∨[a;X ],∨[b;Y ]

]
=

{
1 = [ ] if b /∈ X

∨[a;Y ∪ (X \ {b})] if b ∈ X
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A subgroup H of Σn is saturated if it is generated by rigid commutators.

The regular elementary abelian subgroup T is saturated being generated
by [1], [2, 1], . . . , [n, . . . , 2, 1].
The Sylow 2-subgroup U of AGL(2, n) contained in Σn is saturated
generated by T and the rigid commutators of the form ∨[a, {b}], where
1 ≤ b < a ≤ n.

In particular, as expected, |T | = 2n and |U| = 2(
n+1
2 ).



Saturated Subgroups

MICHA

5

A subgroup H of Σn is saturated if it is generated by rigid commutators.
The regular elementary abelian subgroup T is saturated being generated
by [1], [2, 1], . . . , [n, . . . , 2, 1].

The Sylow 2-subgroup U of AGL(2, n) contained in Σn is saturated
generated by T and the rigid commutators of the form ∨[a, {b}], where
1 ≤ b < a ≤ n.

In particular, as expected, |T | = 2n and |U| = 2(
n+1
2 ).



Saturated Subgroups

MICHA

5

A subgroup H of Σn is saturated if it is generated by rigid commutators.
The regular elementary abelian subgroup T is saturated being generated
by [1], [2, 1], . . . , [n, . . . , 2, 1].
The Sylow 2-subgroup U of AGL(2, n) contained in Σn is saturated
generated by T and the rigid commutators of the form ∨[a, {b}], where
1 ≤ b < a ≤ n.

In particular, as expected, |T | = 2n and |U| = 2(
n+1
2 ).



Saturated Subgroups

MICHA

5

Theorem
If H is a saturated subgroup of Σn containing exactly m nontrivial rigid
commutators then |H| = 2m.

Theorem
The normalizer N of a saturated subgroup H is saturated provided that T ≤ H .
Also N is generated by the rigid commutators c such that [c , d ] ∈ H for all rigid
commutators d ∈ H .

In particular, as expected, |T | = 2n and |U| = 2(
n+1
2 ).
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The group T is generated by the rigid commutators
∨[5; ∅],∨[4; ∅],∨[4; ∅],∨[3; ∅],∨[1; ∅]

The group U is generated by adding to the previous the rigid commutators
∨[5; {1}], ∨[5; {2}], ∨[5; {3}], ∨[5; {4}],
∨[4; {1}], ∨[4; {2}], ∨[4; {3}],
∨[3; {1}], ∨[3; {2}],
∨[2; {1}].
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The group N1
5 = NΣ5(U) by adding to the previous the rigid commutator

∨[5; {1, 2}] Partition(s) of 3 into distinct parts

The group N2
5 = NΣ5(N

1
5 ) by adding to the previous the rigid commutator

∨[5; {1, 3}] Partition(s) of 4 into distinct parts
∨[4; {1, 2}] Partition(s) of 3 into distinct parts
The group N3

5 = NΣ5(N
2
5 ) by adding to the previous the rigid commutator

∨[5; {1, 4}], ∨[5; {2, 3}] Partitions of 5 into distinct parts
∨[4; {1, 3}] Partition(s) of 4 into distinct parts
∨[3; {1, 2}] Partition(s) of 3 into distinct parts

By way of the rigid commutators machinery it is possible to show that in
general |N i

n : N i−1
n | = 2bi+2 , for i = 1, . . . n − 2, where bi is the i -th term of the

partial sum sequence of the sequence {ai} of partitions into distinct parts.
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We set

Am =

{
(Z /mZ) if m ̸= 0

Z if m = 0

Let Λ = {λi}i≥1 be a sequence of non-negative integers such that λi = 0 for
i ≥ k and let Ln be the free Am-module spanned by the non-trivial symbols

xΛ∂k =

(
k−1∏
i=1

xλi
i

)
∂k

where 1 ≤ k ≤ n and xmi = 0 if m > 0.
The weight of Λ is defined as wt(λ) =

∑
i≥1 iλi .
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The set Ln can be made into a Lie ring by Am-bilinearly extending the
Lie-product

[xΛ∂k , x
Θ∂h] =

(
∂

∂h
(xΛ)xΘ

)
∂k −

(
xΛ

∂

∂k
(xΘ)

)
∂h

If m = p is a prime then Lp is actually the Lie algebra associated to the
lower central series of the iterated wreath product Σn = ≀nCp , i.e. the
Sylow p-subgroup of Sym(pn).
The analog of the regular elementary abelian subgroup is the subalgebra

T = ⟨∂1, . . . , ∂n⟩
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As above we let

I 0n = U to be the idealizer of T in Ln,
I 1n to be the idealizer of U in Ln,
I in to be the idealizer of I i−1

n in Ln for i ≥ 2.

Theorem (M.I.CHA. m > 2)
Let m > 2 and 1 ≤ i ≤ n − 1, then |I i : I i−1| = mbp,i+1 , where {bm,i}i≥2 is the partial
sums sequence of the sequence {am,i}i≥2 of the number of partitions of i in at least
2 parts, every part occurring with multiplicity at most m − 1.
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I 1n to be the idealizer of U in Ln,
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As above we let
I 0n = U to be the idealizer of T in Ln,
I 1n to be the idealizer of U in Ln,
I in to be the idealizer of I i−1

n in Ln for i ≥ 2.

Theorem (M.I.CHA. m = 2 and i = n − 1)
Let m = 2 then |I n−1 : I n−2| = 2u , where u is the number of base elements xΛ∂k
such that Λ is an unrefinabile partition of k + 1 into distinct parts not larger than
k − 1, and such that k ≥ n − e, where e is the minimum excludant of Λ.

Finding, for m = 2, the same result as in the case of the normalizer chain in Σn.
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When m = 0 the Lie ring Ln has infinite rank as a Z-module and is not
nilpotent.

Let {an}∞n=0 be the sequence whose term an is equal to the number of
partitions of n. Also let bn =

∑n
i=0 ai , for n ≥ 0 and cn =

∑n
i=0 bn.

We set

ri := ((i − 1) mod n − 1) + 1 wd(xΛ) := wt(Λ)− deg(xΛ) + n − k

hi :=

⌊
i − 1

n − 1

⌋
+ 1

For n ≥ 3 it is possible to see that x32∂3 /∈ I i for all i ≥ 0. In particular

Ln ̸= ∪i I
i
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We set

ri := ((i − 1) mod n − 1) + 1 wd(xΛ) := wt(Λ)− deg(xΛ) + n − k

hi :=

⌊
i − 1

n − 1

⌋
+ 1

Theorem (M.I.CHA. m = 0)
Let m = 0. If i > (n − 4)(n − 1) then I i/I i−1 is a free Z-module of rank cri−1. In
particular the rank of I i/I i−1 is a definitely periodic sequence.

For n ≥ 3 it is possible to see that x32∂3 /∈ I i for all i ≥ 0. In particular
Ln ̸= ∪i I

i
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When m = 2 through the rigid commutators machinery it’s possible to see
that the modular ideal chain in Ln and the normalizer chain in Σn have the
same sequence of indices. What can be said when m = p is an odd prime?
Is the sequence of indices of the idealizer and normalizer chain the same
in Ln and in the Sylow p-subgroup of Sym(pn)?

Is there a suitable definition of rigid commutators in the in the Sylow
p-subgroup of Sym(pn) that gives rise to a generating set that is closed
taking commutators and that allows to extend easily the results obtained
for m = 2?
Study the case wen the normalizer chain start from a regular subgroup
that is not necessarily elementary abelian.
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MATHEMATIK, vol. 196, p. 431-455

Riccardo Aragona, Roberto Civino, Norberto Gavioli, Carlo Maria Scoppola
(2022). A Modular Idealizer CHAin. In preparation



Thank you!


