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This lecture: hunting cycles

1 Which ones are interesting/usefule

2 How to find them and use them
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Standard kinds of cycles & WS IERN
In permutation groups

« Example Q= {1,...,10}

« Write “disjoint cycle representation”

« Represent:. g =(1,5,7,2,10)(3,6)(4)(8,9)

Product of 4 cycles
Often omit fixed point (4)
(cycle of length 1)

« Sometimes: “gis a cycle” means it
has just one nontrivial cycle




What kinds of 5 WESTERY
permutation groups?

| * Transitive
Permutation groups on Q = {1.2,...,n} permutation

Symmetric group S, = { all permutations on Q} group primitive:

Alternating group A, = { all even permutations on Q } .
Only ftrivial
iInvariant

Define permutation group G < S, to be transitive: partitions

(products of an even number of 2-cycles) A, simple if n > 5

forall /,j € Q, there exists g € Gsuchthatg: i — /.

Stabillisers are
Mmaximal
subgroups

Sp and Aj, are the giants among permutation groups on Q
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Why care about cycles & WS IERN
in permutation groups?

Theorem: Camille Jordan ~ 1870

Given transitive G < S, and prime p suchthatn/2 < p<n-—3
and some element of G contains a p-cycle; then Gis A, or S,

e Famous old
result

« Highlights the
giants S,and A,
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Why care about cycles & WS IERN
in permutation groups?

Theorem: Camille Jordan ~ 1870

Given JZUlhCl G < S, and prime p such that N p<n-—3
and some element of G a p-cycle; then Gis A, or S,

« Previous version
follows from this

« Highlights the
giants S,and A,




Why care about cycles
in permutation groups?

« chasing up early 20C extensions of
Jordan’s theorem

« |denftified other elements of prime
order such that the only primifive
groups containing them are the
giants

« Bestresults up to 1920 were by W. A.
Manning
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e |'ve been

involved with
permutation

groups since
my doctoral
Work
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Primitive permutation T WESTERN
group G < §,

« SUpPpPOSse exists g € G prime order p

« With g cycles of length p and f fixed points so
n=qp+f . |'ve been

iInvolved with

- Jordan/Manning:ifqg<5 and f > q+1 permutation

Then G is a giant S, or A,

groups since
my doctoral
Work

« Manning (1918):if5<g< (p—1)/2and f > 4q — 4
Then G is a giant S, or A,
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Primitive permutation T WESTERN
group G < Sn

« SUPPOSe exists g € G prime order p

« With g cycles of length p and f fixed points so . |'ve been

n=qp+f involved with

: permutation
« CEP19/9:itg< p—1and f >5q/2 -2

Then G is a giant S, or A, or a "giant on pairs” S,
orA.withn =c(c—1)/2

groups since
my doctoral
Work




Primitive permutation
group G < Sn

Suppose exists g € G prime order p

With g cycles of length p and f fixed points so
n=qp+f

Liebeck & Sax| 1985:if g < p —1then all
possible G,p, q, f are known [in a long list]
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o After this result
methods/results
changead

because of the
finite simple

group
classification
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Primitive permutation T WESTERN
group G < Sn

« Some “algorithmic-specific” uses of
cycles: which permutations determine
giants (cf. Jordan) and are easy to find?

« Reason for talking
about these results
was to say:

* |In 1970’s many discussions with John
Cannon. Using Jordan's result
computationally to test whether a given
primitive group G = (X ) < S,, was a giant.

permutation cycles
were high in my
consciousness as a
young researcher

« Why? Existing algorithms for primitive
groups efficient EXCEPT for gianfs.




Primitive permutation
goup G =(X)<S,

« Example: g = (13745)(689) is a withess in Sq
for both p =5 and p = 3 since g3 = (14357);
and g° = (698) [same g more than one p]

« Example: g = (13)(245689) in S;; gives
g? = (258)(469) with p = 3, g=2, f=5> g+1;
[Jordan/Manning resulf]

« Kind of processinge? How much is realistic?
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« What kinds of

withesses for G
being a giant?
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Primitive permutation ) WESTERN
goup G =(X)<S,

Complete processing: For each prime p
dividing length of some g-cycle examine
element gldl/P of order p in (g)
. Decide if gl9l/P is a witness, using any of
the previous results

- Don't compute gldgl/p
« Justlook at cycle

lengths
o Stillit's rather messy

* [ssues:
« Complicated to implement
Do some (simple) types of elements
occur so frequently you would not
bother with the other types
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Simple Algorithm using 3 WESTERS
only Jordan’s theorem

Define g € S, is ‘good’ if g contains a p-cycle, for some prime p If p >n/2 then no
suchthatn/2 < p<n-3 overlap between
. , different primes
E le: = (12345)(67) € Sg is ‘good’: n=9,p=5 :
xample: g = ( )(67) € Seis ‘good: n=9,p Proportion good
For fixed p, number of elements in S, containing a p-cycle is elts equals O(log n)
| « S0 Of(log n)
n _m L dom elements
(p—ND(n—p)!=— (and 2. inA)) ran
(p) p T finds ‘good’

element with high
probability

Proportion of ‘good’ elements in A, or Sy,

_ 1 C
— Zn/2<p§n_3 5 > g7 for some constant ¢
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Better use of Jordan’s & itk
theorem to recognize giants?

* Oflog n) random elements finds ‘good’
element with high probability Why bother?

* Imagine you
feed a non-
giant to this

e Can we make do with fewer random
elements?

procedure:
won't stop unfil
log n elements
processed

« Jordan: finding a p-cycle for any prime p is
OK/decisive witness that primitive G is a giant
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Better use of Jordan’s  F wisitks
theorem to recognize giants?

Elements g yielding p-cycle:

g = (p — cycle) ...(coprime to p)
« Know: proportion

E.g. g=(12345)(65)(8.9,10) efc of pre p-cycles for

some p>n/2 Is
Call these elements pre p-cycles c/logn

What is proportion of pre p-cycles (for some p) in S,,¢

Is it c/log n oris it asymptotically larger?
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Proportion from “small” & i
primes

2018 John Bamberg, Stephen Glasby, Scott
Harper, CEP: Our first attfempt

Fixed prime p as n — o : proportion of pre p-  Forsmall primes the
cycles grows like cp)(n/p)-1/r sets of pre p-cycles for
different p intersect
Problem: even adding over(bounded) p < K  recall: g = (13745)(689)
(ignoring any overlap) only get proportion cn~ /¥ SlEOIT S (eleee CRelgle
to a 3-cycle

What we learned: contribution from bounded p is
too small
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Proportion of pre p-cycles &tk
for what primes p?

* Erdos and Turan: holds clues about most prevalent
elements of S,,: they have =~ logn cycles, but what are

their lengthse
« Stephen Glasby and | struggling over this
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Proportion of pre p-cycles &tk
for what primes p?

* Erdos and Turan: holds clues about most prevalent
elements of S,,: they have =~ logn cycles, but what are
their lengthse

« Stephen Glasby and | struggling over this when
 Bill Unger arXiv May 2019 .

“Almost all permutations power 1o a prime length cycle”

Understanding
where the “bulk”

« Asymptoftic result — great insights — unclear where of the proportion
these “almost all permutations” being pre p-cycles lay required more
. L. . delicate analysis
were hiding — for what primes p?
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Proportion of pre p-cycles &tk
for what primes p?

Stephen Glasby, Bill Unger and | joined forces:

 Focused on prime p = logn
 Needed to consider = logn different primes p

Reverse engineer using the Prime Number Thm

rimes p between logn and (log n)'eglogn — ;
X P 5 (logn) « My conviction: primes

Iving large
Plenty of scope for overlap between sets EEESALLSE
of pre p-cycles for different p contribution should be
So very delicate analysis needed

roughly p = logn
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Proportion of pre p-cycles &tk
for these primes p

2021 Stephen Glasby, Bill Unger, CEP:

* Proportion of elements of S,, that are pre p-cycles for some
orime p between logn and (logn)'°glog™ s at least

- 5
loglogn

For proportionin 4,
change 5to 7

* Proportion of pre p-cyclesin S, (for some p) is at least %9

« For computational use we also proved

Precise computations: for n < 50 show proportion > 1/3
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Strategy of proof & itk

Need to estimate size of the union
Pre(n) = set of all pre-p-cycles for all primes p € P(n)
where P(n) = {p |logn < p < (logn)'oglosn }
 Strategy: Pre(n) contains T(n) \ U(n) where
* T(n) is the too large set

T(n) ={g € S, |g has at least one p — cycle for somep € P(n)}

* U(n) is the unwanted set U(n) =Upepm) U(p), Where

Ulp)={g €S, | ghasat least onep —
cycle & also a second cycle of length a multiple of p}
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Strategy of proof 2 & itk

Checking properties:

1. T(n)={g € S, |g has at least one p — cycle for somep € P(n)}
implies that Pre(n) € T(n)

2. Un) Upepn) U(p), where U(p) ={ g € Sy | g has at least one p —
cycle & also a second cycle of length a multiple of p}

Implies that each g € T(n) \ U(n) is a pre-p-cycle for some p in
P(n), and hence lies in Pre(n).

Hence Pre(n) contains T(n) \ U(n)

« Note, inclusion proper:. U(n) might contain an element of some U(p)

if it is a pre p’-cycle for some other p’ in P(n) ©
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Strategy of proof 3 & ik

Need a lower bound for [Pre(n)| = |T(n)| — |Un)|
Tl _ 1 — 1S(n)|

n! n!

* First: find lower bound for

Where S(n) = { g € S,, has no cycles length p for any p € P(n)}

So we need upper bound for |S(n)|

This is a “forbidden cycle lengths” question solved by Erdos and
Turan: 51 <

n!

Unfortunately the E-T upper bound becomes u = log log n for P(n)

0 < 2.3/loglogn so [Tin)]

n! n!

We improve this to >1—2.3/loglogn



THE UNIVERSITY OF

Strategy of proof 4 &tk

Second: find an upper bound for |U(n)|
* U(n) =Upepm) U(p) and we estimate this by [Un)| < X,epn) U]

1

* Very delicate estimates involving Zpep(n)?

|lU(n)| < 2.2

n! ~ loglogn

* End up with

« SO our proportion of pre p-cycles for p in P(n) is at least

|T(n)] _ |U(n)| >1— 2.3 22 - 5
n! n' loglogn loglogn loglogn




Where did the idea for primes & ks
around log n come from?

 |deas for recognizing giant primitive groups
influenced recognition algorithms for finite
classical matrix groups

: « Sometimes we
« Equivalents of p-cycles we currently call

take |A| a
stingray elements: relative to an appropriate opd |c|>rirrlwe
basis they look like: divisor of g™ — 1

1 0 « To allow
(O I) with A irreducible in GL(r,Q) effective

application of
FSGC
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Where did the idea for primes % ik
around log n come from?

 stingray elements: in GL(n,q)

(AO

0 1) with A irreducible in GL(r,q)

« Much
INnfluenced by

o 1992: Neumann—Praeger SL-recognition

algorithm usedr=n, andr = n-1
Jordan

elements in Sn

« 1998: Niemeyer—Praeger classical recognition
algorithm used anyr>n/2
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Where did the idea for primes % it
around log n come from?

 stingray elements: in GL(n,q)

(AO

0 1) with A irreducible in GL(r,q) * Aachen PhD

student Daniel
Rademacher:

 Early 2000's: Seress experimenting with new designing and

recognition algorithm suggested used r roughly
logn

analysing the
corresponding
classical
recognition
algorithm

« 2014: Niemeyer—Praeger With probability c/log
n, a random element in Class(n,q) powers to a
stingray with log n <r < 2log n
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