Rings generated by character values of representations of finite groups

Dmitry Malinin

Università degli Studi di Padova

ISCHIA GROUP THEORY 2022

Dmitry Malinin Rings generated by character values of representations

< 回 > < 三 > < 三

Though the traces of $g \in G$ are always algebraic integers, the representations $G \rightarrow GL_n(K)$ are not always realizable in the rings of integers O_K of algebraic number fields K.

B. Fein, B. Gordon: which fields can be generated by adjoining the entries of character tables? They proved that every Abelian extension of \mathbb{Q} has a primitive element which is an entry of the character table of some finite group. They also observed a similar question for the fields generated over \mathbb{Q} by one row or one column of the character table of a finite group.

Theorem (B. Fein, B. Gordon). Let *K* be an Abelian extension of \mathbb{Q} . Then there exists a group $G = \{x_1, \ldots, x_n\}$ whose irreducible complex characters are χ_1, \ldots, χ_h , and such that

(*i*)
$$K = \mathbb{Q}(\chi_1(x_1), \chi_1(x_2), \dots, \chi_1(x_n)).$$

(*ii*) $K = \mathbb{Q}(\chi_1(x_1), \chi_2(x_1), \dots, \chi_h(x_1)).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Gabriel Navarro and Pham Huu Tiep (2021) considered a deep problem in representation theory: for a given prime *p*, what is the set of abelian extensions $L_p = \{\mathbb{Q}(\chi)/\mathbb{Q} : \chi \in Irr_{p'}(G)\}$, *G* is a finite group?

p=2:

Theorem A1. Suppose that $\chi \in Irr(G)$ has odd degree and conductor $2^{a}m$, where *m* is odd and *a* is a positive integer. Then $\mathbb{Q}_{2^{a}} \subset \mathbb{Q}(\chi)$.

Theorem A2. Let F/\mathbb{Q} be an abelian extension of \mathbb{Q} with conductor $n = 2^a m$, where *m* is odd and *a* is a positive integer. Suppose that $\mathbb{Q}_{2^a} \subset F$. Then there exist a finite group *G* and $\chi \in Irr_{2'}(G)$ such that $F = \mathbb{Q}(\chi)$.

くロト (過) (目) (日)

For $\chi \in Irr(G)$ and $G \subset GL_n(\mathbb{C})$ let $\mathcal{K}_G = \mathbb{Q}(\chi(G)) = \mathbb{Q}(\{\chi(g), g \in G\})$ be the field generated by all traces of matrices in the representation of G over \mathbb{Q} .

We define the order generated by the character values of $\chi(G)$ over \mathbb{Z} for the fixed character χ : this order $\mathbb{Z}[G]$ is contained in O_{K_G} . (Note that $\mathbb{Z}[G]$ is neither the group algebra nor the ring of generalized characters).

The deviation of $O_{K_G}[G]$ from $\mathbb{Z}[G]$ can be measured by the structure of the finite abelian group $O_{K_G}/\mathbb{Z}[G]$.

Let *G* be a finite group, *K* a number field with the ring of integers O_K and $\rho : G \to GL_n(K)$ an irreducible representation of *G*. We denote by *V* the associated irreducible *KG*-module.

Definition.

The representation $\rho : G \to GL_n(K)$ is called integral, if and only if $\rho(g) \in GL_n(O_K)$ for all $g \in G$. We say that $\rho(G)$ can be made integral, if and only if there exists an integral representation $G \to GL_n(O_K)$ which is equivalent to ρ . We call V integral if $\rho(G)$ can be made integral.

In other words, $\rho(G)$ can be made integral if and only if we can apply a base change such that all matrices have integral entries.

Question. (W. Burnside, I. Schur, later W. Feit, J.-P. Serre). Given a linear representation $\rho : G \to GL_n(K)$ of finite group G over a number field K/\mathbb{Q} , is it conjugate to a representation $\rho : G \to GL_n(O_K)$ over the ring of integers O_K ?

There is an algorithm which efficiently answers this question, it decides whether this representation can be made integral, and, if this is the case, a conjugate integral representation can be computed.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition. Assume that one of the conditions hold:

(i) We have $K = \mathbb{Q}$. (ii) We have $cl_K = 1$. (iii) We have $GCD(cl_K; n) = 1$. Then the representation $\rho: G \to GL_n(K)$ can be made integral.

・ 回 ト ・ ヨ ト ・ ヨ ト

D. K. Faddeev, 1965, 1995. – Generalized integral representations.

Theorem (Cliff, Ritter, Weiss). Let *G* be a finite solvable group. Then every absolutely irreducible character χ of *G* can be realized over $\mathbb{Z}[\zeta_m]$, where *m* is the exponent of *G*.

Example. The metacyclic group $G = \langle x; y | x^9 = y^{19} = 1; y^x = y^7 \rangle$ admits an absolutely irreducible representation $G \to GL_3(K)$ which cannot be made integral, where *K* is the unique subfield of $\mathbb{Q}(\zeta_{57})$ of degree 12.

Theorem (Serre) Let $G = Q_8$, $K = \mathbb{Q}(\sqrt{-d})$, and d > 0. Then 1) *G* is realizable over *K*, $\rho : G \to GL_2(K)$, if and only if $d = a^2 + b^2 + c^2$ for some integers *a*, *b*, *c*. 2) *G* is realizable over O_K , $\rho : G \to GL_2(O_K)$, if and only if $d = a^2 + b^2$ for some integers *a*, *b* or $d = a^2 + 2b^2$ for some integers *a*, *b*.

Let *G* be a finite group and χ its complex irreducible character. A number field K/\mathbb{Q} is called a splitting field of χ , if there exists a representation of *G* over *K* affording χ .

A splitting field K is called (degree-)minimal, if there is no splitting field of χ with degree smaller than K.

A splitting field K of χ is called integral, if any representation of G over K affording χ can be made integral. Otherwise, the splitting field K is called nonintegral.

イロト イポト イヨト イヨト

Theorem (Serre) Let $G = Q_8$, $K = \mathbb{Q}(\sqrt{-d})$, and d > 0. Then 1) *G* is realizable over *K*, $\rho : G \to GL_2(K)$, if and only if $d = a^2 + b^2 + c^2$ for some integers *a*, *b*, *c*. 2) *G* is realizable over O_K , $\rho : G \to GL_2(O_K)$, if and only if $d = a^2 + b^2$ for some integers *a*, *b* or $d = a^2 + 2b^2$ for some integers *a*, *b*.

Let *G* be a finite group and χ its complex irreducible character. A number field K/\mathbb{Q} is called a splitting field of χ , if there exists a representation of *G* over *K* affording χ .

A splitting field *K* is called (degree-)minimal, if there is no splitting field of χ with degree smaller than *K*.

A splitting field K of χ is called integral, if any representation of G over K affording χ can be made integral. Otherwise, the splitting field K is called nonintegral.

ヘロン 人間 とくほ とくほ とう

-

The concept of global irreducibility for arithmetic rings was introduced by F. Van Oystaeyen and A.E. Zalesskii: a finite group $G \subset GL_n(F)$ over an algebraic number field F is globally irreducible if for every non-archimedean valuation v of F a Brauer reduction reduction of $G \pmod{v}$ is absolutely irreducible.

Theorem (F. Van Oystaeyen and A.E. Zalesskii). O_F -span $O_F G$ of a group $G \subset GL_n(O_F)$ is equal to $M_n(O_F)$ if and only if $G \subset GL_n(O_F)$ is globally irreducible.

Proposition 1.

For the globally irreducible subgroups $G \subset GL_2(\mathbb{C})$ the ring of integers of $\mathbb{Q}(\chi(G))$ is $\mathbb{Z}[\chi(G)]$.

ヘロト 人間 とくほ とくほ とう

э.

Now let $K = \mathbb{Q}(G) = \mathbb{Q}(\chi(g) : \chi \in Irr(G), g \in G)$

Proposition 2. Let *G* be a finite group and $K = \mathbb{Q}(G)$. Then the prime divisors of $|O_K/\mathbb{Z}[G]|$ divide |G|.

Proposition 3. Let $G \neq 1$ be a nilpotent group and $K = \mathbb{Q}(G)$. Then the exponent of $O_K / \mathbb{Z}[G]$ is a proper divisor of |G|. In particular, $|G|O_K \subset \mathbb{Z}[G]$.

Proposition 4.

1. Let G = PSL(2,q) for some prime power $q \neq 1$. Then $\mathbb{O}_{\mathbb{Q}(G)} = \mathbb{Z}[G].$

2. Let G = Sz(q) for $q \ge 8$ an odd power of 2. Then $\mathbb{O}_{\mathbb{Q}(G)}/\mathbb{Z}[G]$ is isomorphic to C_2^a , where $a = \phi((q^2 + 1)(q - 1))/32$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Let χ be an irreducible complex character of a finite group. All minimal splitting fields of χ have the same relative degree over the character field $\mathbb{Q}(\chi)$, which is called the Schur index of χ over \mathbb{Q} . Notation: $m_{\mathbb{Q}}(\chi)$.

Consider the case $deg(\chi) = 2$. If $m_{\mathbb{Q}}(\chi) > 1$, then there are infinitely many minimal splitting fields of χ , and if $m_{\mathbb{Q}}(\chi) = 1$, then the field of characters $\mathbb{Q}(\chi)$ is the unique minimal splitting field of χ .

Do there exist integral and nonintegral minimal splitting fields of a given character? If so, how many are there?

Let us consider the case of trivial Schur index. In this case $\mathbb{Q}(\chi)$ is the only minimal splitting field of χ . In general both cases will occur. We will now concentrate on the case $m_{\mathbb{Q}}(\chi) > 1$, more precisely on the case $m_{\mathbb{Q}}(\chi) > 1$, $\mathbb{Q}(\chi) = \mathbb{Q}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem.

Let χ be an irreducible character of a finite group with $m_{\mathbb{Q}}(\chi) > 1$, $\mathbb{Q}(\chi) = \mathbb{Q}$ and $deg(\chi) = 2$. Then there exist infinitely many integral minimal splitting fields of χ , and there is infinitely many nonintegral minimal splitting fields of χ .

Remark. This theorem holds in a more general settings, we have can find minimal integral and nonintegral splitting fields for a large number of characters of various groups assuming that χ is an irreducible character of G with $m_{\mathbb{Q}}(\chi) > 1$.