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The problem

Given finite G , construct Aut(G ).

Shoda (1928), Hulpke (1997): G abelian

Felsch & Neubüser (1968): Choose a generating set for G and
systematically list maps defined on this generating set.

Cannon and Neubüser (1970s), Robertz (1976): exploited BSGS
machinery for permutation group G , obtain Aut(G ) acting on
unions of certain conjugacy classes of G .

Cannon and Holt (2003): use structure of G/O∞(G ) to obtain
answer, and then lift results through elementary abelian layers.
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Finite soluble group

Smith (1994) and Slattery.

G soluble defined by power-conjugate presentation: lift
computations through normal series with elementary abelian layers.

Howden (2008): soluble case reduced to p-groups.

Hard case: G finite p-group.

O’B (1993); Eick, Leedham-Green, O’B (2003).
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Lower exponent-p central series

The lower p-central series of a p-group G is defined by
P0(G ) = G
Pi+1(G ) = [Pi (G ),G ]Pi (G )p for i ≥ 0

Factors are elementary abelian p-groups.

If Pc(G ) = 1, then G has p-class c .

Let Gi = G/Pi (G ).

Proceed by induction down the lower p-central series:
G1 = G/P1(G ) is elementary abelian of order pd , and
Aut(G1) ∼= GL(d , p).
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The general framework: Gi to Gi+1

@
@
@
@
�
�
�
�@
@
@
@
�
�
�
�

R∗ = [R,F ]Rp

N U

F

R

Gi := F/R

P := F/[R,F ]Rp the p-covering group of Gi

M := R/R∗ the p-multiplicator, characteristic

N := Pi (P) ≤ M

Gi+1 := P/U where U supplements N.
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Inductive step: compute Aut(Gi+1) from Aut(Gi)

• Compute the p-covering group P of Gi .

• Each automorphism of Gi lifts to an automorphism of P via
natural homomorphism P → Gi with kernel M.

• Identify U such that P/U ∼= Gi+1.

• Let S be the stabiliser of U in Aut(Gi ).

• Let Ai+1 be the subgroup of Aut(Gi+1) induced by S .

• Gi+1/Pi (Gi+1) ∼= Gi . Let Ti+1 ≤ Aut(Gi+1) consisting of those
automorphisms which fix Gi and Pi (Gi+1) – normal, elementary
abelian p-subgroup of Aut(Gi+1).

Theorem

Aut(Gi+1) = Ai+1Ti+1.
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Where’s the problem?

How difficult is the inductive step?

Easily write down a generating set for Ti+1.

Main task: compute the stabiliser of U in Aut(Gi ), where Aut(Gi )
acts as a group of automorphisms on M.

M = R/[R,F ]Rp is elementary abelian p-group.

M is an Aut(Gi )-module and U is explicit subspace of M.
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Action of Ai := Aut(Gi ) is explicit as matrix group on M and U is
explicit subspace of M.

Task: compute the stabiliser of U under the action of Ai .

Standard approach: Construct the orbit of U under action of Ai

and use standard orbit-stabiliser algorithm to list generators for the
stabiliser.

Central problem: Orbit is frequently too large to construct – and
generating set is too large.
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Stabiliser under unipotent group

Let A be the automorphism group of a p-group H.

M is A-module; U ≤ M.

C := CA(H/Φ(H)) is a normal p-subgroup of A: those
automorphisms which induce trivial action on H/Φ(H).

Define canonical copy of U under action of unipotent group C .

Construct canonical copy, simultaneously write down its stabiliser.

Schwingel, Costi: Unipotent stabiliser algorithm.

If Aut (Gi ) is a p-group, then “easy” to compute the stabiliser.

Martin and Helleloid (2007): for “most” finite p-groups H,
Aut (H) is a p-group.

Difficult cases: p-groups of small class, particularly class 2.
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Preprocessing step

We compute Aut(G ) by induction on the lower p-central series.

Initial step: start with Aut(G1) ∼= GL(d , p).

Start instead with L ≤ GL(d , p) such that the subgroup K of
Aut(G1) induced by Aut(G ) is contained in L.

If we can construct L such that K ≤ L < GL(d , p), then supply L
as input.

How to do this? Use characteristic subgroups.
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Construct characteristic subgroups of G

Construct characteristic subgroups of G : including G ′, Z (G ), Ω.

Restrict this collection to G1 = G/Φ(G ).

Obtain list L of subspaces of V = GF (p)d which are invariant
under GL(d , p).

Now write down the subgroup of GL(d , p) which stabilises each
subspace in L.

Brooksbank & O’B (2007): construct a system of equations in
matrix algebra which must be satisfied by the stabiliser, solve this
system to obtain group of units.
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Locating characteristic subgroups

Some groups have few characteristic subgroups.
Taunt, Glasby–Pálfy–Schneider: p-groups with unique proper
nontrivial characteristic subgroup.

Wilson (2013), Maglione (2015): new families of characteristic
subgroups.

Generalize the N-series of Lazard: new subgroups are located via
correspondences with certain graded Lie rings.

Theorem (Maglione, 2015)

Let S ≤ GL(d , q) be the group of upper unitriangular matrices.
Adjoint refinements of lower central series of S gives a
characteristic series of length Θ(d2) with factors of order p or p2.
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The hard case

G d-generator p-class 2, exponent p, no known characteristic
structure.

H = G/Φ(G ), and Aut(H) ∼= GL(d , p).

Let V = GF(p)d . Now p-multiplicator M is VΛV and G = P/U
where U ≤ M.

So A := GL(d , p) acts on the alternating square Λ(V ).

The space of alternating forms of degree d on V is naturally
isomorphic with the dual vector space (Λ(V ))?.

So can identify U with set of bilinear forms.
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The (revised) challenge

A := GL(d , p) acts on alternating square representation Λ(V );
compute stabiliser of U in A.

Assume U has dimension 1: if bilinear form has full rank, stabiliser
is Sp(d , q). In all cases, trivial to write down.

1-dimensional spaces partitioned into orbits by rank of form.

Possible strategy for larger dimensional U:

• Basis of U determines set of bilinear forms.

• Construct intersection I of corresponding symplectic groups.

• Normaliser in GL(d , p) of I contains stabiliser.
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2-dimensional space

B, M & W (2017): polynomial time algorithm to construct
stabiliser of 2-dimensional subspace.

Uses a large body of machinery, including: classifications of pairs
of forms by Scharlau (1976); projective equivalence under
pseudo-isometries developed by Vishnevetski (1980); structure of
algebra of adjoints.

No classification of orbits.
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Graded Algebras

Let K be a finite field. A K -algebra A is a K -module equipped
with a (possibly nonassociative) K -bilinear product ◦ : A× A � A.

If, as a K -module,

A =
∞⊕
s=0

As , where As ◦ At ≤ As+t ,

then A is N-graded.

An isomorphism between graded algebras that maps each graded
component of one algebra to the corresponding component of the
other is a graded isomorphism.
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Existing uses of graded algebras proceed sequentially through the
grading. Starting with the first, consider all possible isomorphisms
between corresponding graded components, use the graded
product to decide which of them induces an isomorphism between
the next components.

Our approach: identify a section of the two graded algebras with
least number of possible maps.

Use practical extension of results of Ivanyos & Qiao to determine
which maps between sections lift to isomorphisms of the algebras.

Theorem (Brooksbank; O’B; Wilson, 2020)

For each prime p and integer n > 0, there is a family of nilpotent
matrix Lie algebras of order pn, containing pO(n2) non-isomorphic
members, for which there is an O(pn) isomorphism test.
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Labelling projective geometry

Exploit graded Lie algebra determined by G .

Create a labelling which must be preserved under elements of the
stabiliser on the points and lines of projective geometry of U.

Example: label each point by rank of associated bilinear form.

Use labels to define a graph, and construct automorphism group of
graph. Lift generators to automorphisms of G .

Stabiliser of U is now limited to corresponding subgroup.

Often extremely effective in proving that only scalars stabilise U.
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