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Which ones are interesting/useful?

How to find them and use them
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This lecture: hunting cycles



Standard kinds of cycles
in permutation groups   

• Example Ω = { 1,… , 10 }

• Write “disjoint cycle representation”

• Represent: 𝑔 = 1,5,7,2,10 3,6 4 8,9

• Sometimes: “g is a cycle” means it 

has just one nontrivial cycle

Product of 4 cycles 

Often omit fixed point (4)

(cycle of length 1)



What kinds of  
permutation groups?

• Transitive 

permutation 

group primitive:

• Only trivial 

invariant 

partitions

• Stabilisers are 

maximal 

subgroups



Why care about cycles 
in permutation groups?

• Famous old 

result

• Highlights the 

giants Snand An



Why care about cycles 
in permutation groups?

• Previous version 

follows from this

• Highlights the 

giants Snand An

primitive

is      



Why care about cycles 
in permutation groups?

• I’ve been 

involved with 

permutation 

groups since 

my doctoral 

work

• chasing up early 20C extensions of 

Jordan’s theorem

• Identified other elements of prime 

order such that the only primitive 

groups containing them are the 

giants

• Best results up to 1920 were by W. A. 

Manning



Primitive permutation 
group 𝐺 ≤ 𝑆𝒏

• I’ve been 

involved with 

permutation 

groups since 

my doctoral 

work

• Suppose exists 𝑔 ∈ 𝐺 prime order 𝑝

• With 𝑞 cycles of length 𝑝 and 𝑓 fixed points  so      

𝑛 = 𝑞𝑝 + 𝑓

• Jordan/Manning: if q ≤ 5 and 𝑓 > 𝑞 + 1
Then 𝐺 is a giant Sn or An

• Manning (1918): if 5 < 𝑞 ≤ (𝑝 − 1)/2 and 𝑓 > 4𝑞 − 4
Then 𝐺 is a giant Sn or An



Primitive permutation 
group G < Sn

• Suppose exists 𝑔 ∈ 𝐺 prime order 𝑝

• With 𝑞 cycles of length 𝑝 and 𝑓 fixed points  so 

𝑛 = 𝑞𝑝 + 𝑓

• CEP 1979: if 𝑞 ≤ 𝑝 − 1 and 𝑓 > 5𝑞/2 − 2
Then 𝐺 is a giant Sn or An or a ”giant on pairs” Sc
or Ac with 𝑛 = 𝑐(𝑐 − 1)/2

• I’ve been 

involved with 

permutation 

groups since 

my doctoral 

work



Primitive permutation 
group G < Sn

• After this result 

methods/results 

changed 

because of the 

finite simple 

group 

classification

• Suppose exists 𝑔 ∈ 𝐺 prime order 𝑝

• With 𝑞 cycles of length 𝑝 and 𝑓 fixed points  so 

𝑛 = 𝑞𝑝 + 𝑓

• Liebeck & Saxl 1985: if 𝑞 ≤ 𝑝 − 1 then all 

possible 𝐺, 𝑝, 𝑞, 𝑓 are known [in a long list]



Primitive permutation 
group G < Sn

• Reason for talking 

about these results 

was to say: 

permutation cycles  

were high in my 

consciousness as a 

young researcher

• Some “algorithmic-specific” uses of 

cycles:  which permutations determine 

giants (cf. Jordan) and are easy to find?

• In 1970’s many discussions with John 

Cannon. Using Jordan’s result 

computationally to test whether a given 

primitive group 𝐺 = 𝑋 ≤ 𝑆𝑛 was a giant. 

• Why? Existing algorithms for primitive 

groups efficient EXCEPT for giants.



Primitive permutation 
group 𝐺 = 𝑋 ≤ 𝑆𝑛

• What kinds of 

witnesses for G 

being a giant? 

• Example: g = (13745)(689) is a witness in 𝑆9
for both 𝑝 = 5 and 𝑝 = 3 since g3 = (14357); 
and g5 = (698) [same g more than one p]

• Example: g = (13)(245689) in 𝑆11 gives         

g2 = (258)(469) with 𝑝 = 3, q=2, f=5 > q+1; 

[Jordan/Manning result]

• Kind of processing? How much is realistic?



Primitive permutation 
group 𝐺 = 𝑋 ≤ 𝑆𝑛

• Don’t compute g 𝑔 /𝑝

• Just look at cycle 

lengths

• Still it’s rather messy

Complete processing: For each prime 𝑝
dividing length of some g –cycle examine 

element g 𝑔 /𝑝 of order 𝑝 in 〈g〉

• Decide if g 𝑔 /𝑝 is a witness, using any of 

the previous results

• Issues:

• Complicated to implement 

• Do some (simple) types of elements 

occur so frequently you would not 

bother with the other types



Simple Algorithm using 
only Jordan’s theorem

• If 𝑝 > 𝑛/2 then no 

overlap  between 

different primes

• Proportion good 

elts equals O(log n)

• So O(log n) 

random elements 

finds ‘good’ 

element with high 

probability 



Better use of Jordan’s 
theorem to recognize giants? 

Why bother?

• Imagine you 

feed a non-

giant to this 

procedure: 

won’t stop until 

log n elements 

processed

• O(log n) random elements finds ‘good’ 

element with high probability

• Can we make do with fewer random 

elements?

• Jordan: finding a p-cycle for any prime p is 

OK/decisive witness that primitive G is a giant



Better use of Jordan’s 
theorem to recognize giants? 

• Elements 𝑔 yielding p-cycle:

𝑔 = 𝑝 − 𝑐𝑦𝑐𝑙𝑒 … (𝑐𝑜𝑝𝑟𝑖𝑚𝑒 𝑡𝑜 𝑝)

• E.g. 𝑔=(12345)(65)(8,9,10) etc

• Call these elements  pre p-cycles

• What is proportion of pre p-cycles (for some p) in 𝑆𝑛?

• Is it c/log n or is it asymptotically larger?

• Know: proportion 

of pre p-cycles for 

some p>n/2  is 

c/log n 



Proportion from “small” 
primes

• For small primes the 

sets of pre p-cycles for 

different p intersect

• recall: g = (13745)(689)
• Powers to 5-cycle and 

to a 3-cycle

• 2018 John Bamberg, Stephen Glasby, Scott 

Harper, CEP: Our first attempt

• Fixed prime 𝑝 as 𝑛 → ∞ : proportion of pre p-

cycles grows like 𝑐(𝑝) 𝑛/𝑝 −1/𝑝

• Problem: even adding over(bounded) 𝑝 ≤ 𝐾
(ignoring any overlap) only get proportion 𝑐𝑛−1/𝐾

• What we learned: contribution from bounded p is 

too small



Proportion of pre 𝑝-cycles 
for what primes 𝑝?

• Erdos and Turan: holds clues about  most prevalent 

elements of 𝑆𝑛: they have ≈ log 𝑛 cycles, but what are 

their lengths?

• Stephen Glasby and I struggling over this 



Proportion of pre 𝑝-cycles 
for what primes 𝑝?

• Erdos and Turan: holds clues about  most prevalent 

elements of 𝑆𝑛: they have ≈ log 𝑛 cycles, but what are 

their lengths?

• Stephen Glasby and I struggling over this when

• Bill Unger arXiv May 2019 : 

“Almost all permutations power to a prime length cycle”

• Asymptotic result – great insights – unclear where 

these “almost all permutations” being pre p-cycles 

were hiding – for what primes p?

Understanding 

where the “bulk” 

of the proportion 

lay required more 

delicate analysis



Proportion of pre 𝑝-cycles 
for what primes 𝑝?

• My conviction: primes 

p giving large 

contribution should be 

roughly  𝑝 ≈ log 𝑛

Stephen Glasby, Bill Unger and I joined forces:

• Focused on prime 𝑝 ≈ log 𝑛 :   

• Needed to consider ≈ log 𝑛 different primes p

• Reverse engineer using the Prime Number Thm

• primes 𝑝 between log 𝑛 and  log 𝑛 log log 𝑛

• Plenty of scope for overlap between sets           

of pre p-cycles for different 𝑝
• So very delicate analysis needed



Proportion of pre 𝑝-cycles 
for these primes 𝑝

2021 Stephen Glasby, Bill Unger, CEP: 

• Proportion of elements of 𝑆𝑛 that are pre p-cycles for some 

prime 𝑝 between log 𝑛 and  log 𝑛 log log 𝑛 is at least 

1 −
5

log log 𝑛

• For computational use we also proved

• Proportion of pre p-cycles in 𝑆𝑛 (for some p) is at least 
1

19

Precise computations: for 𝑛 ≤ 50 show proportion > 1/3

For proportion in  𝐴𝑛
change 5 to 7



Strategy of proof

Need to estimate size of the union 

Pre(n) = set of all pre-p-cycles for all primes 𝒑 ∈ 𝑷(𝒏)

where 𝑃 𝑛 = { 𝑝 ∣ log 𝑛 ≤ 𝑝 ≤ log 𝑛 log log 𝑛 }

• Strategy: 𝐏𝐫𝐞(𝐧) contains 𝑇 𝑛 ∖ 𝑈(𝑛) where

• T(n) is the too large set

𝑇 𝑛 = { 𝑔 ∈ 𝑆𝑛 |𝑔 ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑝 − 𝑐𝑦𝑐𝑙𝑒 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 ∈ 𝑃 𝑛 }

• U(n) is the unwanted set 𝑈 𝑛 =∪𝑝∈𝑃(𝑛) U(p), where  

𝑈 𝑝 = { 𝑔 ∈ 𝑆𝑛 ∣ 𝑔 ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑝 −
𝑐𝑦𝑐𝑙𝑒 & 𝑎𝑙𝑠𝑜 𝑎 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑝}



Strategy of proof 2

Checking properties: 

1. 𝑇 𝑛 = { 𝑔 ∈ 𝑆𝑛 |𝑔 ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑝 − 𝑐𝑦𝑐𝑙𝑒 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 ∈ 𝑃 𝑛 }

implies that 𝑃𝑟𝑒 𝑛 ⊆ 𝑇(𝑛)

2. 𝑈 𝑛 ∪p∈P(n) U(p), where U(p) = { 𝑔 ∈ 𝑆𝑛 ∣ 𝑔 ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑝 −

𝑐𝑦𝑐𝑙𝑒 & 𝑎𝑙𝑠𝑜 𝑎 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑝}

Implies that each  𝑔 ∈ 𝑇 𝑛 ∖ 𝑈(𝑛) is a pre-p-cycle for some p in 

P(n), and hence lies in Pre(n). 

Hence 𝑷𝒓𝒆(𝒏) contains 𝑇 𝑛 ∖ 𝑈(𝑛)

• Note, inclusion proper:  U(n) might contain an element of some U(p) 
if it is a pre p’-cycle for some other p’ in P(n)   



Strategy of proof 3

Need a lower bound for 𝑷𝒓𝒆(𝒏) ≥ |𝑇 𝑛 | − |𝑈 𝑛 |

• First: find lower bound for  
|𝑇 𝑛 |

𝑛!
= 1 −

|𝑆 𝑛 |

𝑛!

Where 𝑆 𝑛 = { 𝑔 ∈ 𝑆𝑛 ℎ𝑎𝑠 𝑛𝑜 𝑐𝑦𝑐𝑙𝑒𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑝 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ 𝑃(𝑛)}

• So we need upper bound for |𝑆 𝑛 |

• This is a “forbidden cycle lengths” question solved by Erdos and 

Turan:  
|𝑆 𝑛 |

𝑛!
≤ 𝜇

• Unfortunately the E-T upper bound becomes  𝜇 ≈ 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 for P(n)

• We improve this to 
|𝑆 𝑛 |

𝑛!
≤ 2.3/ log log 𝑛 so  

|𝑇 𝑛 |

𝑛!
≥ 1 − 2.3/ log log 𝑛



Strategy of proof 4

Second: find an upper bound for |𝑈 𝑛 |

• 𝑈 𝑛 =∪𝑝∈𝑃(𝑛) 𝑈(𝑝) and we estimate this by 𝑈 𝑛 ≤  𝑝∈𝑃(𝑛) |𝑈 𝑝 |

• Very delicate estimates involving   𝑝∈𝑃(𝑛)
1

𝑝2

• End up with  
|𝑈 𝑛 |

𝑛!
≤

2.2

log log 𝑛

• So our proportion of pre p-cycles for p in P(n) is at least 

|𝑇 𝑛 |

𝑛!
−

𝑈 𝑛

𝑛!
≥ 1 −

2.3

log log 𝑛
−

2.2

log log 𝑛
> 1 −

5

log log 𝑛

Qed 



Where did the idea for primes 
around log n come from?

• Sometimes we 

take |A| a 

ppd prime 

divisor of 𝑞𝑟 − 1
• To allow 

effective 

application of 

FSGC 

• Ideas for recognizing giant primitive groups 

influenced recognition algorithms for finite 

classical matrix groups

• Equivalents of p-cycles we currently call 

stingray elements: relative to an appropriate 

basis they look like: 

𝐴 0
0 𝐼

with A irreducible in GL(r,q)



Where did the idea for primes 
around log n come from?

• Much 

influenced by 

Jordan 

elements in Sn

• stingray elements: in GL(n,q)

𝐴 0
0 𝐼

with A irreducible in GL(r,q)

• 1992: Neumann—Praeger SL-recognition 

algorithm  used r = n, and r = n-1

• 1998: Niemeyer—Praeger classical recognition 

algorithm used  any r > n/2



Where did the idea for primes 
around log n come from?

• Aachen PhD 

student Daniel 

Rademacher:  

• designing and 

analysing the 

corresponding 

classical 

recognition 

algorithm

• stingray elements: in GL(n,q)

𝐴 0
0 𝐼

with A irreducible in GL(r,q)

• Early 2000’s: Seress experimenting with new  

recognition algorithm  suggested used r roughly 

log n

• 2014: Niemeyer—Praeger With probability c/log 

n, a random element in Class(n,q) powers to a 

stingray with log n < r < 2log n  [this influenced 

my thinking about “what p” for pre p-cycles]
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