A NUMERICAL TREATMENT OF THE LIOUVILLE-MASTER EQUATION FOR PIECEWISE DETERMINISTIC PROCESSES WITH MEMORY: CONVERGENCE AND MONOTONICITY

M. ANNUNZIATO

Dipartimento di Matematica e Informatica - Università degli Studi di Salerno Via Ponte Don Melillo, 84084 Fisciano (SA), ITALY E-mail: mannunzi@unisa.it

We study the numerical treatment of the Liouville-Master equation for the probability distribution functions $F_s(x, y, t)$ of a continuous *piecewise-deterministic process* (PDP) [1; 2]; such equation read as a system of hyperbolic PDEs [3]:

$$\partial_t F_s(x, y, t) + A_s(x) \,\partial_x F_s(x, y, t) + \partial_y F_s(x, y, t) = -\lambda_s(y) \,F_s(x, y, t) \tag{1}$$

with Cauchy initial conditions: $F_s(x, y, t_0) = F_{0,s}(x)\delta(y)$, and non-local boundary conditions:

$$F_s(x,0,t) = \sum_{j=1}^{S} q_{sj} \int_0^{t-t_0} F_j(x,y,t) \lambda_j(y) \, dy$$
(2)

for the $s = \{1, \ldots, S\}$ unknowns $F_s : \mathcal{D} \to \mathbb{R}$, with $(x, y, t) \in \mathcal{D} := (\Omega \times [0, T - t_0] \times [t_0, T]) \subset \mathbb{R}^3$, where $\Omega = [\Omega_a, \Omega_b] \subset \mathbb{R}$. Here $A_s(x)$ are known deterministic functions, $\lambda_s(y)$ are a set of *hazard functions* and q_{sj} are the elements of a stochastic matrix having the following fundamental properties: $0 \leq q_{sj} \leq 1$ and $\sum_s q_{sj} = 1$.

The numerical approximation ${}^{s}F_{k,j}^{n}$ to $F_{s}(x_{k}, y_{j}, t_{n})$ is calculated by a combination of the *upwind* method, for the Eq. (1), and a first order direct quadrature, for the Eq. (2). We show that under a Courant-Friedrichs-Lewy condition: (i) the global error \hat{E}_{k}^{n} associated to the distribution function at time t_{n} and position x_{k} , regardless sates s and memory y, i.e. $\int_{0}^{t_{n}} \sum_{s} F_{s}(x_{k}, y_{j}, t_{n}) dy$, is first order convergent [3]: $\|\hat{E}^{n}\|_{\infty} \propto \mathcal{O}(\Delta x) K_{2} t_{n}^{2} \exp(K_{1} t_{n})$; (ii) ${}^{s}F_{k,j}^{n}$ is non decreasing with respect to k and positive w.r. to j, when the Cauchy initial condition is non decreasing [4].

[The author acknowlege the "Gruppo Nazionale per il Calcolo Scientifico" (GNCS) for the financial support.]

REFERENCES

- [1] M.H.A. Davis. Markov Models and Optimizations. Chapman & Hall/CRC, London 1993.
- G.N. Milstein and Yu.M. Repin. Action of Markov process on a system of differential equations. Differential Equations, 5 (1972) pp. 1010–1019.
- [3] M. Annunziato. A finite difference method for piecewise deterministic processes with memory. Mathematical Modelling and Analysis, 12 (2) 2007, 157-178.
- [4] M. Annunziato. On a finite difference method for piecewise deterministic Markov processes and its parallel algorithm implementation. *Preprint*, **12** 2006. Dipartimento di Matematica e Informatica-Università degli Studi di Salerno.