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A profinite group is a topological group that is isomorphic to an
inverse limit of finite groups.

An element x ∈ G is an FC-element if |G : CG(x)| is finite, i.e. if |xG|
is finite, where xG is the set of all conjugates of x in G.

If G is a group, the set ∆(G) of FC-elements of G is a subgroup, and
it is called the FC-center of G.

This happens because CG(xy) ≥ CG(x) ∩ CG(y) for all x , y ∈ G, so if
both CG(x) and CG(y) have finite index the same holds for CG(xy).

A group G is a FC-group if G = ∆(G).

SHALEV, 1994

If G is a profinite FC-group then G′ is finite, so G is finite-by-abelian.

REMARK

A profinite finite-by-abelian group is abelian-by-finite.
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A group G is said to have restricted centralizers if if for each g in G
the centralizer CG(g) either is finite or has finite index in G.

SHALEV, 1994

If G is a profinite group with restricted centralizers, then G is
abelian-by-finite.
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A word w on n variables is an element of the free group F with free
generators x1, . . . , xn.
Given a group G, we can think of w as a function w : Gn 7→ G.
We denote by Gw the set of w-values and by w(G) the verbal
subgroup generated by Gw .
When G is a profinite group we always mean “topologically
generated”.
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Recall that multilinear commutator words, also known as outer
commutator words, are words obtained by nesting commutators but
using always different variables.
For example the word [[x1, x2], [x3, x4, x5], x6] is a multilinear
commutator.
The lower central words γi are examples of multilinear commutator
words. They are defined by:
γ1 = x1, γi = [γi−1, xi ] = [x1, x2, . . . , xi ] for i ≥ 1.

The Engel words ei defined by:
e1 = [x , y ], ei = [ei−1, y ] = [x , iy ] for i ≥ 1
are not multilinear commutator words.
Shalev’s result can be generalized as follows.

THEOREM (DETOMI, M., SHUMYATSKY 2020)

Let w be a multilinear commutator word and G a profinite group in
which all centralizers of w-values are either finite or of finite index.
Then w(G) is abelian-by-finite.
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We are interested. In γk -commutators. Recently, Shumyatsky proved
the following result:

THEOREM ( SHUMYATSKY 2021)

Let k ≥ 1 and G be a group in which |xG| ≤ m for any γk -value x ∈ G.
Then G has a nilpotent subgroup of (k ,m)-bounded index and
(k ,m)-bounded class.

This lead to our first result.

PROPOSITION (DETOMI, M., SHUMYATSKY 2022)

Let k be a positive integer and G a profinite group in which the
centralizers of γk -commutators are either finite or open. Then G is
virtually nilpotent.
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Recently, uniform commutators, also called anticoprime commutators,
have attracted some interest. They are commutators of the type
[g1,g2] were the orders of the elements g1 and g2 are divisible by the
same primes. This definition makes sense also in profinite groups.

An element g of a profinite group G is a uniform k -step commutator
(uk -commutator for short) if there are elements g1,g2, . . . ,gk ∈ G
such that g = [g1,g2, . . . ,gk ] and π(g1) = · · · = π(gk ), where π(gi ) is
the set of prime divisors of the order of gi .

Note that in a (pro-)nilpotent group every γk -commutator is a
uk -commutator, because elements of coprime orders commute.
The set of uniform k -step commutators of G will be denoted by Uk (G).
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Let G be a profinite group. Then the set Uk generates γk (G).

PROOF. Recall that [x , y , y ] = [y−xy , y ] is a uniform commutator for
any x , y ∈ G, so that [x ,k y ] = [y−xy , k−1y ] ∈ Uk . Let N = 〈Uk 〉.
Obviously, N ≤ γk (G).
If x̄ = Nx and ȳ = Ny are elements of G/N, then [x̄ ,k ȳ ] = 1. Since
finite Engel groups are nilpotent, we deduce that G/N is pronilpotent.
Now every γk -commutator in G/N is a uk -commutator, thus it is trivial.
It follows that γk (G) ≤ N. �
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THEOREM 1 (DETOMI, M., SHUMYATSKY 2022)

Let G be a profinite group in which the centralizers of uniform k -step
commutators are either finite or open. Then G is virtually nilpotent
and γk (G) is virtually abelian.

When k = 2 we can be more precise.

THEOREM 2 (DETOMI, M., SHUMYATSKY 2022)

Let G be a profinite group in which the centralizers of uniform
commutators are either finite or open. Then G has an open subgroup
which is nilpotent of class at most 3.
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We do not know if for k > 2 there exists a constant C, depending only
on k , such that any group G satisfying the hypothesis of Theorem 1
has an open nilpotent subgroup of class at most C.
The proof of the case k = 2 depends on a beautiful result recently
obtained by Eberhard and Shumyatsky using probabilistic methods,
which implies:

THEOREM (EBERHARD, SHUMYATSKY 2021)

If G is a group in which |xG| ≤ m for any commutator x ∈ G, then G
has a subgroup H of nilpotency class at most 4 such that [G : H] and
|γ4(H)| are both finite and m-bounded.
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As an intermediate step in our proof, we study what happens when
the centralizers of nontrivial uk -commutators are finite.

PROPOSITION (DETOMI, M., SHUMYATSKY 2022)

Let G be a profinite group in which the centralizers of nontrivial
uk -commutators are finite. Then G is either finite or nilpotent of class
at most k − 1.
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A word w is said to be concise in a class of groups X if for every
G ∈ X

|Gw | <∞ ⇐⇒ |w(G)| <∞

In the sixties Hall raised the problem whether all words are concise,
but in 1989 Ivanov solved the problem in the negative.

A word w is called boundedly concise in a class of groups X if for
every G ∈ X

|Gw | ≤ m =⇒ |w(G)| ≤ f (m,w)

for some function f of m and w .
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Every word which is concise in the class of all groups is actually
boundedly concise.

PROPOSITION (FERNÁNDEZ-ALCOBER, M. 2010)

If w is a multilinear commutator word and G is a group then

|Gw | ≤ m =⇒ |w(G)| ≤ f (m)

for some function f of m, independently of w .

PROPOSITION (DETOMI, M., SHUMYATSKY 2022)

If G is a profinite group then

|Uk | ≤ m =⇒ |γk (G)| ≤ f (m)

for some function f of m, independently of k .
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A word w is called strongly concise if for every profinite group G

|Gw | < 2ℵ0 ⇐⇒ |w(G)| <∞

PROPOSITION (DETOMI, KLOPSCH, SHUMYATSKY 2020)

Multilinear commutator words are strongly concise.

PROPOSITION (DETOMI, KLOPSCH, SHUMYATSKY 2020)

The words x2, x3, x6, [x , y , y ] are strongly concise.

PROPOSITION (DETOMI, M., SHUMYATSKY 2022)

If G is a profinite group then

|Uk | < 2ℵ0 ⇐⇒ |γk (G)| <∞
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