Finitely Generated Metabelian Groups Arising from Integer Polynomials

Derek J.S. Robinson
University of Illinois at Urbana-Champaign

Ischia Group Theory 2022

June 2022

Finitely generated metabelian groups

There is a close relation between finitely generated metabelian groups and commutative algebra, which was first observed by Philip Hall in the 1950's.

Here we describe a method for constructing certain finitely generated metabelian groups from integer polynomials.

Groups of type G_{f}

Let $\langle x\rangle$ be infinite cyclic and put $R=Z\langle x\rangle$. Let $f \in R$ be a non-constant, non-unit. Write (f) for the ideal generated by f. Define

$$
A_{f}=R /(f)
$$

which is a finitely generated commutative ring. Multiplication by x yields a group automorphism of R and hence of A_{f}, say τ. Let $T=\langle t\rangle$ be another infinite cyclic group and form the semidirect product in which $t \mapsto \tau$

$$
G_{f}=T \ltimes A_{f}
$$

Groups of type G_{f}

Remarks

1. There is no loss in assuming that f is a polynomial. 2. We are interested in how properties of the group G_{f} can be recognized from the form of the polynomial f. 3. Groups of type G_{f} occur as sections in many finitely generated metabelian groups of finite rank, so they are widespread.

Aims of the investigation

(i) Universal properties of the groups G_{f}.
(ii) Structure of the torsion subgroup.
(iii) Structural properties of G_{f}.
(iv) The centre, Fitting subgroup, Frattini subgroup.
(v) Residual properties.
(vi) Finite presentability of G_{f}.
(vii) The Schur multiplier $M\left(G_{f}\right)$.
(viii) The isomorphism problem for the groups G_{f}.

Example

Define $f=2-3 x+8 x^{2}$. Then our results provide the following information about the group G_{f}.

1. G_{f} is finitely generated metabelian of finite rank.
2. It is torsion-free
3. It has trivial centre and trivial Frattini subgroup.
4. It is not finitely presented, but its Schur multiplier has order 6 .
5. It is a residually finite p-group if and only if $p=7$.

Universal properties

Theorem 1. Let $f=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ where $n>0, a_{0}, a_{n} \neq 0$.
Then:
(i) G_{f} is a finitely generated metabelian group and A_{f} has torsion-free rank n.
(ii) The elements of finite order form a subgroup S of A_{f}.
(iii) S has finite exponent equal to a π-number and A_{f} / S is a torsion-free abelian π-minimax group where π is the set of primes dividing $a_{0} a_{n}$.

The subgroup A_{f}

A major obstacle to understanding the group G_{f} is the structure of the abelian group A_{f} / S. This is a torsion-free abelian group of finite rank. These are very hard to classify.

Example

Let $f=3 x^{2}+x+2$. Here A_{f} is torsion-free abelian of rank 2. Also it is directly indecomposable and it is not divisible by any prime.

The torsion subgroup

Let $f \in \mathbb{Z}[x]$. The elements of finite order in G_{f} lie in A_{f}. Let $c=c(f)$ be the content of f, i.e., the gcd of the coefficients. Thus $f=c h$ where $h \in \mathbb{Z}[x]$ is primitive, i.e., $c(h)=1$. Note that $h+(f) \in A_{f}$, has order c.

Theorem 2. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$ and let S be the torsion subgroup of G_{f}. Then S_{p} is a direct sum of cyclic groups $\mathbb{Z}_{p^{r_{p}}}$ where $p^{r_{p}}$ is the largest power of p dividing $c(f)$. If $r_{p}>0$, then S_{p} has infinite rank.

Corollary 1. G_{f} is torsion-free if and only if f is primitive.

Structural properties of G_{f}

Theorem 3. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ where $n>0, a_{0}, a_{n} \neq 0$. Then
(i) G_{f} is polycyclic if and only if $a_{0}= \pm 1$ and $a_{n}= \pm 1$;
(ii) G_{f} is supersoluble if and only if $f=(x-1)^{r}(x+1)^{n-r}$ where $0 \leq r \leq n$;
(iii) G_{f} is nilpotent if and only if $f=(x-1)^{n}$: then the nilpotent class is n;
(iv) G_{f} is abelian if and only if $f=x-1$.

The centre

There are two possibilities for the centre of G_{f} :
(i) $Z\left(G_{f}\right)=A^{T}$, the set of T-fixed points in A_{f};
(ii) $Z\left(G_{f}\right)=\left\langle t^{m}\right\rangle A^{T}$ where $m>0$ is least such that t^{m} centralizes A_{f}.

In the second case, x^{m} centralizes A_{f}, so f divides $x^{m}-1$. Thus f equals \pm a product of distinct cyclotomic polynomials of orders dividing m, including Φ_{m}. (Note that $\mathbb{Z}[x]$ is a UFD).

The centre is usually trivial.

The centre

Theorem 4. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$. Then $Z\left(G_{f}\right) \neq 1$ if and only if one of the following holds:
(i) f equals \pm a product of distinct cyclotomic polynomials;
(ii) $f(1)=0$, i.e., $x-1$ divides f.

The Frattini subgroup

Note that $\phi\left(G_{f}\right) \leq A_{f}$ since G_{f} / A_{f} is infinite cyclic. By standard arguments

$$
\phi\left(G_{f}\right)=\bigcap_{M} M \cap A_{f},
$$

where the intersection is over all the maximal subgroups M of G that do not contain A_{f}. These $M \cap A_{f}$ are the maximal ideals of A_{f}. Since A_{f} is a finitely generated commutative ring, it follows from known results in commutative algebra that

$$
\phi\left(G_{f}\right)=\operatorname{Jac}\left(A_{f}\right)=\operatorname{Nil}\left(A_{f}\right)
$$

The Frattini subgroup

Theorem 5. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$. Write $f=c(f) f_{1}^{e_{1}} f_{2}^{e_{2}} \cdots f_{r}^{e_{r}}$ where the f_{i} are non-associate primitive irreducible polynomials in $\mathbb{Z}[x]$ and $e_{i}>0$. In addition write $c(f)=p_{1}^{d_{1}} p_{2}^{d_{r}} \cdots p_{s}^{d_{r}}$ where the p_{j} are distinct primes and $d_{j}>0$. Then

$$
\phi\left(G_{f}\right)=(h) /(f)
$$

where $h=p_{1} p_{2} \cdots p_{s} f_{1} f_{2} \cdots f_{r}$. Moreover, $(h) /(f) \stackrel{T}{\simeq} A_{k}$ where $k=p_{1}^{d_{1}-1} p_{2}^{d_{2}-1} \cdots p_{s}^{d_{s}-1} f_{1}^{e_{1}-1} f_{2}^{e_{2}-1} \cdots f_{r}^{e_{r}-1}$.

The proof uses the fact that $\mathbb{Z}[x]$ is a UFD with the primes and non-associate primitive irreducible polynomials as the complete set of irreducibles.

Corollary 2. The Frattini subgroup of G_{f} is trivial if and only if f is square free, i.e., it is not divisible by the square of a prime or an irreducible polynomial.

Residual nilpotence

What conditions on f will ensure that the group G_{f} is residually nilpotent, i.e., $\bigcap_{i=1,2, . .} \gamma_{i}\left(G_{f}\right)=1$?
If $f(1)$, i.e., the sum of the coefficients of f, is not 0 , then

$$
\left(A_{f}\right)_{T} \simeq \mathbb{Z}[x] /(x-1)+(f) \simeq \mathbb{Z} / f(1) \simeq \mathbb{Z}_{|f(1)|},
$$

while $\left(A_{f}\right)_{T} \simeq \mathbb{Z}$ if $f(1)=0$.
If $f(1)= \pm 1$, then $\left(A_{f}\right)_{T}=0$ and $A_{f}=\left[A_{f}, T\right]$, which means that G_{f} is not residually nilpotent.
The definitive result is as follows.

Residual nilpotence

Theorem 6. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$. Write $f=c h$ where $c=c(f)$ and $h \in \mathbb{Z}[x]$ is primitive. Then G_{f} is residually nilpotent if and only if $h(1) \neq \pm 1$.

Residual nilpotence

Examples

(i) If $f=6 x^{2}-2 x+4$, then $f=2 h$ where $h=3 x^{2}-x+2$. Since $h(1)=4$, the group G_{f} is residually nilpotent.
(ii) If $f=3 x^{2}-x-3$, then G_{f} is not residually nilpotent since $f(1)=-1$.

Finite presentability

It is natural to ask which groups G_{f} have a finite presentation.

Theorem 7. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ where $n>0$ and $a_{0}, a_{n} \neq 0$.
(i) If G_{f} is finitely presented, then $a_{0}= \pm 1$ or $a_{n}= \pm 1$.
(ii) Conversely, if $a_{0}= \pm 1$ or $a_{n}= \pm 1$, then G_{f} has a finite presentation with two generators and $1+\binom{n}{2}$ relations.

Finite presentability

It is straightforward to prove (ii) by exploiting the special form of the polynomial f.

To establish (i) we use the Bieri-Strebel invariant

$$
\Sigma_{A}
$$

of a finitely generated $\mathbb{Z} T$-module, which was discovered by R. Bieri and R. Strebel in 1978.

Finite presentability

For finite presentability $\Sigma_{A_{f}}$ has to be a "large" subset of the set of equivalence classes of non-zero valuations on T.

Using the results of Bieri and Strebel, we show that if $a_{0} \neq \pm 1$ and $a_{n} \neq \pm 1$, then $\Sigma_{A_{f}}$ is empty, contradicting the finite presentability of G_{f}.

The Schur multiplier

What can be said about the Schur multiplier

$$
M\left(G_{f}\right)=H_{2}\left(G_{f}, \mathbb{Z}\right)
$$

of the group G_{f} ? Apply the LHS-spectral sequence for homology to the exact sequence $1 \rightarrow A_{f} \rightarrow G_{f} \rightarrow T \rightarrow 1$:

Proposition 1. Let $f \in \mathbb{Z}[x]$ be non-constant primitive with $f(0) \neq 0$.
(i) If $f(1) \neq 0$, then $M\left(G_{f}\right) \simeq\left(A_{f} \wedge A_{f}\right)_{T}$.
(ii) If $f(1)=0$, then $M\left(G_{f}\right) \simeq\left(A_{f} \wedge A_{f}\right)_{T} \oplus \mathbb{Z}$.

This reduces the problem to linear algebra.

The Schur multiplier

In practice $\left(A_{f} \wedge A_{f}\right)_{T}$ is hard to compute for high degrees. But it is 0 for $n=1$ and has rank 1 if $n=2$.

Some information is available in rank $n>2$.
Theorem 8. Let $f \in \mathbb{Z}[x]$ be primitive with degree $n>2$, then $M\left(G_{f}\right)$ is torsion-free minimax of rank $n-2$ or $n-1$ according as $f(1) \neq 0$ or $f(1)=0$.

Finitely generated multipliers

It is well known that a finitely presented group has finitely generated multiplier. However, the converse is false.

Note that $M\left(G_{f}\right)$ is finitely generated if and only if $\left(A_{f} \wedge A_{f}\right)_{T}$ is finitely generated.

In the quadratic case complete information is available.

Quadratic polynomials

Theorem 9. Let $f=a_{0}+a_{1} x+a_{2} x^{2} \in \mathbb{Z}[x]$ be primitive with $a_{0}, a_{2} \neq 0$.
(i) If $a_{0} \neq a_{2}$, then $\left(A_{f} \wedge A_{f}\right)_{T} \simeq \mathbb{Z}_{\left|a_{0}-a_{2}\right|}$, which is finite.
(ii) If $a_{0}=a_{2}$, then $A_{f} \wedge A_{f}$ is a trivial T-module and $\left(A_{f} \wedge A_{f}\right)_{T} \simeq \mathbb{Q}_{\sigma}$ where σ is the set of prime divisors of a. Thus $\left(A_{f} \wedge A_{f}\right)_{T}$ is infinitely generated unless $a_{0}, a_{2}= \pm 1$

Corollary 3. $M\left(G_{f}\right)$ is finitely generated if and only if $a_{0} \neq a_{2}$ or $a_{0}=a_{2}$ and $a_{0}= \pm 1$.

Quadratic polynomials

Examples

(i) Let $f=2+x+2 x^{2}$; then $M\left(G_{f}\right)$ is not finitely generated.
(ii) Let $h=2+x+3 x^{2}$; then $M\left(G_{h}\right)=0$, but G_{h} is not finitely presented.

The Isomorphism Problem

Question

Given two non-constant polynomials $f, h \in \mathbb{Z}[x]$, with $f(0), h(0) \neq 0$, when are the groups G_{f} and G_{h} isomorphic?
(i) If f and h are associate, i.e. $h= \pm f$, then $G_{f} \simeq G_{h}$. There is another such situation when $G_{f} \simeq G_{h}$.
(ii) Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Put $s=t^{-1}$, so that $G_{f}=\langle t\rangle \ltimes A_{f}=\langle s\rangle \ltimes A_{\bar{f}}$ where $\bar{f} \in \mathbb{Z}[x]$ is the reverse of f, defined by

$$
\bar{f}=x^{n} f\left(x^{-1}\right)=a_{n}+a_{n-1} x+\cdots+a_{1} x^{n-1}+a_{0} x^{n} .
$$

Hence $G_{f} \simeq G_{\bar{f}}$.

The Isomorphism Problem

The solution to the Isomorphism Problem is given in the final result.

Theorem 10. Let f and h be non-constant polynomials in $\mathbb{Z}[x]$ such that $f(0), h(0) \neq 0$. Then G_{f} and G_{h} are isomorphic if and only if $h= \pm f$ or $\pm \bar{f}$.

