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Property (∗)p

Let G be a finite group acting on a set Ω, let p be a prime and let
P ∈ Sylp(G ).

We say that G has Property (∗)p if Pω ∈ Sylp(Gω) for all ω ∈ Ω.

Example: G = S3, P = 〈(123)〉, Q = 〈(12)〉

Pi = 1 is a Sylow 3-subgroup of Gi
∼= C2 for all i ∈ {1, 2, 3}.

Q3 = Q is a Sylow 2-subgroup of G3 = Q but Q1 = 1 is not a
Sylow 2-subgroup of G1 = 〈(23)〉.

Thus G has Property (∗)3 but not Property (∗)2.
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Motivation

Given G 6 Sym(Ω) with |Ω| = n, the Burger-Mozes group U(G ) is
the largest group of automorphisms of the n-regular tree Tn such
that, for all vertices v , the stabiliser of v induces the group G on
the set of all neighbours of v .

Tornier (2018): For P ∈ Sylp(G ) and a finite subtree T of Tn, the
group U(P)(T ) is a local Sylow p-subgroup of U(G )(T ) if and only
if G has Property (∗)p.

(A local Sylow p-subgroup of H is a maximal pro-p-subgroup of a
compact open subgroup of H.)
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n an integer, p a prime.

We write n = npn
′ where np is a power of p and gcd(p, n′) = 1.

Tornier (2018):

• G = An or Sn acting on n points has Property (∗)p, with p
dividing |G |, if and only if npp > n.

• If either P has the same orbits as G or |Ω| = pn, then G has
Property (∗)p.
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Intransitive Groups

Let G have orbits Ω1,Ω2, . . . ,Ωt on Ω.

Then G has Property (∗)p on Ω if and only if GΩi has Property
(∗)p for all i ∈ {1, 2, . . . , t}.



Some observations for transitive groups

Let G be a group acting transitively on a set Ω of size n and let
P ∈ Sylp(G ).

Wielandt: There is a P-orbit of size np and this is the smallest
such length of a P-orbit.

Corollaries:

1 G has Property (∗)p if and only if all orbits of P on Ω have
the same length, namely np.

2 If pnp > n then G has Property (∗)p.
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More observations

1 If p does not divide |Gω| then G has Property (∗)p.

2 If G acts faithfully on Ω with Property (∗)p such that p
divides |G |, then p divides n.

3 If H is a transitive subgroup of G and G has Property (∗)p
then H has Property (∗)p.

[ If P ∈ Sylp(H) then all orbits of P have size at least np, but
all orbits of a a Sylow p-subgroup of G have size np]
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Imprimitive Groups

Theorem (BBDGPR): Let G act transitively on a set Ω with
system of imprimitivity B. Let B ∈ B, let GB

B be the permutation
group induced on B by the setwise stabiliser GB and let GB be the
permutation group induced by G on B.

1 If GB
B and GB have Property (∗)p then G has Property (∗)p.

2 If G has Property (∗)p then GB
B has Property (∗)p.

Note that if G has Property (∗)p then GB does not necessarily
have Property (∗)p:

G = D12 acting regularly on itself has property (∗)2. However, G
has a system of imprimitivity B of size 3 with GB ∼= S3, which does
not have Property (∗)2.
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Primitive Groups

Theorem (BBDGPR) Let G be a primitive permutation group on Ω
and suppose that G has Property (∗)p for some prime p dividing
|Ω|. Then one of the following holds:

1 G is an almost simple group;

2 G is of Affine type and |Ω| = pk ;

3 Ω = ∆k for some k > 2 and G 6 H wrK where H is an
almost simple group acting primitively on ∆ with
Property (∗)p and K 6 Sk . Moreover, either p is coprime to
|K |, or p divides |K | and |∆| is a power of p.

Moreover, any primitive group in cases (2) and (3) has
Property (∗)p.



Almost Simple Groups

Problem: Determine all the almost simple primitive permutation
groups G of degree n that have Property (∗)p for some prime p
dividing n and for which pnp < n and p divides |Gω|.

Examples seem rare:

• The action of PSL2(q) for q even acting on
(q

2

)
points has

Property (∗)2.

• Apart from this infinite family the only examples of degree less
than 4095 are:

Degree G p

6 A5 2
12 M11 3
36 PSU3(3) 3
36 PΓU3(3) 3

112 PSU4(3) 2
135 PSp6(2) 3
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2-transitive groups

Theorem (BBDGPR): Let G be a 2-transitive permutation group
of degree n on a set Ω with ω ∈ Ω, and let p be a prime dividing
n. Then G has Property (∗)p if and only if one of the following
holds:

(a) pnp > n;

(b) p does not divide |Gω|;

(c) G = A5 with n = 6 and p = 2;

(d) G = M11 with n = 12 and p = 3;

(e) G = PΓL2(8) with n = 28 and p = 2;

All 2-transitive groups with Property (∗)p and np = p were
determined by Praeger in 1974.
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