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INTRODUCTION. PROOF OF THE MAIN THEOREM

Introduction

Let D be a quaternion division algebra over a field F. Thus
D = F + Fi + Fj + Fk , with i2, j2 ∈ F, and k = ij = −ji .

A pure quaternion is an element p ∈ D such that p ∈ Fi + Fj + Fk .

It is easy to check that p2 ∈ F, for a pure quaternion p, and that given
x , y ∈ D, the commutator (x , y ) = xy − yx is a pure quaternion.

In this talk we show that this characterizes the quaternion division
algebras. (Note, we do not assume finite dimensionality.)
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MAIN THEOREM.
Let R be an associative ring with 1 which is not commutative such
that
(I) A non-zero commutator in R is not a divisor of zero in R;

(II) (x , y )2 ∈ C, for all x , y ∈ R, where C is the center of R.
Then

1 R contains no divisors of zero.
2 If, in addition, the characteristic of R is not 2, then the localization

of R at C is a quaternion division algebra, whose center is the
fraction field of C.

We note that if x , y ∈ R are non-zero elements such that xy = 0, then
we say that both x and y are zero divisors in R.
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Proof of the main theorem

In this section R is an associative ring with 1 which is not
commutative. We denote by C the center of R. We assume that:

(1) Non-zero commutators are not divisors of zero in R.
(2) Squares of commutators in R are in C.

LEMMA 1.
If 0 6= c ∈ C, then c is not a zero divisor in R.

PROOF.
Suppose cr = 0, and let v := (x , y ) be a non-zero commutator. Then
(vc)r = 0, but vc = (x , yc) 6= 0, hence r = 0..
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PROPOSITION 2.
Let x ∈ R \ C, and let v = (x , y ) be a non-zero commutator. Then

1 v + vx and vx are commutators.
2 ax2 + bx + c = 0, for some a,b, c ∈ C, with a, c non-zero.
3 x is not a divisor of zero in R.
4 R contains no zero divisors.

PROOF.
(1) We have v + vx = v (1 + x) = (x , y (1 + x)), and vx = (x , yx).

(2) Let α := (v + vx)2 = v2 + v2x + vxv + (vx)2. Then α ∈ C. We have
αx = (v2 + (vx)2)x + v2x2 + (vx)2. Letting a := v2,b := v2 + (vx)2 − α
and c := (vx)2, we see that a,b, c ∈ C, and ax2 + bx + c = 0, with
a 6= 0 6= c.

(3) Suppose that xy = 0, for some non-zero y ∈ R, then we
immediately get that cy = 0, contradicting Lemma 1.
(4) This follows from (3) and Lemma 1.
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REMARK 3.
In view of Proposition 2(4), we can form the localization of R at C,
R//C. This is the set of all formal fractions x/c, x ∈ R, c ∈ C, c 6= 0,
with the obvious definitions: (i) x/c = y/d if and only if dx = cy ;
(ii) (x/c) + (y/d) = (dx + cy )/(cd); (iii) (x/c)(y/d) = (xy )/(cd).
It is easy to check that r 7→ r/1 is an embedding of R into R//C
and that the center of R//C is the fraction field of C. Thus
from now on we replace R with R//C and assume that C is a
field.

Next we construct a quaternion division algebra within R.
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LEMMA 4.

1 There exists a comutator i := (x , y ) which is not in C.
2 For i as in (1), let j := (i , s) be nonzero. Then ij = −ji .
3 Let k := ij . Then Q := C + Ci + Cj + Ck is a quaternion division

algebra.

PROOF.
(1) Let x ∈ R \ C, and let v := (x , y ) 6= 0. Suppose that v ∈ C, then
vx /∈ C, and vx = (x , yx).

(2) Since i /∈ C, there is s ∈ R, with j := (i , s) 6= 0. But then

ij = i(is − si) = i2s − isi = −(isi − si2) = −ji .

(3) Since i2, j2 ∈ C, and ij = −ji , and since R has no zero divisors,
part (3) holds.
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From now on we let

Q = C + Ci + Cj + Ck , as in Lemma 4.

PROPOSITION 5.
Assume that char(C) 6= 2. Then

1 If p ∈ R satisfies
(∗) pu + up = du ∈ C, for all u ∈ {i , j , k},

then p ∈ Q.
2 If R 6= Q, then there exists p ∈ R \Q satisfying (∗) above.
3 R=Q.

Notice that (3) is immediate from (1) and (2).
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1 If p ∈ R satisfies
(∗) pu + up = du ∈ C, for all u ∈ {i , j , k},

then p ∈ Q.

PROOF.
(1) Set

m = p − (di/2i2)i − (dj/2j2)j − (dk/2k2)k .

Then

mi + im = pi + ip−di−(dj/2j2)ji−(dj/2j2)ij−(dk/2k2)ki−(dk/2k2)ik = 0.

Similarly mj + jm = 0 = mk + km.
But then

0 = mk + km = mij + ijm = 2ijm = 2km.

Since (C) 6= 2, and R has no zero divisors we must have m = 0, so
p ∈ Q.
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2 If R 6= Q, then there exists p ∈ R \Q satisfying (∗) above.

PROOF.
(2) Let x ∈ R \Q. By Proposition 2(2), x satisfies a quadratic, and
hence a monic quadratic equation x2 − bx + c = 0. Let p := x − b/2.
Then p /∈ Q, and p2 ∈ C. Let u ∈ {i , j , k}. Then both p + u and p − u
satisfy a quadratic equation over C. That is

(p + u)2 = c1(p + u) + c2

(p − u)2 = c3(p − u) + c4.

Adding we get

(c1 + c3)p + (c1 − c3)u + c5 = 0, where c5 = c2 + c4 − 2p2 − 2u2 ∈ C.

Now c1 + c3 = 0, since p /∈ Q, and then c1 − c3 = 0, since u /∈ C. We
thus get that

pu + up = c2 − p2 − u2 ∈ C.
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Proof of the Main Theorem.
Part (1) follows from and Proposition 2(4), and part (2) follows from
Proposition 5(3).

Thank you!
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