

Heartfelt thanks to:

Mariagrazia Bianchi,
Andrea Caranti,
Patrizia Longobardi,
Mercede Maj and
Carlo Scoppola.

Groups Ischia 2018

This lecture: hunting cycles

1 Which ones are interesting/useful?

2 How to find them and use them

Standard kinds of cycles in permutation groups

- Example $\Omega=\{1, \ldots, 10\}$
- Write "disjoint cycle representation"
- Represent: $g=(1,5,7,2,10)(3,6)(4)(8,9)$
- Sometimes: " g is a cycle" means it has just one nontrivial cycle

Product of 4 cycles
Often omit fixed point (4) (cycle of length 1)

What kinds of permutation groups?

Permutation groups on $\Omega=\{1,2, \ldots, n\}$
Symmetric group $S_{n}=\{$ all permutations on $\Omega\}$
Alternating group $A_{n}=\{$ all even permutations on $\Omega\}$
(products of an even number of 2-cycles) A_{n} simple if $n \geq 5$
Define permutation group $G \leq S_{n}$ to be transitive:
for all $i, j \in \Omega$, there exists $g \in G$ such that $g: i \rightarrow j$.
S_{n} and A_{n} are the giants among permutation groups on Ω

- Transitive permutation group primitive:
- Only trivial invariant partitions
- Stabilisers are maximal subgroups

Why care about cycles in permutation groups?

Theorem: Camille Jordan ~ 1870
Given transitive $G \leq S_{n}$ and prime p such that $n / 2<p \leq n-3$ and some element of G contains a p-cycle; then G is A_{n} or S_{n}

- Famous old result
- Highlights the giants S_{n} and A_{n}

Why care about cycles in permutation groups?

Theorem: Camille Jordan ~ 1870
Given primitive $G \leq S_{n}$ and prime p such that $n<p \leq n-3$ and some element of G is a p-cycle; then G is A_{n} or S_{n}

- Previous version follows from this
- Highlights the giants S_{n} and A_{n}

Why care about cycles in permutation groups?

- chasing up early 20C extensions of Jordan's theorem
- Identified other elements of prime order such that the only primitive groups containing them are the giants
- I've been involved with permutation groups since my doctoral work
- Best results up to 1920 were by W. A. Manning

Primitive permutation group $G \leq S_{n}$

- Suppose exists $g \in G$ prime order p
- With q cycles of length p and f fixed points so $n=q p+f$
- Jordan/Manning: if $\mathrm{q} \leq 5$ and $f>q+1$

Then G is a giant S_{n} or A_{n}

- Manning (1918): if $5<q \leq(p-1) / 2$ and $f>4 q-4$ Then G is a giant S_{n} or A_{n}
- I've been involved with permutation groups since my doctoral work

Primitive permutation group G < Sn

- Suppose exists $g \in G$ prime order p
- With q cycles of length p and f fixed points so $n=q p+f$
- CEP 1979: if $q \leq p-1$ and $f>5 q / 2-2$

Then G is a giant S_{n} or A_{n} or a "giant on pairs" S_{c} or A_{c} with $n=c(c-1) / 2$

- I've been involved with permutation groups since my doctoral work

Primitive permutation group G < Sn

- Suppose exists $g \in G$ prime order p
- With q cycles of length p and f fixed points so $n=q p+f$
- Liebeck \& Saxl 1985: if $q \leq p-1$ then all possible G, p, q, f are known [in a long list]
- After this result methods/results changed because of the finite simple group classification

Primitive permutation group G < Sn

- Some "algorithmic-specific" uses of cycles: which permutations determine giants (cf. Jordan) and are easy to find?
- In 1970's many discussions with John Cannon. Using Jordan's result computationally to test whether a given primitive group $G=\langle X\rangle \leq S_{n}$ was a giant.
- Why? Existing algorithms for primitive groups efficient EXCEPT for giants.
- Reason for talking about these results was to say: permutation cycles were high in my consciousness as a young researcher

Primitive permutation group $G=\langle X\rangle \leq S_{n}$

- Example: $\mathrm{g}=(13745)(689)$ is a witness in S_{9} for both $p=5$ and $p=3$ since $\mathrm{g}^{3}=(14357)$; and $\mathrm{g}^{5}=(698) \quad$ [same g more than one p]
- Example: $\mathrm{g}=(13)(245689)$ in S_{11} gives $\mathrm{g}^{2}=(258)(469)$ with $p=3, \mathrm{q}=2, \mathrm{f}=5>\mathrm{q}+1$; [Jordan/Manning result]
- What kinds of witnesses for G being a giant?
- Kind of processing? How much is realistic?

Primitive permutation group $G=\langle X\rangle \leq S_{n}$

Complete processing: For each prime p dividing length of some g -cycle examine element $\mathrm{g}^{|g| / p}$ of order p in $\langle\mathrm{g}\rangle$

- Decide if $\mathrm{g}^{|g| / p}$ is a witness, using any of the previous results
- Issues:

```
- Don'† compute glg|/p
- Just look at cycle
    lengths
- Still it's rather messy
```

- Complicated to implement
- Do some (simple) types of elements occur so frequently you would not bother with the other types

Simple Algorithm using only Jordan's theorem

Define $g \in S_{n}$ is 'good' if g contains a p-cycle, for some prime p such that $n / 2<p \leq n-3$

Example: $\quad g=(12345)(67) \in S_{9}$ is 'good': $n=9, p=5$
For fixed p, number of elements in S_{n} containing a p-cycle is

$$
\binom{n}{p}(p-1)!(n-p)!=\frac{n!}{p} \quad\left(\text { and } \quad \frac{n!}{2 p} \quad \text { in } A_{n}\right)
$$

Proportion of 'good' elements in A_{n} or S_{n}
$=\sum_{n / 2<p \leq n-3} \frac{1}{p} \geq \frac{c}{\log n}$ for some constant c

- If $p>n / 2$ then no overlap between different primes
- Proportion good elts equals $O(\log n)$ - So O(log n) random elements finds 'good' element with high probability

Better use of Jordan's theorem to recognize giants?

- O(log n) random elements finds 'good' element with high probability
- Can we make do with fewer random elements?
- Jordan: finding a p-cycle for any prime p is OK/decisive witness that primitive G is a giant

Why bother?

- Imagine you feed a nongiant to this procedure: won't stop until log n elements processed

Better use of Jordan's theorem to recognize giants?

- Elements g yielding p-cycle:

$$
g=(p-\text { cycle }) \ldots(\text { coprime to } p)
$$

- E.g. $g=(12345)(65)(8,9,10)$ etc
- Call these elements pre p-cycles
- Know: proportion of pre p-cycles for some $p>n / 2$ is $c / \log n$
- What is proportion of pre p-cycles (for some p) in S_{n} ?
- Is it $\mathrm{c} / \log \mathrm{n}$ or is it asymptotically larger?

Proportion from "small" primes

- 2018 John Bamberg, Stephen Glasby, Scott Harper, CEP: Our first attempt
- Fixed prime p as $n \rightarrow \infty$: proportion of pre p cycles grows like $c(p)(n / p)^{-1 / p}$
- Problem: even adding over(bounded) $p \leq K$ (ignoring any overlap) only get proportion $\mathrm{cn}^{-1 / K}$
- For small primes the sets of pre p-cycles for different p intersect
- recall: $\mathrm{g}=(13745)(689)$
- Powers to 5-cycle and to a 3-cycle
- What we learned: contribution from bounded p is too small

Proportion of pre p-cycles for what primes p ?

- Erdos and Turan: holds clues about most prevalent elements of S_{n} : they have $\approx \log n$ cycles, but what are their lengths?
- Stephen Glasby and I struggling over this

Proportion of pre p-cycles for what primes p ?

- Erdos and Turan: holds clues about most prevalent elements of S_{n} : they have $\approx \log n$ cycles, but what are their lengths?
- Stephen Glasby and I struggling over this when
- Bill Unger arXiv May 2019:
"Almost all permutations power to a prime length cycle"
- Asymptotic result - great insights - unclear where these "almost all permutations" being pre p-cycles were hiding - for what primes p ?

Proportion of pre p-cycles for what primes p ?

Stephen Glasby, Bill Unger and I joined forces:

- Focused on prime $p \approx \log n$:
- Needed to consider $\approx \log n$ different primes p
- Reverse engineer using the Prime Number Thm
- primes p between $\log n$ and $(\log n)^{\log \log n}$
- Plenty of scope for overlap between sets of pre p-cycles for different p
- So very delicate analysis needed
- My conviction: primes p giving large contribution should be roughly $p \approx \log n$

Proportion of pre p-cycles for these primes p

2021 Stephen Glasby, Bill Unger, CEP:

- Proportion of elements of S_{n} that are pre p-cycles for some prime p between $\log n$ and $(\log n)^{\log \log n}$ is at least

$$
1-\frac{5}{\log \log n}
$$

```
For proportion in \(A_{n}\) change 5 to 7
```

- For computational use we also proved
- Proportion of pre p-cycles in S_{n} (for some p) is at least $\frac{1}{19}$

Strategy of proof

Need to estimate size of the union

$$
\operatorname{Pre}(\mathrm{n})=\text { set of all pre-p-cycles for all primes } p \in P(n)
$$

Where $P(n)=\left\{p \mid \log n \leq p \leq(\log n)^{\log \log n}\right\}$

- Strategy: Pre(n) contains $T(n) \backslash U(n)$ where
- $T(n)$ is the too large set

$$
T(n)=\left\{g \in S_{n} \mid g \text { has at least one } p-c y c l e \text { for some } p \in P(n)\right\}
$$

- $U(\mathrm{n})$ is the unwanted set $U(n)=\mathrm{U}_{p \in P(n)} \mathrm{U}(\mathrm{p})$, where $U(p)=\left\{g \in S_{n} \mid g\right.$ has at least one $p-$ cycle \& also a second cycle of length a multiple of $p\}$

Strategy of proof 2

Checking properties:

1. $T(n)=\left\{g \in S_{n} \mid g\right.$ has at least one p-cycle for some $\left.p \in P(n)\right\}$ implies that $\operatorname{Pre}(n) \subseteq T(n)$
2. $U(n) \cup_{\mathrm{p} \in \mathrm{P}(\mathrm{n})} \mathrm{U}(\mathrm{p})$, where $U(p)=\left\{g \in S_{n} \mid g\right.$ has at least one $p-$ cycle \& also a second cycle of length a multiple of $p\}$ Implies that each $g \in T(n) \backslash U(n)$ is a pre-p-cycle for some p in $P(n)$, and hence lies in Pre(n).
Hence $\operatorname{Pre}(\boldsymbol{n})$ contains $T(n) \backslash U(n)$

- Note, inclusion proper: $\mathrm{U}(\mathrm{n})$ might contain an element of some $\mathrm{U}(\mathrm{p})$ if it is a pre p^{\prime}-cycle for some other p^{\prime} in $P(n)$

Strategy of proof 3

Need a lower bound for $|\boldsymbol{\operatorname { P r e }}(\boldsymbol{n})| \geq|T(n)|-|U(n)|$

- First: find lower bound for $\frac{|T(n)|}{n!}=1-\frac{|S(n)|}{n!}$

$$
\text { Where } S(n)=\left\{g \in S_{n} \text { has no cycles length } p \text { for any } p \in P(n)\right\}
$$

- So we need upper bound for $|S(n)|$
- This is a "forbidden cycle lengths" question solved by Erdos and Turan: $\frac{|S(n)|}{n!} \leq \mu$
- Unfortunately the E-T upper bound becomes $\mu \approx \log \log n$ for $\mathrm{P}(\mathrm{n})$
- We improve this to $\frac{|S(n)|}{n!} \leq 2.3 / \log \log n$ so $\frac{|T(n)|}{n!} \geq 1-2.3 / \log \log n$

Strategy of proof 4

Second: find an upper bound for $|U(n)|$

- $U(n)=U_{p \in P(n)} U(p)$ and we estimate this by $|U(n)| \leq \sum_{p \in P(n)}|U(p)|$
- Very delicate estimates involving $\sum_{p \in P(n)} \frac{1}{p^{2}}$
- End up with $\frac{|U(n)|}{n!} \leq \frac{2.2}{\log \log n}$
- So our proportion of pre p -cycles for p in $\mathrm{P}(\mathrm{n})$ is at least

$$
\frac{|T(n)|}{n!}-\frac{|U(n)|}{n!} \geq 1-\frac{2.3}{\log \log n}-\frac{2.2}{\log \log n}>1-\frac{5}{\log \log n}
$$

Where did the idea for primes around log n come from?

- Ideas for recognizing giant primitive groups influenced recognition algorithms for finite classical matrix groups
- Equivalents of p-cycles we currently call stingray elements: relative to an appropriate basis they look like:

$$
\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right) \text { with A irreducible in } G L(r, q)
$$

- Sometimes we take |A| a ppd prime divisor of $q^{r}-1$
- To allow effective application of FSGC

Where did the idea for primes around log n come from?

- stingray elements: in GL(n,q)

$$
\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right) \text { with A irreducible in } G L(r, q)
$$

- 1992: Neumann—Praeger SL-recognition algorithm used $r=n$, and $r=n-1$
- 1998: Niemeyer—Praeger classical recognition

```
- Much
    influenced by Jordan elements in Sn
``` algorithm used any r > n/2

\section*{Where did the idea for primes around \(\log \mathrm{n}\) come from?}
- stingray elements: in GL(n,q)
\[
\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right) \text { with A irreducible in } G L(r, q)
\]
- Early 2000's: Seress experimenting with new recognition algorithm suggested used r roughly \(\log n\)
- 2014: Niemeyer-Praeger With probability c/log n , a random element in Class (\(\mathrm{n}, \mathrm{q}\)) powers to a stingray with \(\log n<r<2 \log n\) [this influenced my thinking about "what p" for pre p-cycles]
- Aachen PhD student Daniel Rademacher:
- designing and analysing the corresponding classical recognition algorithm

\section*{References for recent results}

\section*{2020 John Bamberg, Stephen Glasby, Scott Harper, CEP}

Permutations with orders coprime to a given integer,
Electronic J. Combin. 27, P1.6

2021 Stephen Glasby, CEP, William R. Unger
Most permutations power to a cycle of small prime length,
Proc. Edin. Math. Soc. 64, 234-246.

2014 Alice C. Niemeyer, CEP
Elements in finite classical groups whose powers have large 1Eigenspaces [Corollary 3.5]
Disc. Math. and Theor. Comp. Sci. 16, 303-312.```

