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First-order sentences/formulae

(∀x∀y∀z)([x , y , z ] = 1) G nilp. of class 6 2 Yes!
(∀x ∈ G ′)(∀z)([x , z ] = 1) G nilp. of class 6 2 No!

(∀x1∀x2∀x3∀x4)(∃y1, y2)([x1, x2][x3, x4] = [y1, y2])
every element of G ′ is a commutator

(∀x1∀x2∃y)(y 6= x1 ∧ y 6= x2) |G | > 3
(∀x1∀x2∀x3∀x4)(

∨
16i<j64 xi = xj) |G | 6 3

(∀x)(x6 = 1→ x = 1) no elements of order 2, 3

g4 = 1 ∧ g2 6= 1 g has order 4

(∃n)(gn = 1) g has finite order No!

(∀x ∈ G ′)(x7 = 1) G ′ has exponent dividing 7 No!
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Definable sets

. . . sets of elements g ∈ G (or in G (n) = G × · · · × G ) defined by
first-order formulae, possibly with parameters from G .

Examples: • Z(G ), defined by (∀y)([x , y ] = 1)

• CG (h), defined by [x , h] = 1

• Xh = {[h−1, hg ] | g ∈ G}, Wh =
⋃
{Xhg | g ∈ G , [Xh,Xhg ] 6= 1}.

• Centralizers of definable sets are definable:
Say S = {s | ϕ(s)}; then CG (S) = {t | ∀g(ϕ(g)→ [g , t] = 1)}

So ∃ f.o. formula ωh with ωh(g) iff g ∈ CGCG (Wh)
• δ(x , y) : δ(h1, h2) iff C2

G (Wh1) = C2
G (Wh2)

{(h1, h2) | δ(h1, h2)} definable in G (2), a definable equiv. relation
• ∃ β(x) : β(h) iff C2

G (Wh) commutes with its distinct conjugates.
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Classes of finite groups defined by a sentence

(∃ only ℵ0 such!)

(1) {groups of order 6 n}, {groups of order > n}, {groups with no
elements of order n}
(2) Let H = {h1, . . . , hn} be finite, hihj = hµ(i ,j)

Mult. table gives θH(x1, . . . , xn) : (
∧

i 6=j(xi 6= xj) ∧
∧

i ,j(xixj = xµ(i ,j)))
Use it to define formulae φH , ψH :
G |= φH : ∃ subgroup ∼= H, G |= ψH : G ∼= H.
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Sentences for non-abelian (finite) simple groups?

Hard to find a first-order sentence corresponding to

(∀k 6= 1)(∀g)(∃r ∈ N)(∃x1, . . . , xr )(g = kx1kx2 . . . kxr ).

E.g. let k = (12)(34), g = (1 2 . . . n) in An, n odd.
|supp kx | = 4, so |supp kx1kx2 . . . kxr | 6 4r , need
r > 1

4n.
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Felgner’s Theorem (1990). ∃ sentence σ (in the f.-o. language of group
theory) such that (for G finite) G |= σ ⇔ G is non-abelian simple.

σ = σ1 ∧ σ2 with

σ1 = (∀x∀y)(x 6= 1 ∧ CG (x , y) 6= {1}
→
⋂

g∈G (CG (x , y)CG (CG (x , y)))g = {1}),
and
σ2 = ‘each element is a product of κ0 commutators’ for a fixed κ0 ∈ N.

(Now we know that we can take κ0 = 1:
‘Yes’ for the Oré conjecture (Liebeck, O’Brien, Shalev, Tiep, 2010):
all elements of non-abelian (finite) simple groups are commutators.)

σ1 works as finite simple groups are 2-generator groups.
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Ulrich Felgner
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Sentences characterizing finite soluble groups:

E.g. (1) {∀x∀y(xm = yn = 1 = (xy)r )→ x = 1 |
m, n, r ∈ N, pairwise coprime}

E.g. (2) defined by ‘no g 6= 1 is a prod. of commutators [gh, gk ]’; that is,
ρn holds ∀n

ρn : (∀g∀x1 . . . ∀xn∀y1 . . . ∀yn)(g = 1 ∨ g 6= [g x1 , g y1 ] . . . [g xn , g yn ]).

Question. Is there a single sentence describing the finite soluble groups?
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ρn : (∀g∀x1 . . . ∀xn∀y1 . . . ∀yn)(g = 1 ∨ g 6= [g x1 , g y1 ] . . . [g xn , g yn ]).

Theorem (JSW 2005) Finite G is soluble iff it satisfies ρ56.

For C ⊆ G write
δ(C ) = {[c , d ] | c , d ∈ C},
δn(C ) = {products of n elements of δ(C )}.

Theorem (JSW 2005). Each minimal non-soluble G has a conj. class C
with G = δ56(C ).

Write S = G/Φ(G ), K = [Φ(G ),G ]; so S/Z(S) is min. simple.

∀ minimal non-sol. G there’s C with
(i) G = Kδ2(C ); (ii) ∃ c1, c2 ∈ G with G = 〈c1, c2〉.

Theorem (JSW 2005). Let q > 8, and V be a simple F2Γ-module where
Γ = Sz(q). Then dim H2(Γ,V ) 6 dimV .
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The (soluble) radical R(G ) of a finite group G is the largest soluble normal
subgroup of G .

Theorem (JSW 2008). There’s a f.-o. formula r(x) such that if G is finite
and g ∈ G then g ∈ R(G ) iff r(g) holds in G .
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Ultrafilters

Let I be an index set. An ultrafilter on I is a set U of subsets of I such
that

(i) ∅ 6∈ U , (ii) if S1 ∈ U and S1 ⊆ S2 then S2 ∈ U
(iii) if S1, S2 ∈ U then S1 ∩ S2 ∈ U
(iv) for each S ⊆ I either S ∈ U or I \S ∈ U
E.g., for x ∈ I , {S ⊆ I | x ∈ S} is a principal ultrafilter.
Non-principal ultrafilters U exist by Zorn’s lemma.
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Ultraproducts of fields/nonstandard reals

Let (Fi | i ∈ N) be a family of fields.
C :=

∏
Fi , Cartesian product containing all ‘sequences’ (xi ) with xi ∈ Xi .

I := { (xi ) ∈ C | { i | xi = 0 } ∈ U }; so I is an ideal in C .
The ultraproduct

∏
Fi/U is C/I .

(xi ), (yi ) in C have the same image in
∏

Fi/U iff they agree on a set in U .

Los’ Theorem. If θ a first-order sentence then
∏

Fi/U |= θ iff
{ i | Fi |= θ } ∈ U . Hence if each Fi satisfies θ, so does

∏
Fi/U .

First order in language of field theory–or ordered field theory if all Fi are
ordered fields.
If all Fi ∼= F then constant map f 7→ (f ) to C induces embedding
F ↪→ C/I . So if F = R then R ↪→ C/I . The element h = (1, 12 ,

1
3 , . . . ) + I

satisfies nh < 1 for all n ∈ N, it’s an infinitesimal.
Corollary (Robinson). Calculus without limits (Leibniz’ idea, ca. 1670).
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Abraham Robinson (1918–1974), developer of non-standard analysis
(1960s)
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Gottfried Wilhelm Leibniz (1646–1716), conceiver of infinitesimals,
towering above us all
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Some sentences valid for all finite groups

• x 7→ xn injective iff x 7→ xn surjective:
(∀x1∀x2)(xn1 = xn2 → x1 = x2)↔ (∀x∃y)(x = yn)

• CG (x) 6 CG (xy )→ CG (x) = CG (xy )

• Higman:
〈x , y , z ,w | xy = x2, y z = y2, zw = z2,w x = w2〉 is non-trivial but has no
finite images 6= 1.
So finite groups satisfy
(∀a, b, c , d)(ab 6= a2 ∨ bc 6= b2 ∨ cd 6= c2 ∨ da 6= d2 ∨ a = 1).

• Similarly finite groups (but not all groups) satisfy
(∀a, b, α, β)(a2b 6=a3 ∨ α2β 6=α3 ∨ [a, b] 6=1 ∨ [α, β] 6=1 ∨ a=b=α=β=1).
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Pseudo-finite (psf) groups

. . . infinite models for the theory of finite groups; i.e., infinite groups
satisfying all first-order sentences valid in all finite groups.

So they satisfy e.g.
• (∀x)(xn = 1→ x = 1)→ (∀y)(∃z)(y = zn) and other f.o.

‘injective ⇒ surjective’ sentences
• CG (x) 6 CG (xy )→ CG (x) = CG (xy )
• ‘Higman sentence’.

Similarly psf fields.

Psf examples. (1) From Los’, ultraproducts of finite groups are psf.

(2) For n > 2 and K psf, SLn(K ) and PSLn(K ) are psf; PSLn(K ) is
simple.
If K is psf, L a Lie type and if G ≡ L(K ), then G is simple psf.
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Pseudo-finite (psf) groups

. . . infinite models for the theory of finite groups; i.e., infinite groups
satisfying all first-order sentences valid in all finite groups.

Study of them begun by Felgner; further developed by me, Macpherson +
Tent, and Ould-Houcine + Point.

Simple psf groups Let K be a psf field, L a Lie type, G ≡ L(K ). Then
L(K ) is simple psf – e.g. PSL2(K ) with K psf.

Theorem (JSW 1995 (+Ryten 2007)). If G is simple psf then
G ∼= L(K ) for some psf field F and Lie type L.
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A psf group S is definably simple if 6 ∃ definable normal subgroups except
1, S .

Proposition (Felgner). If G is psf then G is definably simple iff G ≡ an
UP of finite simple groups.

Start of proof that G simple psf ⇒ G ∼= L(K ) with K psf and L a Lie type:

By Felgner’s result, G ≡
∏

i∈I Gi/U , an UP of finite simple groups.

Easy Fact. Let I = I1 ∪ · · · ∪ Ir . Then (i) Ij ∈ U for some j ,
(ii) V = {X ∩ Ij | X ∈ U } is an ultrafilter on Ij and
(iii)

∏
I Gi/U ∼=

∏
Ij
Gi/V.

So in the UP, can assume all or none of the groups are alternating.
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UPs of finite simple groups

From CFSG (together with Fact) any infinite UP of simple groups is isom.
to some

∏
Gi/U such that:

(a) ∀i , Gi
∼= Alt(ni ), where ni > 5; or

(b) ∀i , Gi
∼= εXni (qi ), where ε ∈ {1, 2, 3} is fixed, X ∈ {A,B, . . . ,G} is

fixed, ni , qi vary.

Felgner: if
∏

Gi/U ≡ an inf. simple group then
(a) can’t arise (Felgner)
in (b) the ni are bounded (JSW); so can assume all ni equal.

(F. Point, 1999) For each Lie type L, any UP of groups of type L is a
group of type L.

Any (infinite) UP of finite simple groups of bounded rank is isom. to some
L(K ) and is psf.
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Definably simple groups need not be simple

Let I = { n ∈ N | n > 5 }, Gn = An. Define

xn = (12)(34), yn =

{
(1, 2, . . . , n) n odd,

(1, 2, . . . , n − 2)(n − 1, n) n even.

Let U be a non-principal ultrafilter on N, x , y the images in
∏

Gn/U of
(xn), (yn). Suppose y a product of d conjugates of x . Equate components
in some set S ∈ U ; so yn is a product of d conjugates of xn for all n ∈ S .
But a product of d conjugates of xn moves 6 4d points so 6= yn if n > 4d .
Thus S is finite, contradiction.

More general (and a bit harder):

Proposition (Felgner). If G ≡
∏

Ani/U where ni > 5 for all i ∈ I and if G
is infinite then G is not simple.
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G finite: simple component = non-abelian simple subgroup S that
commutes with its distinct G -conjugates (⇔ S subnormal).
G psf: definably simple component = definably simple definable subgroup
that commutes with its distinct conjugates.

If G is psf, then R(G ) and G/R(G ) are psf or finite.

Proposition (JSW 2017). If G is psf with R(G ) = 1 then every non-triv.
def. normal subgroup of G contains minimal def. normal subgroups M;
each such M is S × CM(S) for a def. simple component S of G .

Theorem (2017). Let G be psf with R(G ) = 1 and with only finitely
many def. simple components. Then G has a series

1 6 G1 6 G2 6 G

of characteristic def. subgroups with G1 the direct product of the (fin.
many) def. simple components, G2/G1 metabelian, G/G2 finite.
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key: a f.-o. description of components and perfect minimal normal
subgroups of finite groups.

Theorem. ∃ f.o. formulae π(h, y), π′(h), π′c(h), π′m(h) such that for every
finite G , the direct products of simple components of G are the sets
{π(h, x) | x ∈ G} for the h ∈ G satisfying π′(h).
The simple components: the {π(h, x) | x ∈ G} for which π′c(h) holds.
The non-ab. min. normal subgps.: {π(h, x) | x ∈ G} with π′m(h).
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Lemma. M a direct product of non-abelian simple groups, X ⊆ M, X has
all projections 6= 1. Then M = 〈X g | g ∈ M, [X ,X g ] 6= 1〉.

Chris Parker’s nicer proof. H := 〈X 〉. So [X ,X g ] 6= 1 ⇔ [H,Hg ] 6= 1.
〈Hg | g ∈ M〉 /M, all projections 6= 1, so 〈Hg | g ∈ M〉 = M. Let
K = 〈Hg | [H,Hg ] 6= 1〉.
NM(H): contains the Hg that commute with H;

permutes the Hg that don’t.
So NM(H) normalizes K . Thus 〈Hg | g ∈ M〉 6 〈K ,NM(H)〉 = NM(H)K
and M = NM(H)K .
∃ g0 ∈ M with Hg0 6 K .
Let g ∈ M, let g0 = n0k0, g = nk with n0, n ∈ NM(H), k0, k ∈ K .

Then Hg = Hnn−1
0 g0k

−1
0 k = Hg0k

−1
0 k 6 K k−1

0 k = K .
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Lemma. M a direct product of non-abelian simple groups, X ⊆ M, X has
all projections 6= 1. Then M = 〈X g | g ∈ M, [X ,X g ] 6= 1〉.

For h ∈ G define

Xh = {[h−1, hg ] | g ∈ G} and Wh =
⋃

(X f
h | f ∈ G , [Xh,X

f
h ] 6= 1).

Lemma. Suppose M 6 G , M a direct product of non-abelian simple
groups, and M commutes with its distinct G -conjugates. Suppose h ∈ M
projects non-trivially to each simple direct factor of M. Then M = 〈Wh〉.

Proof . For g ∈ G either g ∈ NG (M), or M, Mg commute; so
[h−1, hg ] ∈ M. So Xh ⊂ M, and for f ∈ G we have Xhf = X f

h ⊆ M f ; thus
if [Xhf ,Xh] 6= 1 then Xhf ⊆ M. Hence Wh ⊆ M.
For S a simple direct factor of M, ∃ s ∈ S with [h−1, hs ] 6= 1 and clearly
[h−1, hs ] ∈ S . So {[h−1, hf ] | f ∈ M} of M satisfies the hypothesis on X
above, and M ⊆ 〈Wh〉.
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Write C2
G (X ) for CG (CG (X )) for X ⊆ G . So 〈X 〉 6 C2

G (X ) .

Lemma. If S is a simple component of a finite group G then S / C2
G (S).

Proof . Let N be the product of all simple components; then N = S × T
with T = CN(S) 6 CG (S) so C2

G (S) 6 CG (T ). If c ∈ CG (T ) and Sc 6= S

then Sc 6 T and S 6 T c−1
= T , contradiction.
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Define δr for r > 1 recursively by δ1(x1, x2) = [x1, x2] and
δr (x1, . . . , x2r ) = [δr−1(x1, . . . , x2r−1), δr−1(x2r−1+1, . . . , x2r )] for r > 1.

Lemma. Let S be a simple component of G . So S / C2
G (S). Let

S 6 K 6 C2
G (S). Then S is the set of δ4-values in K .

Proof . All elements of S are commutators in S , so are δn-values in K for
all n.
Conj. in K gives homom. K → Aut(S), kernel CK (S); S maps to Inn(S).

Aut(S)/Inn(S) has derived length 6 3, all δ3-values in Aut(S) lie in
Inn(S), so all δ3-values in K lie in SCK (S) = S × CK (S).

But CK (S) 6 CG (CG (S)) ∩ CG (S), so CK (S) is abelian. So every δ4-value
in K lies in S .
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Begin with:

ϕ(h, x) : (∃y)(x = [h−1, hy ]);
ψ(h, x) : (∃t∃y1∃y2)(ϕ(h, y1) ∧ ϕ(ht , y2) ∧ ϕ(ht , x) ∧ [y1, y2] 6= 1);
γ1(h, x) : (∀y)(ψ(h, y)→ [x , y ] = 1);
γ(h, x) : (∀y)(γ1(h, y)→ [x , y ] = 1);

α(h, x) : (∃x1 . . . ∃x16)(
(∧16

n=1 γ(h, xn)
)
∧ (x = δ4(x1, . . . , x16)).

ϕ(h, x) ψ(h, x) γ1(h, x) γ(h, x) α(h, x)
x ∈ Xh x ∈Wh, x ∈ CG (Wh), x ∈ C2

G (Wh), x a δ4-val. in C2
G (Wh).

Now let G be finite, S a simple component. For h ∈ S \ {1} we have
S = 〈Wh〉, so S 6 C2

G (Wh).
From Lemma S = set of δ4-values in C2

G (Wh), and S = {x | α(h, x)}.
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Next steps in proofs routine.

Similar ideas (Xh, Wh, double centralizers) used for

branch groups (JSW 2015): ambient tree is often interpretable in the
branch group

right-ordered permutation groups (Andrew Glass, JSW 2016):
Aut6(Λ) := group of order-preserving permutations of ordered set Λ.

If Aut6(Λ) is f.-o.-equivalent (for group language) to Aut6R then Λ is
isomorphic (as ordered set) to (R,6) or (R,>).
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What next for psf groups?

Abelian normal subgroups in definable images, Clifford theory?

Big problem: no Sylow theory. Maybe exists for p = 2 using structure of
dihedral groups? (Altinel, Borovik, Cherlin?)

psf G is pseudo-(finite soluble) iff satisfies ρ56, same for def. subgroups.

How to recognise (pseudo-)nilpotent def. subgroups H?
E.g. L < H, L definable ⇒ L < NH(L), def. normalizer condition for H???

(Carter subgroups?)

Is the Frattini subgroup pseudo-nilpotent?
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The Lincoln Impossible Problem

G an abstract group. G satisfies the normalizer condition
if H < G implies H < NG (H).

Then so does every subgroup of G , and every f.g. subgroup of G is
nilpotent. Proofs easy.

G pro-p: G satisfies the normalizer condition for closed subgroups (NCCS)
if H closed, H < G implies H < NG (H).

Do (closed) subgroups inherit the property?
Are f.g. pro-p groups with the property nilpotent?
• Does a free abstract group embed in a pro-p group with NCCS?

Not hard: just infinite pro-p groups with NCCS are ∼= Zp.
Probable Theorem. If the answer to Question • is ‘no’ then f.g. pro-p
groups with NCCS are nilpotent.
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The Lincoln Imp
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