## A CHARACTERIZATION OF THE QUATERNIONS USING COMMUTATORS

Yoav Segev, Ben-Gurion university joint work with Erwin Kleinfeld

> Ischia group theory 2022 June 24, 2022

> > < 回 > < 三 > < 三 >

ERWIN KLEINFELD, YOAV SEGEV

### OUTLINE

### **1** INTRODUCTION.

### **2** PROOF OF THE MAIN THEOREM

▲□▶▲□▶▲目▶▲目▶ 目 のへで

ERWIN KLEINFELD, YOAV SEGEV

# Let *D* be a quaternion division algebra over a field $\mathbb{F}$ . Thus $D = \mathbb{F} + \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ , with $i^2, j^2 \in \mathbb{F}$ , and k = ij = -ji.

#### A pure quaternion is an element $p \in D$ such that $p \in \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ .

It is easy to check that  $p^2 \in \mathbb{F}$ , for a pure quaternion p, and that given  $x, y \in D$ , the commutator (x, y) = xy - yx is a pure quaternion.

In this talk we show that this characterizes the quaternion division algebras. (Note, we do not assume finite dimensionality.)

# Let *D* be a quaternion division algebra over a field $\mathbb{F}$ . Thus $D = \mathbb{F} + \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ , with $i^2, j^2 \in \mathbb{F}$ , and k = ij = -ji.

### A pure quaternion is an element $p \in D$ such that $p \in \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ .

It is easy to check that  $p^2 \in \mathbb{F}$ , for a pure quaternion p, and that given  $x, y \in D$ , the commutator (x, y) = xy - yx is a pure quaternion.

In this talk we show that this characterizes the quaternion division algebras. (Note, we do not assume finite dimensionality.)

Let *D* be a quaternion division algebra over a field  $\mathbb{F}$ . Thus  $D = \mathbb{F} + \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ , with  $i^2, j^2 \in \mathbb{F}$ , and k = ij = -ji.

A pure quaternion is an element  $p \in D$  such that  $p \in \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ .

It is easy to check that  $p^2 \in \mathbb{F}$ , for a pure quaternion p, and that given  $x, y \in D$ , the commutator (x, y) = xy - yx is a pure quaternion.

In this talk we show that this characterizes the quaternion division algebras. (Note, we do not assume finite dimensionality.)

Let *D* be a quaternion division algebra over a field  $\mathbb{F}$ . Thus  $D = \mathbb{F} + \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ , with  $i^2, j^2 \in \mathbb{F}$ , and k = ij = -ji.

A pure quaternion is an element  $p \in D$  such that  $p \in \mathbb{F}i + \mathbb{F}j + \mathbb{F}k$ .

It is easy to check that  $p^2 \in \mathbb{F}$ , for a pure quaternion p, and that given  $x, y \in D$ , the commutator (x, y) = xy - yx is a pure quaternion.

In this talk we show that this characterizes the quaternion division algebras. (Note, we do not assume finite dimensionality.)

#### MAIN THEOREM.

Let R be an associative ring with **1** which is not commutative such that

- (I) A non-zero commutator in R is not a divisor of zero in R;
- (II)  $(x, y)^2 \in C$ , for all  $x, y \in R$ , where C is the center of R.

Then

1 R contains no divisors of zero.

If, in addition, the characteristic of R is not 2, then the localization of R at C is a quaternion division algebra, whose center is the fraction field of C.

We note that if  $x, y \in R$  are non-zero elements such that xy = 0, then we say that both x and y are zero divisors in R.

< ロ > < 同 > < 三 > < 三 >

## Proof of the main theorem

In this section R is an associative ring with **1** which is not commutative. We denote by C the center of R. We assume that:

- (1) Non-zero commutators are not divisors of zero in *R*.
- (2) Squares of commutators in R are in C.

#### LEMMA 1.

If  $0 \neq c \in C$ , then c is not a zero divisor in R.

#### PROOF.

Suppose cr = 0, and let v := (x, y) be a non-zero commutator. Then (vc)r = 0, but  $vc = (x, yc) \neq 0$ , hence r = 0.

#### **PROPOSITION 2.**

Let  $x \in R \setminus C$ , and let v = (x, y) be a non-zero commutator. Then

1 v + vx and vx are commutators.

2 
$$ax^2 + bx + c = 0$$
, for some  $a, b, c \in C$ , with  $a, c$  non-zero.

- 3 x is not a divisor of zero in R.
- I R contains no zero divisors.

#### Proof.

(1) We have 
$$v + vx = v(1 + x) = (x, y(1 + x))$$
, and  $vx = (x, yx)$ .

(2) Let  $\alpha := (v + vx)^2 = v^2 + v^2x + vxv + (vx)^2$ . Then  $\alpha \in C$ . We have  $\alpha x = (v^2 + (vx)^2)x + v^2x^2 + (vx)^2$ . Letting  $a := v^2, b := v^2 + (vx)^2 - \alpha$  and  $c := (vx)^2$ , we see that  $a, b, c \in C$ , and  $ax^2 + bx + c = 0$ , with  $a \neq 0 \neq c$ .

(3) Suppose that xy = 0, for some non-zero  $y \in R$ , then we immediately get that cy = 0, contradicting Lemma 1. (4) This follows from (3) and Lemma 1.

ERWIN KLEINFELD, YOAV SEGEV



#### **PROPOSITION 2.**

Let  $x \in R \setminus C$ , and let v = (x, y) be a non-zero commutator. Then

- 1 v + vx and vx are commutators.
- 2  $ax^2 + bx + c = 0$ , for some  $a, b, c \in C$ , with a, c non-zero.
- 3 x is not a divisor of zero in R.
- I R contains no zero divisors.

#### Proof.

(1) We have 
$$v + vx = v(1 + x) = (x, y(1 + x))$$
, and  $vx = (x, yx)$ .

(2) Let  $\alpha := (v + vx)^2 = v^2 + v^2x + vxv + (vx)^2$ . Then  $\alpha \in C$ . We have  $\alpha x = (v^2 + (vx)^2)x + v^2x^2 + (vx)^2$ . Letting  $a := v^2, b := v^2 + (vx)^2 - \alpha$  and  $c := (vx)^2$ , we see that  $a, b, c \in C$ , and  $ax^2 + bx + c = 0$ , with  $a \neq 0 \neq c$ .

(3) Suppose that xy = 0, for some non-zero y ∈ R, then we immediately get that cy = 0, contradicting Lemma 1.
(4) This follows from (3) and Lemma 1.

ERWIN KLEINFELD, YOAV SEGEV

#### **PROPOSITION 2.**

Let  $x \in R \setminus C$ , and let v = (x, y) be a non-zero commutator. Then

1 v + vx and vx are commutators.

2 
$$ax^2 + bx + c = 0$$
, for some  $a, b, c \in C$ , with  $a, c$  non-zero.

- 3 x is not a divisor of zero in R.
- I R contains no zero divisors.

#### Proof.

(1) We have 
$$v + vx = v(1 + x) = (x, y(1 + x))$$
, and  $vx = (x, yx)$ .

(2) Let  $\alpha := (v + vx)^2 = v^2 + v^2x + vxv + (vx)^2$ . Then  $\alpha \in C$ . We have  $\alpha x = (v^2 + (vx)^2)x + v^2x^2 + (vx)^2$ . Letting  $a := v^2, b := v^2 + (vx)^2 - \alpha$  and  $c := (vx)^2$ , we see that  $a, b, c \in C$ , and  $ax^2 + bx + c = 0$ , with  $a \neq 0 \neq c$ .

(3) Suppose that xy = 0, for some non-zero  $y \in R$ , then we immediately get that cy = 0, contradicting Lemma 1.

This follows from (3) and Lemma 1.

ERWIN KLEINFELD, YOAV SEGEV

SOG

#### **PROPOSITION 2.**

Let  $x \in R \setminus C$ , and let v = (x, y) be a non-zero commutator. Then

1 v + vx and vx are commutators.

2 
$$ax^2 + bx + c = 0$$
, for some  $a, b, c \in C$ , with  $a, c$  non-zero.

- 3 x is not a divisor of zero in R.
- I R contains no zero divisors.

#### Proof.

(1) We have 
$$v + vx = v(1 + x) = (x, y(1 + x))$$
, and  $vx = (x, yx)$ .

(2) Let  $\alpha := (v + vx)^2 = v^2 + v^2x + vxv + (vx)^2$ . Then  $\alpha \in C$ . We have  $\alpha x = (v^2 + (vx)^2)x + v^2x^2 + (vx)^2$ . Letting  $a := v^2, b := v^2 + (vx)^2 - \alpha$  and  $c := (vx)^2$ , we see that  $a, b, c \in C$ , and  $ax^2 + bx + c = 0$ , with  $a \neq 0 \neq c$ .

(3) Suppose that xy = 0, for some non-zero  $y \in R$ , then we immediately get that cy = 0, contradicting Lemma 1.

(4) This follows from (3) and Lemma 1.

ERWIN KLEINFELD, YOAV SEGEV

#### REMARK 3.

In view of Proposition 2(4), we can form the localization of R at C, R//C. This is the set of all formal fractions x/c,  $x \in R$ ,  $c \in C$ ,  $c \neq 0$ , with the obvious definitions: (i) x/c = y/d if and only if dx = cy; (ii) (x/c) + (y/d) = (dx + cy)/(cd); (iii) (x/c)(y/d) = (xy)/(cd). It is easy to check that  $r \mapsto r/1$  is an embedding of R into R//Cand that the center of R//C is the fraction field of C. Thus from now on we replace R with R//C and assume that C is a field.

Next we construct a quaternion division algebra within *R*.

#### LEMMA 4.

- **1** There exists a comutator i := (x, y) which is not in C.
- **2** For *i* as in (1), let j := (i, s) be nonzero. Then ij = -ji.
- Let k := ij. Then Q := C + Ci + Cj + Ck is a quaternion division algebra.

#### Proof.

(1) Let  $x \in R \setminus C$ , and let  $v := (x, y) \neq 0$ . Suppose that  $v \in C$ , then  $vx \notin C$ , and vx = (x, yx).

(2) Since  $i \notin C$ , there is  $s \in R$ , with  $j := (i, s) \neq 0$ . But then

$$ij = i(is - si) = i^2 s - isi = -(isi - si^2) = -ji.$$

(3) Since  $i^2, j^2 \in C$ , and ij = -ji, and since *R* has no zero divisors, part (3) holds.

#### ERWIN KLEINFELD, YOAV SEGEV

#### LEMMA 4.

- **1** There exists a comutator i := (x, y) which is not in C.
- **2** For *i* as in (1), let j := (i, s) be nonzero. Then ij = -ji.
- Let k := ij. Then Q := C + Ci + Cj + Ck is a quaternion division algebra.

#### Proof.

(1) Let  $x \in R \setminus C$ , and let  $v := (x, y) \neq 0$ . Suppose that  $v \in C$ , then  $vx \notin C$ , and vx = (x, yx).

(2) Since  $i \notin C$ , there is  $s \in R$ , with  $j := (i, s) \neq 0$ . But then

$$ij = i(is - si) = i^2s - isi = -(isi - si^2) = -ji.$$

(3) Since  $i^2, j^2 \in C$ , and ij = -ji, and since *R* has no zero divisors, part (3) holds.

#### ERWIN KLEINFELD, YOAV SEGEV

#### LEMMA 4.

- **1** There exists a comutator i := (x, y) which is not in C.
- **2** For *i* as in (1), let j := (i, s) be nonzero. Then ij = -ji.
- 3 Let k := ij. Then Q := C + Ci + Cj + Ck is a quaternion division algebra.

#### Proof.

(1) Let  $x \in R \setminus C$ , and let  $v := (x, y) \neq 0$ . Suppose that  $v \in C$ , then  $vx \notin C$ , and vx = (x, yx).

(2) Since  $i \notin C$ , there is  $s \in R$ , with  $j := (i, s) \neq 0$ . But then

$$ij = i(is - si) = i^2 s - isi = -(isi - si^2) = -ji.$$

(3) Since  $i^2, j^2 \in C$ , and ij = -ji, and since *R* has no zero divisors, part (3) holds.

#### ERWIN KLEINFELD, YOAV SEGEV

From now on we let

 $\mathbf{Q} = C + Ci + Cj + Ck$ , as in Lemma 4.

#### **PROPOSITION 5.**

Assume that char(C) ≠ 2. Then
1 If p ∈ R satisfies

(\*) pu + up = d<sub>u</sub> ∈ C, for all u ∈ {i, j, k},
then p ∈ Q.

2 If R ≠ Q, then there exists p ∈ R \ Q satisfying (\*) above.
3 R=Q.

Notice that (3) is immediate from (1) and (2).

ERWIN KLEINFELD, YOAV SEGEV

If  $p \in R$  satisfies (\*)  $pu + up = d_u \in C$ , for all  $u \in \{i, j, k\}$ , then  $p \in \mathbf{Q}$ .

| Proof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (1) Set<br>$m = p - (d_i/2i^2)i - (d_j/2j^2)j - (d_k/2k^2)k.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| $mi + im = pi + ip - d_i - (d_j/2j^2)ji - (d_j/2j^2)ij - (d_k/2k^2)ki - (d_k/2k^2)ik = d_k - d_$ | 0. |
| Similarly $mj + jm = 0 = mk + km$ .<br>But then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (日)(四)(日)(日)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |

ERWIN KLEINFELD, YOAV SEGEV

ъ.

If  $p \in R$  satisfies (\*)  $pu + up = d_u \in C$ , for all  $u \in \{i, j, k\}$ , then  $p \in \mathbf{Q}$ .

| Proof.                                                                                       |
|----------------------------------------------------------------------------------------------|
| (1) Set                                                                                      |
| $m = p - (d_i/2i^2)i - (d_j/2j^2)j - (d_k/2k^2)k.$                                           |
| Then                                                                                         |
| $mi + im = pi + ip - d_i - (d_j/2j^2)ji - (d_j/2j^2)ij - (d_k/2k^2)ki - (d_k/2k^2)ik = 0.$   |
| Similarly $mj + jm = 0 = mk + km$ .                                                          |
| But then                                                                                     |
| 0 = mk + km = mij + ijm = 2ijm = 2km.                                                        |
| Since ( <i>C</i> ) $\neq$ 2, and <i>R</i> has no zero divisors we must have <i>m</i> = 0, so |

 $p \in \mathbf{Q}$ .

#### PROOF.

(2) Let  $x \in R \setminus Q$ . By Proposition 2(2), *x* satisfies a quadratic, and hence a monic quadratic equation  $x^2 - bx + c = 0$ . Let p := x - b/2. Then  $p \notin Q$ , and  $p^2 \in C$ . Let  $u \in \{i, j, k\}$ . Then both p + u and p - u satisfy a quadratic equation over *C*. That is

 $(p + u)^2 = c_1(p + u) + c_2$  $(p - u)^2 = c_3(p - u) + c_4$ 

Adding we get

 $(c_1 + c_3)p + (c_1 - c_3)u + c_5 = 0$ , where  $c_5 = c_2 + c_4 - 2p^2 - 2u^2 \in C$ .

Now  $c_1 + c_3 = 0$ , since  $p \notin \mathbf{Q}$ , and then  $c_1 - c_3 = 0$ , since  $u \notin C$ . We thus get that

$$pu + up = c_2 - p^2 - u^2 \in C.$$



#### PROOF.

(2) Let  $x \in R \setminus \mathbf{Q}$ . By Proposition 2(2), *x* satisfies a quadratic, and hence a monic quadratic equation  $x^2 - bx + c = 0$ . Let p := x - b/2. Then  $p \notin \mathbf{Q}$ , and  $p^2 \in C$ . Let  $u \in \{i, j, k\}$ . Then both p + u and p - u satisfy a quadratic equation over *C*. That is

 $(p + u)^2 = c_1(p + u) + c_2$  $(p - u)^2 = c_3(p - u) + c_4.$ 

Adding we get

 $(c_1 + c_3)p + (c_1 - c_3)u + c_5 = 0$ , where  $c_5 = c_2 + c_4 - 2p^2 - 2u^2 \in C$ .

Now  $c_1 + c_3 = 0$ , since  $p \notin \mathbf{Q}$ , and then  $c_1 - c_3 = 0$ , since  $u \notin C$ . We thus get that

$$pu + up = c_2 - p^2 - u^2 \in C.$$



#### PROOF.

(2) Let  $x \in R \setminus \mathbf{Q}$ . By Proposition 2(2), *x* satisfies a quadratic, and hence a monic quadratic equation  $x^2 - bx + c = 0$ . Let p := x - b/2. Then  $p \notin \mathbf{Q}$ , and  $p^2 \in C$ . Let  $u \in \{i, j, k\}$ . Then both p + u and p - u satisfy a quadratic equation over *C*. That is

$$(p + u)^2 = c_1(p + u) + c_2$$
  
 $(p - u)^2 = c_3(p - u) + c_4$ 

Adding we get

 $(c_1 + c_3)p + (c_1 - c_3)u + c_5 = 0$ , where  $c_5 = c_2 + c_4 - 2p^2 - 2u^2 \in C$ .

Now  $c_1 + c_3 = 0$ , since  $p \notin \mathbf{Q}$ , and then  $c_1 - c_3 = 0$ , since  $u \notin C$ . We thus get that

$$pu + up = c_2 - p^2 - u^2 \in C.$$

#### PROOF.

(2) Let  $x \in R \setminus \mathbf{Q}$ . By Proposition 2(2), *x* satisfies a quadratic, and hence a monic quadratic equation  $x^2 - bx + c = 0$ . Let p := x - b/2. Then  $p \notin \mathbf{Q}$ , and  $p^2 \in C$ . Let  $u \in \{i, j, k\}$ . Then both p + u and p - u satisfy a quadratic equation over *C*. That is

$$(p + u)^2 = c_1(p + u) + c_2$$
  
 $(p - u)^2 = c_3(p - u) + c_4$ 

Adding we get

 $(c_1 + c_3)p + (c_1 - c_3)u + c_5 = 0$ , where  $c_5 = c_2 + c_4 - 2p^2 - 2u^2 \in C$ .

Now  $c_1 + c_3 = 0$ , since  $p \notin \mathbf{Q}$ , and then  $c_1 - c_3 = 0$ , since  $u \notin C$ . We thus get that

$$pu+up=c_2-p^2-u^2\in C.$$

ERWIN KLEINFELD, YOAV SEGEV

### Proof of the Main Theorem.

# Part (1) follows from and Proposition 2(4), and part (2) follows from Proposition 5(3).

### Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ERWIN KLEINFELD, YOAV SEGEV

### Proof of the Main Theorem.

Part (1) follows from and Proposition 2(4), and part (2) follows from Proposition 5(3).

### Thank you!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

ERWIN KLEINFELD, YOAV SEGEV