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Abstract Sustainable distribution is one of the topics concerning the smart city 
concept. In this chapter we face the problem of delivering a given amount of goods 
in urban areas arising from e-channel department stores, with the aim of minimizing  
the overall distribution costs; costs take into account traveling components, loading 
and other operative aspects, and environmental issues. More precisely, in the pre-
sent business to consumer distribution problem, we have to determine the fleet of 
not homogeneous vehicles (trucks, wagons, vans and picks-up) to be used for satis-
fying the demands of clients coming from e-channels, and their related itineraries, 
given the traveling limits imposed by the urban government; in particular, we have 
to respect the maximum route length constraints and use the appropriate vehicles 
for each kind of street. We propose a mathematical programming model to solve 
this computationally difficult problem, which is strategic for being able to imple-
ment sustainable distribution plans in a smart city context. Preliminary results of 
test bed cases related to different sized urban distribution networks are reported and 
analyzed.
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1  Introduction

Nowadays, both large and small cities are proposing a new model, called “the 
smart city”, which represents high technological, sustainable, comfortable and 
secure living environment. Following this idea, a number of models have been 
developed and deployed with the help of technological advances in computer and 
communication, such as Information and Communication Technology (ICT) and 
Intelligent Transport Systems (ITS), which constitute precisely the basis of the 
smart city model [2, 12].

Sustainable distribution is one of the topics concerning the smart city concept. 
Recently, increasing attention has been particularly devoted to sustainable devel-
opment of urban areas as well as mobility of goods for ensuring the wellbeing of 
community. The aim of a sustainable urban distribution network is to analyze how 
society intends to provide the means to properly meet economic, environmental 
and social needs efficiently and equitably, while minimizing negative impacts and 
their associated costs, including environmental issues, such as congestion, noise 
and air pollution. In this sense, the idea of city logistics has been proposed to 
establish efficient and environmentally friendly urban logistics systems [5, 11].

A difficulty in modeling city logistics comes from the complex interactions 
between private and public stakeholders involved in urban freight transport: ship-
pers, freight carriers, administrators and residents (consumers). In fact, city logis-
tics requires advanced optimization and simulation modeling approaches and tools 
to assist in the design, implementation and evaluation of schemes that satisfy the 
needs of all the above stakeholders, who hold different concerns and objectives. 
While the recent growth of research into urban distribution and city logistics is 
encouraging (see e.g. [6, 13]), only few works have been concerned with examin-
ing the likely impact of policy measures on distribution operations. A review of 
emerging techniques for enhancing the practical application of city logistics mod-
els is presented in [7, 12]; focuses on the evaluation of urban tours traveled by 
different types of commercial vehicles and their related costs. In Anderson et al. 
[1] a project is presented having the aim of investigating the ways in which alter-
native policy measures, such as weight and access time restrictions, can result in 
changes in the vehicle activities involved in urban distribution operations. New 
challenges have been observed for distribution systems designed within smart city 
frameworks. In particular, models of vehicle routing problems (VRP) are consid-
ered basic tools for implementing sustainable good distribution channels in urban 
areas. In this direction, a number of chapters on VRP have been published by 
operations researchers and practitioners (see, e.g. [9, 10]) with the aim of provid-
ing advances for the development of ITS within smart city models. In the present 
chapter we consider a particular case of VRP, originating from the need of deliver-
ing goods in an urban context arising from e-channel department stores. More pre-
cisely, in this urban business to consumer (B2C) distribution problem we have to 
determine the fleet of not homogeneous vehicles (trucks, wagons, vans and pick-
up) to be used for the delivery of a given amount of goods in urban areas. Note 
that the management of the fleet and the global routing of vehicles in the urban 
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network are key elements for sustainable goods distribution plans. Our problem is 
strongly connected to the design of city logistics systems for medium–large cities, 
where it provides the means to efficiently keep large trucks out of the city center, 
with small and environment-friendly vehicles providing the last leg of distribution 
activities [5]. Following this direction, in this chapter, each vehicle involved in the 
distribution process is characterized by two parameters: (1) the size (which allows 
it to cross only some types of roads) and (2) the maximum load capacity. Starting 
from a depot (to be determined) each vehicle must pass through the streets of the 
city (compatible with its size) to deliver the required goods along that road and go 
back to the chosen depot. The considered cost components, to be minimized, take 
into account traveling, loading and environmental issues.

We present a mathematical formulation of this novel urban B2C distribution 
problem for solving it. The referring urban B2C network problem (UB2CNP) is 
presented in more details in the next section. Section 3 reports the proposed net-
work model and the related Mixed Integer Programming (MIP) formulation. 
Finally, some preliminary results and outlines for future works are given.

2  Problem Definition

The proposed urban logistic network problem (UB2CNP) can be seen as an extension 
of the classical vehicle routing problem VRP, encountered very frequently in making 
decisions about the distribution of goods and services. Given a number of custom-
ers with known demands and a fleet of not identical vehicles with known capacities, 
the problem consists in finding a set of routes originating and terminating at a cen-
tral depot and serving all the customers exactly once. The routes cannot violate the 
capacity constraints on the vehicles. Differently from the classical VRP formulation, 
in addition, we must meet the size constraints on the streets, which specify which kind 
of vehicle can cross the street. All problem parameters, such as customer demand and 
typologies of streets, are assumed to be known with certainty. The standard objective 
of the UB2CNP problem consists of minimizing the total travel cost.

The UB2CNP is a basic distribution-management problem that can be used 
to model many real world problems. Some of the most useful applications of the 
UB2CNP include bank deliveries, postal deliveries, industrial refuse collection, 
national franchise restaurant services, school bus routing, security patrol services, 
and vendor deliveries for just-in-time manufacturing.

Here, the UB2CNP applies to deliver groceries ordered from e-channel depart-
ment stores to customers who reside at their homes. The management of the 
department stores has hence to collect the orders and group them according to the 
allowable vehicles. Further, customers are identified according to their address 
with reference to the corresponding kind of street, for being able to define the 
routes necessary to satisfy the overall demand and choose the best vehicle to use 
for the delivery which minimizes costs and the environmental impact. The prob-
lem, as particular case of the classical VRP problem, is NP-complete [8] that is 
computational difficult to be solved, and instances involving more than 100 
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customers are very hard to solve optimally. For this reason it makes sense to focus 
on the development of efficient mixed integer programming formulation models, 
possibly accomplished by the creation of heuristics approach to solve the problem. 
For recent surveys on the state of the art in VRP research we recommend the sur-
vey by Cordeau et al. [4] that describes both exact and heuristic methods, and the 
survey by Bräysy and Gendreau [3] that focuses on metaheuristics.

3  The Urban Logistic Problem

Formally the UB2CNP is defined as follow. Let G = (V ∪ {0}, E, L) be a connected 
digraph where V is the set of locations, 0 is a special vertex representing the depot, 
L is the set of different typologies (label) of streets, A is a set of arcs to which two 
values are associated: (1) a nonnegative weight tij, denoting the travel time (or the 
edge length) and (2) a label indicating the edge (street) type. Let n, m and l be the 
cardinality of V, E and L, respectively. A service requirement qi, which can be deliv-
ery from the depot, associated with each customer. Vehicles of different type and dif-
ferent capacity must be routed to serve all the customers. A feasible vehicle route 
ρ = {0, v1, v2, . . . , vℓ−1, vℓ, 0} of length l is an ordered sequence of different custom-
ers to be served such that the total capacity of the vehicle is not exceeded and, the 
streets constraints are satisfied. A feasible solution S = {ρ1, ρ2, . . . , ρk} of the prob-
lem is a collection of feasible routes. We denote by c(ρ) the total length of route ρ 
and by c(S) =

∑

ρi∈S c(ρi) the total length of the feasible solution S. The UB2CNP 
problem consists in computing the minimum cardinality set S = {ρ1, ρ2, . . . , ρk} of 
feasible routes such that all the customers are served and each customer is visited by 
a single vehicle. Note that this objective implies the minimization of the number of 
vehicles used for delivering the required goods, thus in turn reducing both the con-
gestion and the pollution in the city tours as well as the final cost.

3.1  The Urban Logistic Network Model

To model this problem we use an edge labeled graph. The nodes represent intersec-
tions and the arcs the streets of the city. The nodes are classified as: depot nodes 
(where goods are stored), costumer nodes (where goods have to be delivered) and 
the transshipment nodes. We assign a different label to each type of street according 
to its width. Moreover, each label will be associated to a particular type of vehicle. 
Without loss of generality, we assume that the labels are ordered according to the 
width of the street. For example, if there are three types of roads there are three dif-
ferent labels: A, B and C. The vehicles associated to label A can travel along the 
streets of type A, B and C, labeled B vehicles can travel along streets B and C, while 
vehicles with label C are allowed to pass only through streets of type C. Each vehi-
cle is characterized by two parameters: (1) the size (which allows it to cross only 
some types of roads) and (2) the maximum load capacity. Starting from a depot each 
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vehicle must pass through the streets of the city (compatible with its size) to deliver 
the required goods along that road and go back to the depot. A cost ck is associated 
to each type of vehicle. The length of each route cannot exceed a fixed value. A sim-
ple example of our referring urban B2C network model is reported in Fig. 1a, which 
shows a small urban center in which eight customers must be supplied from a single 
depot by using three type of vehicles. To each vehicle is associated a capacity 8, 11, 
15 and a fixed cost 59, 84, 112, respectively. To each edge is associated a label rep-
resenting the type of vehicle that can cross this edge. In this particular case, the cost 
of the edges is neglected. The numbers outside the nodes represent the associated 
goods’ demand. In Fig. 1b and c are reported two feasible solutions with cost 339 
and 255, respectively. Readers can easily note how the number of the used vehicles 
impacts on the final cost.

3.2  Mixed Integer Programming Mathematical Formulation

In this section we present a integer programming formulation for the UB2CNP. 
Before presenting the whole model let us summarize the required notations. 
Consider customers at various locations in the city which must be served by vehi-
cles hosted at a central depot. Denote the central depot by 0 and the locations 

(a)

(c)(b)

Fig. 1  A simple example of the problem where no cost are associated to the edge of the graph. a 
The labeled graph G. b A feasible solution with value 112 + 84 + 84 + 59 = 339 and c a better 
solution with value 112 + 84 + 59 = 255
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by i = 1 . . . n. We can represent the input information using a directed network 
G = (V ∪ {0}, E, L), where V denotes the set of n vertices, E the set of m arcs (the 
streets) and L the set of labels associated to the arcs (the streets characteristic).

The following inputs are assumed to be available:

•	 T = number of vehicle types;
•	 Qt = capacity of vehicle type t(Q1 < Q2 < · · · < QT );
•	 ft = fixed activation cost of vehicle type t(fl < f2 < · · · < fT );
•	 dj = demand of customer j;
•	 ct

ij cost to pay for each vehicle of type t that crosses the arc (i, j);

•	 at
ij that assumes value equal to 1 if the edge (i, j) can be traversed by the vehi-

cles of type t;
•	 Vd set of demand nodes;
•	 Vp set of transhipment nodes (V = Vd ∪ Vp ∪ {0} and V ′ = Vd ∪ Vp).
•	 mk = number of vehicles of type k available

In addition, the following decision variables are used:

•	 binary variable xk
ij that assumes value equal to 1 if a vehicle of type k travels 

from i to j, and 0 otherwise;
•	 continuous variable yij that represents the flow of goods from i to j.

Then, the (MIP) formulation of UB2CNP is the following:

(1)
min

∑

k∈T

fk
∑

j∈V ′

xk
0j +

∑

k∈T

∑

i,j∈V
i �=j

ck
ijx

k
ij

(2)s.t.
∑

k∈T

∑

i∈V

xk
ij = 1 ∀ j ∈ Vd

(3)

∑

i∈V

xk
ip −

∑

j∈V

xk
pj = 0 ∀p ∈ V ′, ∀k ∈ T

(4)xk
ij ≤ ak

ij ∀i, j ∈ V , i �= j, ∀k ∈ T

(5)

∑

j∈V ′

xk
0j ≤ mk ∀k ∈ T

(6)

∑

i∈V

yij −
∑

i∈V

yji = qj ∀ j ∈ Vd

(7)

∑

i∈V

yij −
∑

i∈V

yji = 0 ∀ j ∈ Vp

(8)y0j ≤

T
∑

k=1

(Qk)x
k
0j j ∈ V ′
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where M is chosen to be a large number so that (9) becomes redundant if 
∑

k∈T

∑

i∈V xk
ij = 1. For our problem is easy to see that a correct value for M is 

maxk∈T {Qk}. However, due to the constraints (4) we can associate different value Mij 
to each arc (i, j) of the graph considering the maximum capacity of the vehicle among 
those that can traverse the arc (i, j).

In the above formulation, the objective function (1) requires the minimization of 
the total cost to serve all customers. Note that the cost coefficients depend on the 
type of the vehicles; in this way we are able to take into a proper account a sort of 
pollution charge depending on the environmental impact of the vehicle. Moreover 
we consider a fix cost fk required to use the vehicle k. Constraints (2) and (3) impose 
that a customer is visited exactly once and that if a vehicle visits a customer, it must 
also depart from it. Constraints (4) guarantees that each vehicle can traverse only 
appropriate streets. The maximum number of vehicles available for each vehicle 
type is imposed by constraints (5). Constraints (6) and (7) are the commodity flow 
constraints: they specify that the difference between the quantity of goods a vehicle 
carries before and after visiting a customer is equal to the demand of that customer 
(this demand is equal to 0 for the transhipment nodes). The constraints (8) ensure 
that the vehicle capacity is never exceeded whenever the constraints (9) guarantee 
that the value yij can be greater than 0 only if exists at least a vehicle that crosses the 
arc (i, j). Finally, constraints (10) and (11) are the variables constraints.

4  Computational Tests

The model were coded in C++ and solved by CPLEX 12 on a 2.33 GHz Intel 
Core2 processor. We carried out the computational tests on a set of scenarios com-
posed by three instances having the same number of vertices, edges and vehicles. 
In the randomly generated instances, the number of vertices ranges from 10 to 40 
and the density ranges from 0.3 to 0.5. We used small instances because, how we 
will see in the following, the UB2CNP problem appears very hard to solve in par-
ticular when the density of the graph increases. Moreover, we generated instances 
with 2 and 3 different type of vehicles in order to evaluate also the impact of this 
parameter on the performance of the model; in particular, in our instances we con-
sider two types of urban routes where vans and wagons, and vans, wagons and 
trucks are allowed, respectively.

(9)yij ≤ M

T
∑

k=1

xk
ij ∀(i, j) ∈ E

(10)xk
ij ∈ {0, 1} ∀ i, j ∈ V , i �= j, ∀k ∈ T

(11)yi,j ≥ 0 ∀(i, j) ∈ E
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In Table 1a are reported the results of the model with a number of vehicles 
equal to 2. The first four columns list the id (id), the number of vertices (n), the 
number of edges (m) and the number of different vehicles (|T |), respectively. The 
column MIP is divided in three subcolumns (Obj, Routes and Time) reporting 
the objective function value, the number of the routes found and the CPU time 
(in seconds) spent. A threshold of 2 h and of 3 GB of memory were imposed for 
the solution of each instance. The results reported in each line of the table are the 
average values computed on the three instances of the same scenario. Finally, if 
for at least an instance of a scenario the model finds a feasible (but not optimal) 
solution, within the time limit or the memory limit, the marker “*” is reported on 
the column Obj and Routes of that scenario. Moreover, if for at least an instance 
of a scenario the model does not find a feasible solution, within the thresholds, the 
term N.D. (Not Determined) is reported for this scenario.

Table 1  Test results carried 
out on the small instances 
with (a) 2 type of vehicles 
and (b) 3 type of vehicles

* is associated to the computational time if the optimal solution is 
not found within the fixed time limit.

id n m v MIP

Obj #Routes Time

(a)
1 10 13 2 483.33 1 0.02
2 10 18 2 417.66 1 0.02
3 10 21 2 1006.33 3.33 0.07
4 20 54 2 1880.66 5.66 1.06
5 20 73 2 1469.33 5 4.96
6 20 94 2 1983 5.33 20.33
7 30 127 2 3297 8.66 7.91
8 30 170 2 2938.66* 8.33* 434.35
9 30 216 2 2879.33 6 1593.98
10 40 233 2 2735.33* 8* 2480.98
11 40 307 2 2545.33* 7.66* 3142.33
12 40 385 2 2229* 7.33* 3748.88
(b)
1 10 13 3 544.66 1 0.02
2 10 18 3 507.33 1 0.02
3 10 21 3 1789.33 4.66 0.18
4 20 54 3 4186 7.33 3.94
5 20 73 3 2909.33 5.33 10.74
6 20 94 3 3515.33 5.66 719.27
7 30 127 3 5324 8 324.07
8 30 170 3 5078.66* 8* 2627.9
9 30 216 3 5174* 7.33* 3763
10 40 233 3 5122* 9* 3971.91
11 40 307 3 3461* 7.33* 7210.03
12 40 385 3 N.D. N.D. N.D.
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From the results of Table 1a we can see that the model is able to solve all the 
instances up to 30 vertices except for the scenario n°8. On the scenarios up to 
20 vertices, the model is very fast while on the instances with 30 vertices the com-
putational time increases meaningfully. Obviously, as the density of the graph grows 
the computational time increases. However, it is interesting to notice that, in some 
cases, instances with more vertices and low density require less computational time 
than instances with less vertices but higher density (see scenarios 6 and 7). On the 
greatest instances with 40 vertices, the model never finds the optimal solution but, 
within the thresholds, a feasible solution is always found.

In Table 1b are shown the results of the model with a number of vehicles equal 
to 3. Comparing the Time columns of the two tables it is evident that the complex-
ity of the instances meaningfully increases when the number of vehicles grows. 
Indeed, the model finds the optimal solution on the scenarios up to 7. On the 
remaining five scenarios, the model finds in four cases a feasible solution while on 
the scenario n°12 it fails to find a feasible solutions. Also in this table, the scenario 
n°6 required more computational time than the scenario n°7 and this enforces our 
conjecture that the performance of the model are more affected by the density than 
by the number of vertices of the graph.

It should be noted that the value of the solution is closely related to the envi-
ronmental impact of the solution: the smaller the value of the solution (smaller 
the cost of the objective function), the lower is the congestion of city streets and, 
therefore, the lower is the emissions of greenhouse gases and air polluting com-
pounds and noise congestion.

5  Conclusion and Outlines for Future Works

In this chapter we propose a variant of the classical vehicle routing problem 
(VRP). We called “Urban logistic network problem” (UB2CNP) this new variant. 
For this new problem we propose an integer mathematical formulation; the prob-
lem originated from the need of determining a sustainable fleet of vehicles to be 
used for delivering goods in a urban B2C distribution problem.

We execute some preliminary tests of our mathematical programming model 
on random generated graph instances, representing urban transportation networks.

In the future experimentation we will highlight the importance of the type of 
vehicles and how this type affects the optimal solution of the problem; in partic-
ular we deeply analyze the environmental impact in the objective function cost 
component. Moreover one of the aims we want to achieve is to study the relation-
ship between the reduction of the emissions of greenhouse gases and the increased 
costs of the distribution service. To do this we will use the methodology of sen-
sitivity analysis. From applicative point of view we strongly believe that the pro-
posed novel variant of the classical VRP goes in the direction of the development 
of ITS which is one of the necessary tools for efficient smart city models.
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