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Algebraically Closed Groups

Let Wi(xj , gk) be a word in indeterminates xj where
j = 1, . . . , n and gk ∈ G for k = 1, . . . ,m.

A group G is called algebraically closed if for
every �nite set

Wi(xj , gk) = 1 (i = 1, 2 . . . , l)

Wi(xj , gk) ̸= 1 (i = l + 1, . . . , s)

of equations and in-equations which has a solution in
an overgroup H ≥ G already has a solution in G .



Existentially Closed groups

Apparently the motivation for the study of
existentially closed (algebraically closed) groups
comes from the algebraically closed �elds.

W. R. Scott �rst initiated the work of existentially
closed groups in his paper:

William R. Scott, Algebraically closed groups,
Proc. Amer. Math. Soc. 2 (1951), 118�121.

After Scott's paper algebraically closed groups are
studied by many group theorists, nowadays they are
called as existentially closed groups.
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Existentially Closed Groups

Question. What are the properties of existentially
closed groups?

Theorem 1 (Scott [1])

Every group can be embedded in an existentially
closed group.

Moreover the order of the existentially closed group is
larger of ℵ0 and |G |.
In particular there are existentially closed groups of
any given in�nite cardinality.

But we will see in coming slides that, this is not true
for κ-existentially closed groups when κ is an
uncountable singular cardinal.
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κ-Existentially Closed Groups

Let κ be an in�nite cardinal. The generalization of
existentially closed groups to κ-existentially closed
groups are indicated in the paper of Scott [1].

κ-existentially closed groups are the analogs of
existentially closed groups, allowing the number of
equations and the number of in-equations to be
in�nite.
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De�nition of Existentially Closed groups

De�nition. Let κ be an in�nite cardinal. A group
G with |G | ≥ κ is called κ-existentially closed if
every system of less than κ-many equations and
in-equations with coe�cients in G which has a
solution in some overgroup H ⩾ G already has a
solution in G .

ℵ0-existentially closed groups are the groups
introduced by W. R. Scott in 1951.
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Existentially Closed groups

The structure of countable, ℵ0-existentially closed
groups and the structure of κ-existentially closed
groups of cardinality κ for an uncountable cardinal κ,
is quite di�erent.

For example there are uncountably many, countable
ℵ0-existentially closed groups, but for an uncountable
cardinal κ, any two κ-existentially closed group of
cardinality κ are isomorphic, see,

O. H. Kegel and M. Kuzucuo§lu, κ-existentially
closed groups, J. Algebra, 499, (2018) 298�310.

This is another di�erence between ℵ0-existentially
closed groups and κ-existentially closed groups other
than the existence.
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κ-Existentially Closed Groups

The following Lemma will be used to characterize the
κ-existentially closed groups.

Lemma 2 (Kegel-K, 2018)

If κ is uncountable and G is a κ-existentially closed
group, then isomorphic copy of every group A of
order |A| < κ is contained in G .

Moreover if κ is uncountable, then isomorphic copy
of every group of order κ is contained in G .
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κ-Existentially Closed Groups

We have the following characterization of
κ-existentially closed groups.

Proposition 3 (Kegel-K, 2018)

Let G be a group and κ be an uncountable cardinal.
Then G is κ-existentially closed if and only if
(i) G contains an isomorphic copy of every group of
cardinality less than κ, and
(ii) every isomorphism between two subgroups of G
of cardinality less than κ is induced by an inner
automorphism of G .
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Existence of Explicit Examples of Existentially Closed Groups

B. H. Neumann in 1937, [2] stated that "However,
no algebraically closed group is explicitly known, the
existence proof being highly non-constructive. This
stem in part from the fact that there is no useful
criterion known that tells one what sentences are or
are not consistent over a given group".

We gave in [1], explicit examples of existentially
closed groups for large cardinals. In particular we
answer the more general question, namely; existence
of explicit examples of κ-existentially closed groups.
Hence we answer Neumann's question in a more
general case, positively.
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Construction of explicit example of existentially Closed
Groups

Construction of explicit example of existentially
Closed Groups is as follows:

Let κ be any in�nite regular cardinal. We may start
with an arbitrary group G0 of countably in�nite order.
Embed G0 into Sym(G0) = G1 by right regular
representation. Then embed G1 into Sym(G1) = G2

again by right regular representation, continue like
this, for limit ordinals β let Gβ =

⋃
i<β

Gi . We

continue κ steps until we reach the group Gκ. Then
the group Gκ is κ-existentially closed.
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Existentially Closed Groups

Since every κ-existentially closed group is an
ℵ0-existentially closed group, the above examples of
κ-existentially closed groups are examples of
ℵ0-existentially closed groups.
This answers the B. H. Neumann's question
positively.



Existence of κ-existentially closed groups of cardinality
λ ≥ κ

Corollary 4

(GCH) Let λ ≥ κ be uncountable cardinals. Then
there exists a κ-existentially closed group of
cardinality λ if and only if cf (λ) the co�nality of λ
satis�es cf (λ) ≥ κ.

In particular, if λ is a successor cardinal, then there
exists a κ-existentially closed group of cardinality λ.

Moreover there exists no κ-existentially closed group
of cardinality κ for singular cardinals.

Recall that there exists ℵ0-existentially closed groups
for singular cardinals.
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Existentially Closed Groups

By the above Corollary, we determine for which
cardinals λ ≥ κ, there exists κ-existentially closed
groups of cardinality λ .



Open Question

We have constructed "explicit" example of
κ-existentially closed of cardinality κ for inaccessible
cardinal κ. So we have the following question.

Open Question. Let κ be not an inaccessible
cardinal. Does there exist an explicit example of
κ-existentially closed group of cardinality κ?
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Automorphisms of κ-existentially closed groups

Not much known about the structure of the
automorphism group of κ-existentially closed groups.

It was proved by Macintyre in [4, Page 56] that every
countable, ℵ0-existentially closed group has 2ℵ0

automorphisms.

A. Macintyre; On algebraically closed groups,
Annals of Math. 96, (1972) 53�97.



κ-inner Automorphisms of existentially closed groups

De�nition. Let G be a group. An automorphism
φ ∈ Aut(G ) is called κ-inner if for every subgroup
X ⊆ G with |X | < κ, there exists an element g ∈ G
such that ιg(x) = φ(x) for all x ∈ X .

Let κ-Inn(G ) denote the set of all κ-inner
automorphisms of G .

We clearly have

Inn(G )⊴ κ-Inn(G )⊴ Aut(G )

Moreover, the inclusion on right hand side is indeed
an equality for κ-existentially closed groups.
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Automorphisms of κ-existentially closed groups

Proposition 5

Let κ be uncountable and let G be κ-existentially
closed. Then every automorphism of G is κ-inner.
i.e. κ-Inn(G ) = Aut(G ).



De�nition. Let κ be a regular uncountable cardinal.
A set C ⊂ κ is called closed unbounded subset (club
subset) of κ if C is unbounded in κ and if it
contains all its limit points less than κ.



Automorphisms of κ-existentially closed groups

We have seen in the explicit examples of
κ-existentially closed groups that the construction
has κ levels.

We now introduce the notion of a level preserving
automorphism.
An automorphism φ ∈ Aut(G ) is said to be
preserving the level α if φ(Gα) = Gα
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Automorphisms of κ-existentially closed groups

Let C ⊆ κ.

An automorphism φ ∈ Aut(G ) is said to be C -level
preserving if

φ(Gα) = Gα

for all α ∈ C .

Lemma 6

Let G be κ-existentially closed group of cardinality κ

where κ is inaccessible. For every φ ∈ Aut(G ), we
have that

Stab(φ) = {α < κ : φ(Gα) = Gα}

is a club (i.e. closed and unbounded) subset of κ.
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We shall denote the set of C -level preserving
automorphisms of G by AutC (G ). We clearly have
Aut∅(G ) = Aut(G ) and AutC (G ) ⩽ AutD(G )
whenever D ⊆ C .



Corollary 7

Let G be κ-existentially closed group and κ is
inaccessible. For every H ⩽ Aut(G ) with |H | < κ,
there exists a club set C ⊆ κ with H ⩽ AutC (G ).



Corollary 8

Let κ be inaccessible and let G be the unique
κ-existentially closed group of cardinality κ, which is
isomorphic to a limit of regular representations of
length κ with countable base. Then

Aut(G ) =
⋃
C⊆κ

C is club

AutC (G ) =
⋃
α<κ

Aut{α}(G )



Open Question. Let G be a κ-existentially closed
group of cardinality λ ≥ κ where κ is a regular
cardinal. Determine the structure of the Aut(G ).



Open Question. Let κ be an in�nite cardinal
which is not an uncountable inaccessible cardinal.
Does there exist explicit example of a κ-existentially
closed group of cardinality κ?
In particular explicit examples of countable,
ℵ0-existentially closed group is still open.



We prove the following in [3]:

Corollary 9

Let κ be an inaccessible cardinal and let G be the
unique κ-existentially closed group of cardinality κ.
Then |Aut(G )| = 2κ.



Our methods give information also the cardinality of
automorphism group of limit regular representations
of groups of countable base and length κ for
uncountable regular cardinal κ.



We also prove that for a κ-existentially closed group
of cardinality κ the |Aut(G )| = 2κ, see [1].



Question What can we say about the cardinality of
automorphism groups of κ-existentially closed groups
of cardinality λ > κ?



THANK YOU
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