Finitely Generated Metabelian Groups Arising from Integer Polynomials

Derek J.S. Robinson

University of Illinois at Urbana-Champaign

Ischia Group Theory 2022

June 2022

There is a close relation between finitely generated metabelian groups and commutative algebra, which was first observed by Philip Hall in the 1950's.

Here we describe a method for constructing certain finitely generated metabelian groups from integer polynomials.

Let $\langle x \rangle$ be infinite cyclic and put $R = Z \langle x \rangle$. Let $f \in R$ be a non-constant, non-unit. Write (f) for the ideal generated by f. Define

$$A_f = R/(f),$$

which is a finitely generated commutative ring. Multiplication by x yields a group automorphism of R and hence of A_f , say τ . Let $T = \langle t \rangle$ be another infinite cyclic group and form the semidirect product in which $t \mapsto \tau$

$$G_f = T \ltimes A_f.$$

Remarks

- 1. There is no loss in assuming that f is a polynomial.
- 2. We are interested in how properties of the group G_f can be recognized from the form of the polynomial f.
- 3. Groups of type G_f occur as sections in many finitely generated metabelian groups of finite rank, so they are widespread.

- (i) Universal properties of the groups G_f .
- (ii) Structure of the torsion subgroup.
- (iii) Structural properties of G_f .
- (iv) The centre, Fitting subgroup, Frattini subgroup.
- (v) Residual properties.
- (vi) Finite presentability of G_f .
- (vii) The Schur multiplier $M(G_f)$.
- (viii) The isomorphism problem for the groups G_f .

Define $f = 2 - 3x + 8x^2$. Then our results provide the following information about the group G_f .

- 1. G_f is finitely generated metabelian of finite rank.
- 2. It is torsion-free
- 3. It has trivial centre and trivial Frattini subgroup.
- 4. It is not finitely presented, but its Schur multiplier has order 6.
- 5. It is a residually finite *p*-group if and only if p = 7.

Theorem 1. Let $f = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{Z}[x]$ where $n > 0, a_0, a_n \neq 0$. Then:

- (i) *G_f* is a finitely generated metabelian group and *A_f* has torsion-free rank *n*.
- (ii) The elements of finite order form a subgroup S of A_f .
- (iii) *S* has finite exponent equal to a π -number and A_f/S is a torsion-free abelian π -minimax group where π is the set of primes dividing a_0a_n .

A major obstacle to understanding the group G_f is the structure of the abelian group A_f/S . This is a torsion-free abelian group of finite rank. These are very hard to classify.

Example

Let $f = 3x^2 + x + 2$. Here A_f is torsion-free abelian of rank 2. Also it is directly indecomposable and it is not divisible by any prime.

The torsion subgroup

Let $f \in \mathbb{Z}[x]$. The elements of finite order in G_f lie in A_f . Let c = c(f) be the *content* of f, i.e., the gcd of the coefficients. Thus f = ch where $h \in \mathbb{Z}[x]$ is *primitive*, i.e., c(h) = 1. Note that $h + (f) \in A_f$, has order c.

Theorem 2. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$ and let S be the torsion subgroup of G_f . Then S_p is a direct sum of cyclic groups $\mathbb{Z}_{p^{r_p}}$ where p^{r_p} is the largest power of p dividing c(f). If $r_p > 0$, then S_p has infinite rank.

Corollary 1. G_f is torsion-free if and only if f is primitive.

- **Theorem 3**. Let $f = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$ where $n > 0, a_0, a_n \neq 0$. Then
- (i) G_f is polycyclic if and only if $a_0 = \pm 1$ and $a_n = \pm 1$;
- (ii) G_f is supersoluble if and only if $f = (x-1)^r (x+1)^{n-r}$ where $0 \le r \le n$;
- (iii) G_f is nilpotent if and only if $f = (x 1)^n$: then the nilpotent class is n;
- (iv) G_f is abelian if and only if f = x 1.

There are two possibilities for the centre of G_f : (i) $Z(G_f) = A^T$, the set of *T*-fixed points in A_f ; (ii) $Z(G_f) = \langle t^m \rangle A^T$ where m > 0 is least such that t^m

(G_f) $\geq \langle t^m \rangle A^r$ where m > 0 is least such that centralizes A_f .

In the second case, x^m centralizes A_f , so f divides $x^m - 1$. Thus f equals \pm a product of distinct cyclotomic polynomials of orders dividing m, including Φ_m . (Note that $\mathbb{Z}[x]$ is a UFD).

The centre is usually trivial.

Theorem 4. Let f ∈ Z[x] be non-constant with f(0) ≠ 0.
Then Z(G_f) ≠ 1 if and only if one of the following holds:
(i) f equals ± a product of distinct cyclotomic polynomials;

(ii)
$$f(1) = 0$$
, *i.e.*, $x - 1$ divides f .

The Frattini subgroup

Note that $\phi(G_f) \leq A_f$ since G_f/A_f is infinite cyclic. By standard arguments

$$\phi(G_f) = \bigcap_M M \cap A_f,$$

where the intersection is over all the maximal subgroups M of G that do not contain A_f . These $M \cap A_f$ are the maximal ideals of A_f . Since A_f is a finitely generated commutative ring, it follows from known results in commutative algebra that

$$\phi(G_f) = \operatorname{Jac}(A_f) = \operatorname{Nil}(A_f).$$

Theorem 5. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$. Write $f = c(f)f_1^{e_1}f_2^{e_2}\cdots f_r^{e_r}$ where the f_i are non-associate primitive irreducible polynomials in $\mathbb{Z}[x]$ and $e_i > 0$. In addition write $c(f) = p_1^{d_1}p_2^{d_2}\cdots p_s^{d_r}$ where the p_j are distinct primes and $d_j > 0$. Then

$$\phi(G_f) = (h)/(f)$$

where $h = p_1 p_2 \cdots p_s f_1 f_2 \cdots f_r$. Moreover, $(h)/(f) \stackrel{l}{\simeq} A_k$ where $k = p_1^{d_1-1} p_2^{d_2-1} \cdots p_s^{d_s-1} f_1^{e_1-1} f_2^{e_2-1} \cdots f_r^{e_r-1}$. The proof uses the fact that $\mathbb{Z}[x]$ is a UFD with the primes and non-associate primitive irreducible polynomials as the complete set of irreducibles.

Corollary 2. The Frattini subgroup of G_f is trivial if and only if f is square free, i.e., it is not divisible by the square of a prime or an irreducible polynomial.

What conditions on f will ensure that the group G_f is residually nilpotent, i.e., $\bigcap_{i=1,2,...} \gamma_i(G_f) = 1$?

If f(1), i.e., the sum of the coefficients of f, is not 0, then

$$(A_f)_T\simeq \mathbb{Z}[x]/(x-1)+(f)\simeq \mathbb{Z}/f(1)\simeq \mathbb{Z}_{|f(1)|},$$

while $(A_f)_T \simeq \mathbb{Z}$ if f(1) = 0.

If $f(1) = \pm 1$, then $(A_f)_T = 0$ and $A_f = [A_f, T]$, which means that G_f is not residually nilpotent.

The definitive result is as follows.

Theorem 6. Let $f \in \mathbb{Z}[x]$ be non-constant with $f(0) \neq 0$. Write f = ch where c = c(f) and $h \in \mathbb{Z}[x]$ is primitive. Then G_f is residually nilpotent if and only if $h(1) \neq \pm 1$.

17 / 28

Examples (i) If $f = 6x^2 - 2x + 4$, then f = 2h where $h = 3x^2 - x + 2$. Since h(1) = 4, the group G_f is residually nilpotent.

(ii) If $f = 3x^2 - x - 3$, then G_f is not residually nilpotent since f(1) = -1.

It is natural to ask which groups G_f have a finite presentation.

Theorem 7. Let $f = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$ where n > 0 and $a_0, a_n \neq 0$.

(i) If G_f is finitely presented, then $a_0 = \pm 1$ or $a_n = \pm 1$.

(ii) Conversely, if $a_0 = \pm 1$ or $a_n = \pm 1$, then G_f has a finite presentation with two generators and $1 + \binom{n}{2}$ relations.

It is straightforward to prove (ii) by exploiting the special form of the polynomial f.

To establish (i) we use the Bieri-Strebel invariant

Σ_A

of a finitely generated $\mathbb{Z}T$ -module, which was discovered by R. Bieri and R. Strebel in 1978.

- For finite presentability Σ_{A_f} has to be a "large" subset of the set of equivalence classes of non-zero valuations on T.
- Using the results of Bieri and Strebel, we show that if $a_0 \neq \pm 1$ and $a_n \neq \pm 1$, then Σ_{A_f} is empty, contradicting the finite presentability of G_f .

The Schur multiplier

What can be said about the Schur multiplier

$$M(G_f) = H_2(G_f, \mathbb{Z})$$

of the group G_f ? Apply the LHS-spectral sequence for homology to the exact sequence $1 \rightarrow A_f \rightarrow G_f \rightarrow T \rightarrow 1$:

Proposition 1. Let $f \in \mathbb{Z}[x]$ be non-constant primitive with $f(0) \neq 0$.

(i) If $f(1) \neq 0$, then $M(G_f) \simeq (A_f \wedge A_f)_T$.

(ii) If f(1) = 0, then $M(G_f) \simeq (A_f \wedge A_f)_T \oplus \mathbb{Z}$.

This reduces the problem to linear algebra.

In practice $(A_f \wedge A_f)_T$ is hard to compute for high degrees. But it is 0 for n = 1 and has rank 1 if n = 2. Some information is available in rank n > 2.

Theorem 8. Let $f \in \mathbb{Z}[x]$ be primitive with degree n > 2, then $M(G_f)$ is torsion-free minimax of rank n - 2 or n - 1 according as $f(1) \neq 0$ or f(1) = 0.

- It is well known that a finitely presented group has finitely generated multiplier. However, the converse is false.
- Note that $M(G_f)$ is finitely generated if and only if $(A_f \wedge A_f)_T$ is finitely generated.
- In the quadratic case complete information is available.

Theorem 9. Let $f = a_0 + a_1x + a_2x^2 \in \mathbb{Z}[x]$ be primitive with $a_0, a_2 \neq 0$.

(i) If a₀ ≠ a₂, then (A_f ∧ A_f)_T ≃ Z_{|a₀-a₂|}, which is finite.
(ii) If a₀ = a₂, then A_f ∧ A_f is a trivial T-module and (A_f ∧ A_f)_T ≃ Q_σ where σ is the set of prime divisors of a₀. Thus (A_f ∧ A_f)_T is infinitely generated unless a₀, a₂ = ±1

Corollary 3. $M(G_f)$ is finitely generated if and only if $a_0 \neq a_2$ or $a_0 = a_2$ and $a_0 = \pm 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Examples

- (i) Let $f = 2 + x + 2x^2$; then $M(G_f)$ is not finitely generated.
- (ii) Let $h = 2 + x + 3x^2$; then $M(G_h) = 0$, but G_h is not finitely presented.

Question

Given two non-constant polynomials $f, h \in \mathbb{Z}[x]$, with $f(0), h(0) \neq 0$, when are the groups G_f and G_h isomorphic?

(i) If f and h are associate, i.e. $h = \pm f$, then $G_f \simeq G_h$. There is another such situation when $G_f \simeq G_h$. (ii) Let $f = a_0 + a_1 x + \cdots + a_n x^n$. Put $s = t^{-1}$, so that $G_f = \langle t \rangle \ltimes A_f = \langle s \rangle \ltimes A_{\bar{f}}$ where $\bar{f} \in \mathbb{Z}[x]$ is the *reverse* of f, defined by

$$ar{f} = x^n f(x^{-1}) = a_n + a_{n-1}x + \dots + a_1 x^{n-1} + a_0 x^n.$$

Hence $G_f \simeq G_{\overline{f}}$. Derek J.S. Robinson (UIUC) Finitely Generated Metabelian Groups Arising June 2014 27/28 The solution to the Isomorphism Problem is given in the final result.

Theorem 10. Let f and h be non-constant polynomials in $\mathbb{Z}[x]$ such that $f(0), h(0) \neq 0$. Then G_f and G_h are isomorphic if and only if $h = \pm f$ or $\pm \overline{f}$.