
Playing with Refactoring
Identifying Extract Class Opportunities through Game Theory

Gabriele Bavota, Rocco Oliveto, Andrea De Lucia
DMI, University of Salerno, Italy

Giuliano Antoniol, Yann-Gaël Guéhéneuc
DGIGL, École Polytechnique de Montreál, Canada

26th IEEE International Conference on Software Maintenance, Timişoara, Romania, September 15, 2010

Game Theory Background
The Prisoner's Dilemma

Context
Refactoring Software Systems

Game Theory Meets Software Engineering
Modeling Extract Class Refactoring as a Non-cooperative Game

Preliminary Evaluation

? Refactoring: changing software without
modifying its external behavior

method1
...
methodn

attribute1
...
attributem

Class A

BLOB

Improving non-functional attribute
of the software

Class Cohesion: how strongly related the
various responsibilites of a class are

Programmers often add wrong responsibilities
to a class ⇒ its cohesion decreases

EXTRACT
CLASS
R E F A C T O R I N G

Splitting a class with many
responsibilities into different classes

Software evolution ... continuos changes

Changes cause a drift of the original
design reducing its quality

Game Theory: capture behavior in
strategic situations, in which an
individual’s success when making
choices depends on the choices of others

A game consists of
 • a set of players (2 or more)
 • a set of moves available to those players
 • payoffs for each combination of moves

The Prisoner's Dilemma

Sally
confess

not
confess

Tom
confess not confess

(5, 5)

(7, 0) (4, 4)

(0, 7)

Sally and Tom are accused of fraudulent activity and both
want to minimize the time spent in jail

The solution of this game is represented by the
Nash equilibrium (confess, confess)

Payoff matrix for the Prisoner's Dilemma

Given the non-cooperative
nature of this game the
minimum sentence for
both players can be
obtained only if both
the players confess

2 Players Each player is in charge to build a new class
selecting methods from the original class

Moves Iterative game: at each iteration, a player
selects at most one method of

 the class to be refactored

Payoff Each player selects the method considering
 the impact on the cohesion and

coupling of his class

The game starts by assigning to S and T the two methods having the lowest similarity,
e.g., m1, and m4. The similarity between two methods, i.e, sim, is obtained as a

combination of structural and semantic metrics.
The move "N" represents the null move: a player that selects this move during an

iteration doesn't take any method. In this way we avoid the trivial splitting of a class
in two classes of the same dimension and increase the rationality of the players.

The move to be performed during an iteration of the process is chosen by
finding the Nash equilibrium in the payoff matrix

NASHEQUILIBRIUM

T

S
m2 m3 N

m2

m3

N

m1

m4

(-1.00, -1.00) (0.70, 0.80) (0.70, 0.50)

(-0.70, -0.80) (-1.00, -1.00) (0.00, -0.30)

(-0.20, 0.00) (0.50, 0.80) (-1.00, -1.00)

(-1, -1) if i = j
0.70 = sim(m1, m2) - sim(m1, m3)

COHESION COUPLING

Goal Systems

RQ1

RQ2

Comparison with
Pareto optimum

Comparison with
others extract
class techniques

ArgoUML, JHotDraw

ArgoUML, JHotDraw

Case Study Design

Experiment execution
The evaluation planning is inspired

by mutation testing:
we randomly select two classes of one of the
object systems, merge them in a single class

Cm and then use the experimented approaches
to split the merged class in two classes

Results (F-Measure)

System Pareto
Optimum

MaxFlow
MinCut

ArgoUML

JHotDraw

88%

82%

77%

76%

Game
Theory

90%

85%

Reconstruction accuracy

