

Hunting Cycles in PermutationGroupsCheryl E Praeger

10th Edition: Ischia Group Theory 2022, Ischia

21 / June / 2022

Heartfelt thanks to:

Mariagrazia Bianchi, Andrea Caranti, Patrizia Longobardi, Mercede Maj and Carlo Scoppola.

Groups Ischia 2018

This lecture: hunting cycles

- 1 Which ones are interesting/useful?
- **2** How to find them and use them

Standard kinds of cycles in permutation groups

• Example $\Omega = \{ 1, ..., 10 \}$

- Write "disjoint cycle representation"
- Represent: g = (1,5,7,2,10)(3,6)(4)(8,9)
- Sometimes: "g is a cycle" means it has just one nontrivial cycle

Product of 4 cycles Often omit fixed point (4) (cycle of length 1)

What kinds of permutation groups?

Transitive permutation group primitive:

- Only trivial invariant partitions
- Stabilisers are maximal subgroups

Permutation groups on $\Omega = \{1, 2, \dots, n\}$

Symmetric group $S_n = \{ all permutations on \Omega \}$

Alternating group $A_n = \{ all even permutations on \Omega \}$

(products of an even number of 2-cycles) A_n simple if $n \ge 5$

Define permutation group $G \leq S_n$ to be transitive:

for all $i, j \in \Omega$, there exists $g \in G$ such that $g : i \rightarrow j$.

 S_n and A_n are the giants among permutation groups on Ω

Why care about cycles in permutation groups?

Theorem: Camille Jordan \sim 1870

Given transitive $G \le S_n$ and prime *p* such that n/2and some element of*G*contains a*p*-cycle; then*G* $is <math>A_n$ or S_n

- Famous old result
- Highlights the giants S_nand A_n

Why care about cycles in permutation groups?

Theorem: Camille Jordan ~ 1870 Given primitive $G \le S_n$ and prime *p* such that $n \ge p \le n-3$ and some element of *G* is $p \le n-3$ is $p \ge p-2$ and $p \ge n-3$.

- Previous version follows from this
- Highlights the giants S_nand A_n

Why care about cycles in permutation groups?

- chasing up early 20C extensions of Jordan's theorem
- Identified other elements of prime order such that the only primitive groups containing them are the giants
- Best results up to 1920 were by W. A. Manning

l've been involved with permutation groups since my doctoral work

Primitive permutation group $G \leq S_n$

- Suppose exists $g \in G$ prime order p
- With q cycles of length p and f fixed points so n = qp + f
- Jordan/Manning: if $q \le 5$ and f > q + 1Then G is a giant S_n or A_n
- Manning (1918): if 5 < $q \leq (p-1)/2$ and f > 4q-4 Then G is a giant $S_{\rm n}$ or $A_{\rm n}$

l've been involved with permutation groups since my doctoral work

Primitive permutation group G < Sn

- Suppose exists $g \in G$ prime order p
- With q cycles of length p and f fixed points so n = qp + f
- CEP 1979: if $q \le p-1$ and f > 5q/2-2Then G is a giant S_n or A_n or a "giant on pairs" S_c or A_c with n = c(c-1)/2

l've been involved with permutation groups since my doctoral work

Primitive permutation group G < Sn

- Suppose exists $g \in G$ prime order p
- With q cycles of length p and f fixed points so n = qp + f
- Liebeck & Saxl 1985: if $q \le p 1$ then all possible G, p, q, f are known [in a long list]

After this result methods/results changed because of the finite simple group classification

Primitive permutation group G < Sn

- Some "algorithmic-specific" uses of cycles: which permutations determine giants (cf. Jordan) and are easy to find?
- In 1970's many discussions with John Cannon. Using Jordan's result computationally to test whether a given primitive group $G = \langle X \rangle \leq S_n$ was a giant.
- Why? Existing algorithms for primitive groups efficient EXCEPT for giants.

 Reason for talking about these results was to say: permutation cycles were high in my consciousness as a young researcher Primitive permutation group $G = \langle X \rangle \leq S_n$

- Example: g = (13745)(689) is a witness in S_9 for both p = 5 and p = 3 since $g^3 = (14357)$; and $g^5 = (698)$ [same g more than one p]
- Example: g = (13)(245689) in S₁₁ gives g² = (258)(469) with p = 3, q=2, f=5 > q+1; [Jordan/Manning result]
- Kind of processing? How much is realistic?

What kinds of witnesses for G being a giant?

Primitive permutation group $G = \langle X \rangle \leq S_n$

Complete processing: For each prime pdividing length of some g-cycle examine element g^{|g|/p} of order p in (g)

- Decide if g^{|g|/p} is a witness, using any of the previous results
- Issues:
 - Complicated to implement
 - Do some (simple) types of elements occur so frequently you would not bother with the other types

Don't compute $g^{|g|/p}$

- Just look at cycle lengths
- Still it's rather messy

Simple Algorithm using only Jordan's theorem

Define $g \in S_n$ is 'good' if g contains a p-cycle, for some prime p such that n/2

Example: $g = (12345)(67) \in S_9$ is 'good': n = 9, p = 5

For fixed p, number of elements in S_n containing a p-cycle is

$$\binom{n}{p}(p-1)!(n-p)! = rac{n!}{p}$$
 (and $rac{n!}{2p}$ in A_n)

Proportion of 'good' elements in A_n or S_n = $\sum_{n/2 for some constant <math>c$ If p > n/2 then no overlap between different primes Proportion good elts equals O(log n) So O(log n) random elements finds 'good' element with high probability

Better use of Jordan's theorem to recognize giants?

- Can we make do with fewer random elements?
- Jordan: finding a p-cycle for any prime p is OK/decisive witness that primitive G is a giant

WESTERN AUSTRALIA

Why bother?

Imagine you feed a nongiant to this procedure: won't stop until log n elements processed

Better use of Jordan's theorem to recognize giants?

- Elements g yielding p-cycle: $g = (p - cycle) \dots (coprime \ to \ p)$
- E.g. g=(12345)(65)(8,9,10) etc
- Call these elements pre p-cycles

- Know: proportion of pre p-cycles for some p>n/2 is c/log n
- What is proportion of pre p-cycles (for some p) in S_n ?
- Is it c/log n or is it asymptotically larger?

Proportion from "small" primes

- 2018 John Bamberg, Stephen Glasby, Scott Harper, CEP: Our first attempt
- Fixed prime p as $n \to \infty$: proportion of pre pcycles grows like $c(p)(n/p)^{-1/p}$
- Problem: even adding over(bounded) $p \le K$ (ignoring any overlap) only get proportion $cn^{-1/K}$ •
- What we learned: contribution from bounded p is too small

- For small primes the sets of pre p-cycles for different p intersect
- recall: g = (13745)(689)
 - Powers to 5-cycle and to a 3-cycle

Proportion of pre *p*-cycles for what primes *p*?

- Erdos and Turan: holds clues about most prevalent elements of S_n : they have $\approx \log n$ cycles, but what are their lengths?
- Stephen Glasby and I struggling over this

Proportion of pre *p*-cycles for what primes *p*?

- Erdos and Turan: holds clues about most prevalent elements of S_n : they have $\approx \log n$ cycles, but what are their lengths?
- Stephen Glasby and I struggling over this when
- Bill Unger arXiv May 2019 :
- "Almost all permutations power to a prime length cycle"
 - Asymptotic result great insights unclear where these "almost all permutations" being pre p-cycles were hiding – for what primes p?

Understanding where the "bulk" of the proportion lay required more delicate analysis

Proportion of pre *p*-cycles for what primes *p*?

Stephen Glasby, Bill Unger and I joined forces:

- Focused on prime $p \approx \log n$:
 - Needed to consider $\approx \log n$ different primes p
 - Reverse engineer using the Prime Number Thm
 - primes p between $\log n$ and $(\log n)^{\log \log n}$
 - Plenty of scope for overlap between sets of pre p-cycles for different p
 - So very delicate analysis needed

• My conviction: primes p giving large contribution should be roughly $p \approx \log n$

Proportion of pre *p*-cycles for these primes *p*

2021 Stephen Glasby, Bill Unger, CEP:

• Proportion of elements of S_n that are prep-cycles for some prime p between $\log n$ and $(\log n)^{\log \log n}$ is at least

$$1 - \frac{5}{\log \log n}$$

For proportion in A_n change 5 to 7

- For computational use we also proved
 - Proportion of pre p-cycles in S_n (for some p) is at least $\frac{1}{10}$

Precise computations: for $n \leq 50$ show proportion > 1/3

Need to estimate size of the union

Pre(n) = set of all pre-p-cycles for all primes $p \in P(n)$

where $P(n) = \{ p \mid \log n \le p \le (\log n)^{\log \log n} \}$

- Strategy: Pre(n) contains $T(n) \setminus U(n)$ where
- T(n) is the too large set

 $T(n) = \{ g \in S_n | g \text{ has at least one } p - cycle \text{ for some } p \in P(n) \}$

• U(n) is the unwanted set $U(n) = \bigcup_{p \in P(n)} U(p)$, where $U(p) = \{ g \in S_n \mid g \text{ has at least one } p - cycle \& also a second cycle of length a multiple of p \}$

Checking properties:

- 1. $T(n) = \{ g \in S_n | g \text{ has at least one } p cycle \text{ for some } p \in P(n) \}$ implies that $Pre(n) \subseteq T(n)$
- 2. $U(n) \cup_{p \in P(n)} U(p)$, where $U(p) = \{ g \in S_n \mid g \text{ has at least one } p cycle \& also a second cycle of length a multiple of p \}$

Implies that each $g \in T(n) \setminus U(n)$ is a pre-p-cycle for some p in P(n), and hence lies in Pre(n).

Hence Pre(n) contains $T(n) \setminus U(n)$

Note, inclusion proper: U(n) might contain an element of some U(p) if it is a pre p'-cycle for some other p' in P(n)

Need a lower bound for $|Pre(n)| \ge |T(n)| - |U(n)|$

• First: find lower bound for $\frac{|T(n)|}{n!} = 1 - \frac{|S(n)|}{n!}$

Where $S(n) = \{ g \in S_n \text{ has no cycles length } p \text{ for any } p \in P(n) \}$

- So we need upper bound for |S(n)|
- This is a "forbidden cycle lengths" question solved by Erdos and Turan: $\frac{|S(n)|}{n!} \leq \mu$
- Unfortunately the E-T upper bound becomes $\mu \approx \log \log n$ for P(n)
- We improve this to $\frac{|S(n)|}{n!} \le 2.3/\log\log n$ so $\frac{|T(n)|}{n!} \ge 1 2.3/\log\log n$

Second: find an upper bound for |U(n)|

- $U(n) = \bigcup_{p \in P(n)} U(p)$ and we estimate this by $|U(n)| \le \sum_{p \in P(n)} |U(p)|$
- Very delicate estimates involving $\sum_{p \in P(n)} \frac{1}{n^2}$
- End up with $\frac{|U(n)|}{n!} \le \frac{2.2}{\log \log n}$
- So our proportion of pre p-cycles for p in P(n) is at least

$$\frac{|T(n)|}{n!} - \frac{|U(n)|}{n!} \ge 1 - \frac{2.3}{\log \log n} - \frac{2.2}{\log \log n} > 1 - \frac{5}{\log \log n}$$

Where did the idea for primes 💓 WEST around log n come from?

- Ideas for recognizing giant primitive groups influenced recognition algorithms for finite classical matrix groups
- Equivalents of p-cycles we currently call stingray elements: relative to an appropriate basis they look like:

 $\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$ with A irreducible in GL(r,q)

- Sometimes we take |A| a ppd prime divisor of $q^r - 1$
- To allow • effective application of FSGC

Where did the idea for primes 😿 WEST around log n come from?

stingray elements: in GL(n,q)

 $\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$ with A irreducible in GL(r,q)

- 1992: Neumann—Praeger SL-recognition algorithm used r = n, and r = n-1
- 1998: Niemeyer—Praeger classical recognition algorithm used any r > n/2

Much influenced by Jordan elements in Sn

Where did the idea for primes 💓 WEST around log n come from?

stingray elements: in GL(n,q)

 $\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$ with A irreducible in GL(r,q)

- Early 2000's: Seress experimenting with new recognition algorithm suggested used r roughly logn
- 2014: Niemeyer—Praeger With probability c/log n, a random element in Class(n,q) powers to a stingray with $\log n < r < 2\log n$ [this influenced] my thinking about "what p" for pre p-cycles]

- Aachen PhD student Daniel Rademacher:
- designing and • analysing the corresponding classical recognition algorithm

References for recent results

2020 John Bamberg, Stephen Glasby, Scott Harper, CEP

Permutations with orders coprime to a given integer,

Electronic J. Combin. 27, P1.6

2021 Stephen Glasby, CEP, William R. Unger

Most permutations power to a cycle of small prime length,

Proc. Edin. Math. Soc. 64, 234-246.

2014 Alice C. Niemeyer, CEP

Elements in finite classical groups whose powers have large 1-Eigenspaces [Corollary 3.5] Disc. Math. and Theor. Comp. Sci. 16, 303-312.