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Finitely generated metabelian groups

There is a close relation between finitely generated
metabelian groups and commutative algebra, which was
first observed by Philip Hall in the 1950’s.

Here we describe a method for constructing certain finitely
generated metabelian groups from integer polynomials.
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Groups of type Gf

Let ⟨x⟩ be infinite cyclic and put R = Z ⟨x⟩. Let f ∈ R be
a non-constant, non-unit. Write (f ) for the ideal
generated by f . Define

Af = R/(f ),

which is a finitely generated commutative ring.
Multiplication by x yields a group automorphism of R and
hence of Af , say τ . Let T = ⟨t⟩ be another infinite cyclic
group and form the semidirect product in which t 7→ τ

Gf = T ⋉ Af .
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Groups of type Gf

Remarks

1. There is no loss in assuming that f is a polynomial.

2. We are interested in how properties of the group Gf

can be recognized from the form of the polynomial f .

3. Groups of type Gf occur as sections in many finitely
generated metabelian groups of finite rank, so they are
widespread.
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Aims of the investigation

(i) Universal properties of the groups Gf .

(ii) Structure of the torsion subgroup.

(iii) Structural properties of Gf .

(iv) The centre, Fitting subgroup, Frattini subgroup.

(v) Residual properties.

(vi) Finite presentability of Gf .

(vii) The Schur multiplier M(Gf ).

(viii) The isomorphism problem for the groups Gf .
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Example

Define f = 2− 3x + 8x2. Then our results provide the
following information about the group Gf .

1. Gf is finitely generated metabelian of finite rank.
2. It is torsion-free
3. It has trivial centre and trivial Frattini subgroup.
4. It is not finitely presented, but its Schur multiplier has
order 6.
5. It is a residually finite p-group if and only if p = 7.
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Universal properties

Theorem 1. Let f = a0 + a1x + a2x
2 + · · ·+ anx

n ∈ Z[x ]
where n > 0, a0, an ̸= 0.
Then:

(i) Gf is a finitely generated metabelian group and Af has
torsion-free rank n.

(ii) The elements of finite order form a subgroup S of Af .

(iii) S has finite exponent equal to a π-number and Af /S
is a torsion-free abelian π-minimax group where π is
the set of primes dividing a0an.
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The subgroup Af

A major obstacle to understanding the group Gf is the
structure of the abelian group Af /S . This is a torsion-free
abelian group of finite rank. These are very hard to
classify.

Example
Let f = 3x2 + x + 2. Here Af is torsion-free abelian of
rank 2. Also it is directly indecomposable and it is not
divisible by any prime.
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The torsion subgroup

Let f ∈ Z[x ]. The elements of finite order in Gf lie in Af .
Let c = c(f ) be the content of f , i.e., the gcd of the
coefficients. Thus f = ch where h ∈ Z[x ] is primitive, i.e.,
c(h) = 1. Note that h + (f ) ∈ Af , has order c .

Theorem 2. Let f ∈ Z[x ] be non-constant with f (0) ̸= 0
and let S be the torsion subgroup of Gf . Then Sp is a
direct sum of cyclic groups Zprp where prp is the largest
power of p dividing c(f ). If rp > 0, then Sp has infinite
rank.

Corollary 1. Gf is torsion-free if and only if f is primitive.
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Structural properties of Gf

Theorem 3. Let f = a0 + a1x + · · ·+ anx
n ∈ Z[x ] where

n > 0, a0, an ̸= 0. Then

(i) Gf is polycyclic if and only if a0 = ±1 and an = ±1;

(ii) Gf is supersoluble if and only if f = (x − 1)r(x +1)n−r

where 0 ≤ r ≤ n;

(iii) Gf is nilpotent if and only if f = (x − 1)n: then the
nilpotent class is n;

(iv) Gf is abelian if and only if f = x − 1.
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The centre

There are two possibilities for the centre of Gf :

(i) Z (Gf ) = AT , the set of T -fixed points in Af ;

(ii) Z (Gf ) = ⟨tm⟩AT where m > 0 is least such that tm

centralizes Af .

In the second case, xm centralizes Af , so f divides xm − 1.
Thus f equals ± a product of distinct cyclotomic
polynomials of orders dividing m, including Φm. (Note
that Z[x ] is a UFD).

The centre is usually trivial.
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The centre

Theorem 4. Let f ∈ Z[x ] be non-constant with f (0) ̸= 0.
Then Z (Gf ) ̸= 1 if and only if one of the following holds:

(i) f equals ± a product of distinct cyclotomic
polynomials;

(ii) f (1) = 0, i.e., x − 1 divides f .
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The Frattini subgroup

Note that ϕ(Gf ) ≤ Af since Gf /Af is infinite cyclic. By
standard arguments

ϕ(Gf ) =
⋂
M

M ∩ Af ,

where the intersection is over all the maximal subgroups
M of G that do not contain Af . These M ∩ Af are the
maximal ideals of Af . Since Af is a finitely generated
commutative ring, it follows from known results in
commutative algebra that

ϕ(Gf ) = Jac(Af ) = Nil(Af ).
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The Frattini subgroup

Theorem 5. Let f ∈ Z[x ] be non-constant with
f (0) ̸= 0. Write f = c(f )f e11 f e22 · · · f err where the fi are
non-associate primitive irreducible polynomials in Z[x ] and
ei > 0. In addition write c(f ) = pd11 pd22 · · · pdrs where the
pj are distinct primes and dj > 0. Then

ϕ(Gf ) = (h)/(f ),

where h = p1p2 · · · psf1f2 · · · fr . Moreover, (h)/(f )
T≃ Ak

where k = pd1−1
1 pd2−1

2 · · · pds−1
s f e1−1

1 f e2−1
2 · · · f er−1

r .
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The proof uses the fact that Z[x ] is a UFD with the
primes and non-associate primitive irreducible polynomials
as the complete set of irreducibles.

Corollary 2. The Frattini subgroup of Gf is trivial if and
only if f is square free, i.e., it is not divisible by the square
of a prime or an irreducible polynomial.
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Residual nilpotence

What conditions on f will ensure that the group Gf is
residually nilpotent, i.e.,

⋂
i=1,2,... γi(Gf ) = 1?

If f (1), i.e., the sum of the coefficients of f , is not 0, then

(Af )T ≃ Z[x ]/(x − 1) + (f ) ≃ Z/f (1) ≃ Z|f (1)|,

while (Af )T ≃ Z if f (1) = 0.

If f (1) = ±1, then (Af )T = 0 and Af = [Af ,T ], which
means that Gf is not residually nilpotent.

The definitive result is as follows.
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Residual nilpotence

Theorem 6. Let f ∈ Z[x ] be non-constant with f (0) ̸= 0.
Write f = ch where c = c(f ) and h ∈ Z[x ] is primitive.
Then Gf is residually nilpotent if and only if h(1) ̸= ±1.
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Residual nilpotence

Examples
(i) If f = 6x2 − 2x + 4, then f = 2h where
h = 3x2 − x + 2. Since h(1) = 4, the group Gf is
residually nilpotent.

(ii) If f = 3x2 − x − 3, then Gf is not residually nilpotent
since f (1) = −1.
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Finite presentability

It is natural to ask which groups Gf have a finite
presentation.

Theorem 7. Let f = a0 + a1x + · · ·+ anx
n ∈ Z[x ] where

n > 0 and a0, an ̸= 0.

(i) If Gf is finitely presented, then a0 = ±1 or an = ±1.

(ii) Conversely, if a0 = ±1 or an = ±1, then Gf has a
finite presentation with two generators and 1 +

(
n
2

)
relations.
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Finite presentability

It is straightforward to prove (ii) by exploiting the special
form of the polynomial f .

To establish (i) we use the Bieri-Strebel invariant

ΣA

of a finitely generated ZT -module, which was discovered
by R. Bieri and R. Strebel in 1978.

Derek J.S. Robinson (UIUC) Finitely Generated Metabelian Groups Arising from Integer PolynomialsJune 2014 20 / 28



Finite presentability

For finite presentability ΣAf
has to be a “large” subset of

the set of equivalence classes of non-zero valuations on T .

Using the results of Bieri and Strebel, we show that if
a0 ̸= ±1 and an ̸= ±1, then ΣAf

is empty, contradicting
the finite presentability of Gf .
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The Schur multiplier

What can be said about the Schur multiplier

M(Gf ) = H2(Gf ,Z)

of the group Gf ? Apply the LHS-spectral sequence for
homology to the exact sequence 1 → Af → Gf → T → 1:

Proposition 1. Let f ∈ Z[x ] be non-constant primitive
with f (0) ̸= 0.

(i) If f (1) ̸= 0, then M(Gf ) ≃ (Af ∧ Af )T .

(ii) If f (1) = 0, then M(Gf ) ≃ (Af ∧ Af )T ⊕ Z.

This reduces the problem to linear algebra.
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The Schur multiplier

In practice (Af ∧ Af )T is hard to compute for high
degrees. But it is 0 for n = 1 and has rank 1 if n = 2.

Some information is available in rank n > 2.

Theorem 8. Let f ∈ Z[x ] be primitive with degree
n > 2, then M(Gf ) is torsion-free minimax of rank n − 2
or n − 1 according as f (1) ̸= 0 or f (1) = 0.
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Finitely generated multipliers

It is well known that a finitely presented group has finitely
generated multiplier. However, the converse is false.

Note that M(Gf ) is finitely generated if and only if
(Af ∧ Af )T is finitely generated.

In the quadratic case complete information is available.
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Quadratic polynomials

Theorem 9. Let f = a0 + a1x + a2x
2 ∈ Z[x ] be primitive

with a0, a2 ̸= 0.

(i) If a0 ̸= a2, then (Af ∧ Af )T ≃ Z|a0−a2|, which is finite.

(ii) If a0 = a2, then Af ∧ Af is a trivial T -module and
(Af ∧ Af )T ≃ Qσ where σ is the set of prime divisors
of a0. Thus (Af ∧ Af )T is infinitely generated unless
a0, a2 = ±1

Corollary 3. M(Gf ) is finitely generated if and only if
a0 ̸= a2 or a0 = a2 and a0 = ±1.
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Quadratic polynomials

Examples

(i) Let f = 2 + x + 2x2; then M(Gf ) is not finitely
generated.

(ii) Let h = 2 + x + 3x2; then M(Gh) = 0, but Gh is not
finitely presented.
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The Isomorphism Problem

Question
Given two non-constant polynomials f , h ∈ Z[x ], with
f (0), h(0) ̸= 0, when are the groups Gf and Gh

isomorphic?

(i) If f and h are associate, i.e. h = ±f , then Gf ≃ Gh.

There is another such situation when Gf ≃ Gh.

(ii) Let f = a0 + a1x + · · ·+ anx
n. Put s = t−1, so that

Gf = ⟨t⟩⋉Af = ⟨s⟩⋉Af̄ where f̄ ∈ Z[x ] is the reverse of
f , defined by

f̄ = xnf (x−1) = an + an−1x + · · ·+ a1x
n−1 + a0x

n.

Hence Gf ≃ Gf̄ .
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The Isomorphism Problem

The solution to the Isomorphism Problem is given in the
final result.

Theorem 10. Let f and h be non-constant polynomials
in Z[x ] such that f (0), h(0) ̸= 0. Then Gf and Gh are
isomorphic if and only if h = ±f or ±f̄ .
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