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Abstract

Given an undirected and vertex weighted graph G = (V,E,w), the Weighted Feedback Vertex Set

Problem consists of finding the subset F ⊆ V of vertices, with minimum weight, whose removal results

in an acyclic graph. Finding the minimum feedback vertex set in a graph is an important combinato-

rial problem that has a variety of real applications. In this paper we introduce a memetic algorithm for

this problem. We propose an efficient greedy procedure that quickly generates chromosomes with specific

characteristics and a wise application of a recent local search procedures based on k-diamonds. Computa-

tional results show that the proposed algorithm outperforms the effectiveness of two other metaheuristics

recently proposed in the literature for this problem.
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1. Introduction

Given an undirected graph G = (V,E), a feedback vertex set (fvs) F ⊆ V of G is a subset of vertices whose

removal results in an acyclic graph (a forest). The feedback vertex set problem (FVS) consists of finding a

fvs of G with minimum cardinality. If G is a vertex weighted graph, then we have the weighted version of

problem (WFVS) that consists of finding the fvs of G with minimum weight.

This problem finds applications in many fields. For example, in the context of operating systems, it

models the problem to prevent and/or remove deadlocks [26] generated by cyclical processes requests of

already locked resources. A similar problem arises in the context of combinatorial circuit design where

the circuits are represented by graphs in which a cycle could generate a “race condition”, that is, some
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circuit elements could receive new inputs before being stabilized. Another application concerns the study

of “monopolies” in synchronous distributed systems [22, 23] where the connection networks are represented

by grid and toroidal graphs. Other applications include program verification [24] and constraint satisfaction

problems [2].

The feedback vertex set problem has been extensively studied (see [10] for a recent survey), and it is

among the first problems shown to be NP-complete [14]. However, it results solvable in polynomial time on

particular class of graphs like: k-diamond graphs [6, 7], permutation graphs [16, 25], reducible flow graphs

[18], interval graphs [19], co-comparability graphs and convex bipartite graphs [13, 17].

For the cases that are not known to be polynomially solvable there have been intensive efforts on approx-

imation algorithms [1, 2, 3, 9, 15] whereas very few heuristics are proposed in the literature for the WFVS.

To the best of our knowledge, for the FVS problem a GRASP procedure [21] and a simulated annealing

algorithm [12] are introduced whereas two metaheuristics XTS [4] and ITS [7] are proposed for the WFVS.

The tabu search XTS is based on the “eXploring Tabu Search” schema [8]. Thanks to this schema, XTS

finds solutions very close to the optimal one in few seconds. In this metaheuristic the neighborhoods are

represented by k-diamond graphs generated by moving a single vertex from the fvs to the forest. These

neighborhoods are explored using an approximation algorithm [1]. The computational complexity of finding

an optimal fvs on a k-diamond graph was left as an open question. This open question is solved in [5, 6]

where a linear time procedure is proposed. The authors embedded this procedure into an iterative tabu

search ITS for the WFVS problem [7].

Looking at neighborhoods used by XTS and ITS algorithms, we can observe that they essentially perform

vertex exchanges between the fvs and the residual graph induced by removing the fvs from the graph. Due

to the WFVS problem characteristics, the generation of new neighborhoods, different from simple vertices

exchange, does not appear to be a simple task. In this contest, a genetic approach, in which several fvs

are created by mixing the vertices of the existing ones, appears to be particularly suitable. For this reason

we propose a memetic algorithm whose main aim is to be more effective than the other metaheuristics for

WFVS. The accomplishment of our aim is certified by computational results carried out on benchmark

instances. These results show that our algorithm, on the small instances, often finds the optimal solution.

Moreover, on the large instances, our algorithm finds better solutions than ITS and XTS algorithms.

The remainder of the paper is organized as follows. Section 2 introduces the definitions and notations

that are used throughout the paper. Section 3.1.1 contains the description of our greedy algorithm for the

creation of chromosomes. The memetic algorithm is described in Section 4. Finally, the computational

results are presented in Section 5 and some concluding remarks are given in Section 6.
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2. Definitions and Notations

Let G = (V,E,w) be an undirected and vertex weighted graph, where V is the set of n vertices, E is the

set of m edges, and, w(v) is a positive weight associated with each vertex v ∈ V . Given a subset X ⊆ V of

vertices, we define X̄ = V \X and W (X) as the sum of the weights of its elements, i.e. W (X) =
∑
v∈X w(v).

We denote by G[X] the subgraph of G induced by the set of vertices X ⊆ V . Formally, G[X] = (X,E[X], w)

where E[X] = {(u, v) ∈ E : u, v ∈ X}. Let δX(v) and dX(v) be the set of vertices adjacent to v and the

degree of the vertex v in G[X], respectively. When X = V , we simply denote these data by δ(v) and d(v),

respectively. Moreover, let rnd(a, b) be a function that returns a random integer value within the interval

[a, b].

A tree is an acyclic and connected graph while a forest is an acyclic graph in which any connected

component is a tree. Given a set of vertices X ⊆ V , the residual graph of G, generated by X, is the

subgraph G[X̄]. The set X is a feedback vertex set (fvs) of G if the residual graph G[X̄] is a forest. For

the graph G depicted in Figure 1a, the set of vertices X = {6, 16} is a fvs of G because G[X̄] is a forest

(Figure 1b).

From now on, we denote by F (G) and by F ∗(G) any fvs and a minimum weight fvs (optimal solution)

of G, respectively. When no confusion may arise, we simply denote these sets by F and F ∗, respectively. A

vertex v ∈ F (G) is redundant if F (G) \ {v} is again a fvs of G. F (G) is a minimal fvs if it does not contain

redundant vertices, i.e. there can not be a fvs F ′(G) such that |F ′(G)| < |F (G)| and F ′(G) ⊂ F (G). Any

vertex v ∈ V is said to be appended if it is not included in any cycle of G. In Figure 1c the vertices 2, 9 and

14 are appended. We say that a graph is reduced if it does not contain any appended vertex (Figure 1d).

Finally let us define the k-diamond graphs [7].

Definition 1. A weighted k-diamond DR,z = (VR, ER, w), where k ≥ 1, R = {r1, r2, . . . , rk} and z ∈ VR, is

an undirected and vertex weighted graph where (i) each vertex v ∈ VR is included in a simple path between

exactly one of the k apices ri ∈ R and the vertex z and (ii) DR,z[VR \ {z}] is a forest with k connected

components.

In Figure 1d the 2-diamond graph D{5,7},6 is depicted, where r1 = 5, r2 = 7 and z = 6. As we will see

in section 3.5, our local search procedure builds k-diamonds graphs as subgraphs of G and it uses them to

improve the solutions. For instance, the k-diamond graph D{5,7},6 shown in Figure 1d can be obtained from

G by removing the vertex 16 and the appended vertices generated by its removal.

To simplify the notation, in the rest of the paper we denote a diamond DR,z just as Dz, since for our

aims the upper apices are negligible.
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Figure 1: (a) A generic graph G. (b) The residual graph G[X̄] where X = {6, 16}. Since G[X̄] is a forest, X is a fvs of G. (c)
The subgraph of G obtained reinserting the vertex 6 in the residual graph G[X̄]. This graph contains three appended vertices:
2,9,14. (d) Removing these vertices we obtain a 2-diamonds graph.

3. A memetic approach: basic components

Memetic algorithms belong to the class of evolutionary algorithms that use local search within a classical

genetic algorithm framework to intensify the search phase. The algorithm starts with a set of solutions for the

WFVS problem (represented by chromosomes), called population, and it uses the solutions in this population

to generate a new population. In particular, at each iteration, two chromosomes (parents) are selected from

the population and the crossover operator is invoked on these parents to generate a new chromosome (child)

on which the mutation operator is applied. Finally, a local search, based on k-diamonds, is applied on the

child before it replaces one of the two parents into the population. This is motivated by the hope that the

new population will be better than the previous one. Solutions which are selected to form new solutions

are selected mainly according to their fitness: the more suitable they are the more chances they have to be
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Figure 2: Three fvs of graph G. F1 and F2 are chromosomes because they are minimal fvs of G. Their fitness is obtained by
adding the weight of their vertices (there are no penalties in this example). F3 is not a chromosome because the vertex 3 is
redundant.

selected for the crossover operation. This is repeated until a stop criterion is fulfilled. For a complete and

detailed description of the memetic algorithms and their characteristics the reader can refer to [20].

The elements that compose our memetic algorithm are described below in details.

3.1 Chromosomes and fitness

We define the chromosome as a set F ⊆ V of vertices (each vertex in F can be viewed as a gene) such that

G[F̄ ] is a forest and there are no redundant vertices in F . In other words, a chromosome is a minimal fvs of

the graph. The fitness f(F ) of chromosome F is defined as the sum of weight w(v) and (possible) penalty

ρ(v) of each vertex v in F . Formally: f(F ) =
∑
v∈F {w(v) + ρ(v)}.

In Figure 2 a graph G and three fvs of graph are shown. F1 and F2 are chromosomes of G and their

fitness value is shown on the right. In this example, the fitness value is equal to the sum of the weights of

the vertices because there are no penalties associated to the vertices. The last fvs F3 is not a chromosome

because, by removing the vertex 3 from F3, we obtain a smaller fvs of G. As we will see later, the sets

of vertices generated by crossover and mutation operators can contain redundant vertices. To avoid this,

every time a new fvs is created or modified by these operators, a redundancy control is carried out by our

algorithm.

3.1.1 Chromosomes generation: the Snd procedure

In this section we introduce the procedure we used to generate chromosomes, namely the Snd procedure.

Given a graph G = (V,E,w), Snd computes a fvs F of G according to the pseudocode shown in Algorithm 1.

At the beginning the set of vertices X, of the residual graph, is equal to V while F is an empty set (line 1).

5



At each iteration, the algorithm randomly selects a vertex u ∈ X among the three vertices with lowest ratio

∆X(u) = w(u)/ND(u) where ND(u) =
∑
v∈δ(u) w(v)/

√
dX(v). The vertex u is moved from residual graph

G[X] to F . Then the algorithm removes all the appended vertices in G[X \ {u}]. The process is repeated

until X = ∅. Finally, any redundant vertex in F is removed.

Algorithm 1: Snd

Input: G(V,E,w);
Output: a feedback vertex set of G;

1 X ← V , F ← ∅;
2 ∆X(u)← w(u)∑

v∈δ(u) w(v)/
√
dX(v)

∀v ∈ X;

3 while X 6= ∅ do
4 Randomly select a vertex u among the three vertices with lowest ∆X ;
5 X ← X \ {u}, F ← F ∪ {u};
6 while ∃v ∈ X : dX(v) < 2 do
7 X ← X \ {v};
8 Update dX(u) and ∆X(u) in G[X] ∀u ∈ X;

9 Remove redundant vertices from F ;
10 return F ;

The Snd is a greedy procedure that, by using the value of ∆X , at each iteration tries to identify the more

promising vertex to be added to the fvs. The more promising vertex is the one having lowest ratio between

its weight and the number of cycles that are broken by its removal from the graph. However, since the

number of broken cycles cannot be computed in polynomial time, we use an estimate of this number. For

each vertex u ∈ X, Snd computes ∆X(u) = w(u)/ND(u) and classifies, as the more promising vertex, the

one with the lowest ∆X(u). Therefore, the probability to select the vertex u is inversely proportional to its

weight and directly proportional to ND(u) =
∑
v∈δ(u) w(v)/

√
dX(v). This last value represents an estimate

of the neighborhood of u that takes into account the weight and degree of all vertices in δ(u). When the

value of ND(u) increases, the probability that the removal of u is more convenient that the removal of any

other vertex v ∈ δ(u) increases.

The computation of ND(u) is carried out using the squared root of its degree in order to reduce the

impact of degree on the ratio w(v)/
√
dX(v); this is particularly important when the vertex weights have low

values.

We will use the Snd procedure to generate the initial population, for our memetic algorithm, but also to

transform (removing the redundancy) the set of vertices returned by the crossover operator into a chromosome

(when needed).
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3.2 Initial Population

The initial population is composed of σ chromosomes. Since the performance of our algorithm is affected

by population size, we chosen σ = 50 because this is the minimum value that, experimentally, guarantees us

the individuation of good quality solution without penalizing the performance. In order to ensure a better

dispersal of solutions and to reduce the risk of a premature convergence, the algorithm tries to avoid the

presence of clones (identical chromosomes) in the initial population. Every time a clone is generated, the

algorithm invokes the mutation operator, described in section 3.4. The generation of chromosomes is carried

out by randomly selecting one of the two methods described next.

The first method invokes the Snd procedure on the graph G. Each execution of Snd often produces a

different chromosome of the graph because of the vertex selection policy applied by Snd at each iteration

(Algorithm 1, line 4).

The second method builds a fvs by randomly selecting the vertices, at each iteration. In more detail,

the second method starts with a residual graph G′ = G and F ← ∅ and, at each iteration, the procedure

randomly selects a vertex v ∈ V ′ that is removed from G′ with its incident edges. The residual graph G′

is updated consequently (i.e. V ′ ← V ′ \ {v}, E′ ← E′ \ {
⋃

k∈δV ′ (v)

(v, k)}) and the vertex v is inserted in F .

Then the procedure recursively removes from G′ all vertices whose degree has become less than 2, due to

the removal of the vertex v, because they do not belong to cycles. The procedure stops when V ′ = ∅. The

resulting set of vertices F is a fvs of G. Since the operations, carried out at each iteration, have a cost equal

to the number of edges removed, the total cost of the procedure is O(m).

Since the chromosomes, obtained by the second method, contain any kind of vertex regardless of its

characteristics (weight, degree, etc.), the presence of these chromosomes into the population guarantees that

all the vertices of the graph can participate to the evolutionary process.

The application of these two methods allows the creation of a variegated population that will benefit of

a better exploration of the solutions space.

3.3 Crossover operator

The crossover operator plays a key role in the memetic algorithm because it influences the effectiveness of

the algorithm. This operator allows the creation of new chromosomes by using the chromosomes present in

the population. In particular, the crossover takes in input two chromosomes of the population, the parents,

and generates a new chromosome, the child, that bears a resemblance to each parent.

In details, the chromosomes in the population are sorted, in ascending order, according to their fitness

values. The first parent, Fb, is randomly selected from the whole population whereas the second parent,

Fa, is randomly selected among the chromosomes with fitness lower than or equal to f(Fb). The crossover

uses Fa and Fb to generate a new set of vertices, Fc, by randomly selecting k different vertices from the two

parents, where k = min{|Fa|, |Fb|}. If Fc is a fvs of G, then the operator performs a redundancy control
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on it and returns the new chromosome. Otherwise a modified version of Snd procedure on the graph G[F̄c]

is invoked. This modified version builds a new chromosome by starting from a set of vertices Fc instead of

starting from an empty set. To this end, it is sufficient to change the line 1 in the Algorithm 1 as follows:

X ← V \ Fc and F ← Fc.

The aim of our crossover is to generate children by joining the vertices of the parents without taking in

account neither the characteristics of these vertices like the weight, the degree and the occurrences into the

population nor the fitness of children produced. The vertices are selected randomly from the parents and, as

a result, each vertex has the same probability to be inherited from the children. In this way, we try to keep

a heterogeneous population in order to avoid the problem of a fast convergence of the algorithm towards a

local minimum. In this step, we do not care about the fitness of children produced by the crossover, because

the goal to improve this fitness is delegated to the local search procedure.

3.4 Mutation Operator

Mutation is a genetic operator that alters one or more genes in a chromosome to introduce perturbation

and thus providing diversification in the new generated chromosomes. Our mutation operator modifies a

chromosome F by replacing some of its vertices with vertices of the forest G[F̄ ]. More in detail, the mutation

randomly selects and removes k vertices from F , where k = rnd(1, 5). The resulting set of vertices F ′ ⊂ F

is not a fvs of G because, by definition, F does not contain redundant vertices. The k removed vertices are

inserted into the forest G[F̄ ] and a new graph G′ = (V ′, E[V ′], w), where V ′ = V \ F ′, that contains cycles

is built. For each cycle in G′, one of its vertices is removed by the mutation operator until an acyclic graph

is obtained. The vertex to remove from cycle is selected by applying, randomly, one of the following three

rules:

• Select the vertex v with minimum ratio w(v)/d(v);

• Select the vertex v with maximum degree d(v);

• Randomly select a vertex v of the cycle;

The selected vertex v is then added to F ′. Note that, according to the previous three rules, the selected

vertex v could be one of the k vertices previously removed from F . Since the aim of the mutation operator

is to generate a solution different from F , the operator selects one of these k vertices only if it is strictly

necessary, i.e. if there is a cycle in G′ composed only of vertices in F \F ′. The selection process is repeated

until no more cycles are into the residual graph G′. Finally, a redundancy control on F ′ is carried out.

3.5 Local Search procedure

To enforce our genetic algorithm we use a local search procedure called best local search (BLS). The idea

behind the BLS is to reduce the weight of the chromosome by ”replacing” one of its vertices with a cheaper
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Figure 3: a) The vertex 6 of the chromosome is introduced into the forest F generating cycles. b) By removing all the appended
vertices from F ∪ {v} a 2-diamond graph D6 is obtained. The optimal fvs of D6 is F6 = {7, 10, 12} with W (F6) = 36. Since
w(v) = 47 > W (F6), by replacing the vertex 6 with F6 in F a new chromosome with lower weight is obtained.

set of vertices from the forest. In more details, let F be a chromosome of G and let F = G[F̄ ] be the forest

induced by vertices outside the chromosome. It is easy to see that moving a vertex v from F to F , we

generate a new graph G′ = F ∪{v} in which all the cycles pass through v (see Figure 3a). By removing from

G′ all the appended vertices a 2-diamond graph Dv is obtained (Figure 3b). The WFVS problem can be

solved in linear time on the k-diamond graphs by using the dynamic programming algorithm (DP) provided

in [7].

Let us see now how the BLS uses the DP algorithm to decrease the weight of chromosomes, when possible.

For each vertex v ∈ F , the local search procedure inserts v into the forest F and it removes all the appended

vertices from F ∪ {v} obtaining the k-diamond Dv. Then the BLS invokes the DP algorithm on Dv to find

the optimal fvs Fv. If W (Fv) ≥ w(v) (i.e. no improvements are possible by replacing v) the BLS rebuilds

the forest G[F̄ ] and selects the next vertex of chromosome. Otherwise the BLS replaces v with Fv in F ,

produces a new chromosome F ′, with W (F ′) < W (F ), and invokes a redundancy control on F ′. The BLS

compares the improvement W (F ) −W (F ′), obtained by replacing v, with the best improvement found so

far and it saves the replacement with greatest improvement between them. Finally, the BLS rebuilds the

forest G[F̄ ] and selects the next vertex. The local search repeats this process for all the vertices of F and, at

the end, it carries out the best replacement on the chromosome F . As a result, a better chromosome F1 is

produced on which the BLS invokes itself recursively. The local search stops when it does not improve the
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chromosome on which it is invoked.

The only drawback of the BLS is computational expensive. Indeed, this procedure invokes the DP

algorithm for each vertex v belonging to the chromosome and, every time the replacement of v generates an

improvement, a computational expensive redundancy control on the new chromosome F ′ must be carried

out. Finally, every time the BLS generates a better chromosome, through the best replacement, the local

search recursively invokes itself on this chromosome. For this reason, the BLS procedure has to be used in

an appropriate manner not to slow down the performance of memetic algorithm.

For instance, the BLS should not be invoked on the bad chromosomes, i.e. the chromosomes with a weight

that is at least 20% greater than the weight of the current best chromosome into the population. On this

chromosome, the BLS usually carries out a lot of improvements that means a lot of recursive invocations.

We solve this problem by introducing another local search procedure, named first local search (FLS), that

carries out the first replacement that improves the chromosome instead of the best one as BLS does. This

makes the FLS much faster than the BLS and more useful to improve the bad chromosomes. The BLS will

be used on the good chromosomes, i.e. the chromosomes with a weight that is at most 20% greater than

the current best chromosome. Usually, on these chromosomes there are few possible improvements and so

we prefer to apply the BLS to gain the maximum improvement, every time a replacement is carried out by

procedure during the computation.

4. The Memetic Algorithm

In this section we introduce our memetic algorithm (MA) based on all the elements described in previous

sections. The MA combines the exploration capabilities of genetic algorithms with efficient local search

procedures and with a diversification mechanism based on a penalization of the vertices. In Algorithm 2 the

pseudocode of MA is shown.

The first step carried out by MA is the generation of an initial population and the identification of

its best chromosome F̂ (line 2). The repeat-until loop (lines 3-25) manages the diversification mechanism

that is applied max div times. Since the algorithm could be trapped into a local minimum, far from the

optimal solution, we overcome this event by applying the diversification schema that generates a new initial

population taking in account the penalizations associated with the vertices of the local minimum. In this way,

MA can improve the current incumbent solution by exploring new regions in the solutions space. Obviously,

as the value of max div increases, the chances to find better solutions increase. In our implementation

max div is set to 1 because the improvements gained in our test results, with greater values of max div, do

not justify the relevant increment of computational time of algorithm.

The body of the repeat-until loop is divided into two phases. The first phase (lines 4-21) represents the

core of memetic algorithm in which the classical operations of such approach are carried out. The second

phase (lines 22-24) is used to diversify the chromosomes of the population by penalizing the vertices in F̂ .
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Algorithm 2: MA

Input: G(V,E,w);
Output: a minimal feedback vertex set of G;

1 n div← 0; current iter← 0;

2 Build the initial population P and let F̂ be the best chromosome in it;
3 repeat
4 while current iter ≤ MaxIt do
5 for i← 1 to (0.2× |P|) do
6 Select parent chromosomes Fa and Fb;

// w.l.o.g. let Fb be the worst parent, i.e. f(Fa) < f(Fb) and
// Fb be different from parents chosen in the previous steps of the for loop

7 Fc ← Crossover(Fa, Fb);
8 if Chk Fitness(Fc) = false then
9 Fm ← Mutation(Fc);

10 if Chk Fitness(Fm) = true then
11 Fc ← Fm;

12 else
13 if f(Fm) < f(Fc) then
14 replace the worst parent Fb with Fm in P;

15 else
16 replace the worst parent Fb with Fm or Fc in P with the same probability;

17 if current iter ≥ 0.8×MaxIt then

18 if (f(Fc) ≤ f(F̂ ) + 0.2× f(F̂ )) then
19 Fc ← BLS(Fc);

20 else
21 Fc ← FLS(Fc);

22 Penalize(F̂ ); // Penalize the 75% of vertices in F̂
23 P← New Pop(P); // Modify the current population according to the penalizations

24 UnPenalize(F̂ ); // Remove penalizations

25 until n div > max div;

26 return F̂ ;

27 Function: Chk Fitness(Fc)

28 if f(Fc) < f(F̂ ) then

29 F̂ ← Fc; current iter← 0, n div← 0;
30 Replace the worst parent Fb with Fc in P;
31 return true;

32 else
33 return False

In the sections to follow a detailed description of these two phases is given.

4.1 The first phase

The first phase of MA consists of a while loop (lines 4-21) repeated for MaxIt consecutive iterations,

without improvement of the incumbent solution F̂ . The value of MaxIt is computed by means of the
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following formula: MaxIt = 50 + 200/(
√
n ×

√
D(G)) where D(G) is the density of the graph. The value

50 in the formula represents the minimum number of iterations that MA has to execute. The value of the

remaining part of the formula depends on the size and on the density of G. In particular, the value of

MaxIt decreases, as the size and the density of the graph increases. We made this choice to improve the

performance of MA that depends on these two characteristics of the graph. On the small instances (up to

75 vertices), the formula assigns a high value to MaxIt to increase the chances to find the optimal solution.

Since the iterations are very fast on this kind of instances, no performance problems arise. Instead, on large

instances the iterations are more expensive and therefore the algorithm has to perform less iterations to

avoid poor performance. Although this choice reduces the effectiveness of our algorithm on large instances,

the results of computational tests show that MA remains more effective than the other metaheuristics.

At each iteration of the first phase (line 4) we want to generate a new population that differs from the

previous one by at most 20% of chromosomes. To this end, we use a for loop (line 5) executed 0.2 × |P |
times. In this loop the selection of parents, the crossover operator, the mutation operator and the local

search procedures are sequentially executed and a new child chromosome is inserted into the population,

when possible. The first step of the for loop is the selection of the two parent chromosomes, Fa and Fb,

from the current population, on whose the crossover operator is applied to generate the child chromosome

Fc (lines 6-7). W.l.o.g. we suppose that Fb is the worst of the two parents, that is f(Fa) < f(Fb), that is

different from any other chromosome chosen in the other steps of the for loop. On line 8, the Chk Fitness

procedure (lines 27-33) is invoked on Fc. This procedure checks if the fitness of Fc is lower than the fitness

of the incumbent solution F̂ . If this is the case, the incumbent solution F̂ is updated to Fc, the iteration

and diversification counters are set to 0 and the parent Fb is replaced by child Fc (lines 29-31). Otherwise

the procedure returns the false value in order to signal that Fc is not inserted into the population. Going

back to the main loop, if Chk Fitness returns false (line 8) then the mutation operator on Fc is applied

(line 9). On the “mutated” child Fm the Chk Fitness procedure is again invoked (line 10) and if returns

true then Fm is assigned to Fc. Otherwise if Chk Fitness returns false, the algorithm compares the fitness

of Fm and Fc (line 13) to establish who is the chromosome that have to replace the worst parent Fb into the

population. If f(Fm) ≤ f(Fc) then Fm replaces Fb otherwise one between Fm and Fc is randomly selected

by the algorithm in order to replace Fb. This last choice is made because we prefer to apply the local search

procedure on the mutated chromosome instead of the one generated by the crossover operator.

In lines 17-21 the criterion used to invoke the BLS and FLS are reported. The application of these two

local search procedures represents the key of MA effectiveness. However, since this application is expensive

in terms of computational time, it is necessary to decide accurately ”how” and ”when” to invoke these

procedures, during the computation, to obtain a good trade-off between effectiveness and performance. To

this end, the 80% of iterations are carried out by MA without the application of the local search procedures

(line 17). We made this choice because we want to preserve the variety of the initial population. Under

the threshold of 80% the evolution of population is carried out partially neglecting the fitness of the new
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chromosomes generated. Only the invocation of Snd procedure, inside the crossover operator, takes in account

the fitness value to ”complete” the chromosome. In this way any kind of chromosome can be present into

the population assuring us a high level of diversification. Instead, by applying the local search procedures

from the beginning, we risk to lose this diversification level and to produce a premature convergence of

the algorithm. The threshold of 80% is introduced also for performance reasons. As already explained in

section 3.5, the application of local search procedures on bad chromosomes is expensive because of the high

number of improvements carried out. For this reason it is not convenient to apply these procedures during

the first iterations of the algorithm when there could be a lot of bad chromosomes in the population.

When the test of line 17 holds, if Fc is a good chromosome then BLS is invoked (line 19) otherwise FLS

is invoked (line 21). The if on line 18 is used to classify the chromosomes in good and bad according to the

definition given in section 3.5.

As we will see in section 5, the introduction of FLS procedure and the criterion used by MA to invoke

the two local search, makes our algorithm much more effective than the ITS metaheuristic [7] that uses only

the BLS local search.

4.2 The second phase: population replacement

Since, during the first phase, MA may get trapped into a local minimum, it is necessary to provide a

mechanism to reduce this occurrence. To this aim, we use the chromosomes present, at the end of the

first phase, in the population. Indeed, since many of these chromosomes have a fitness often close to f(F̂ ),

possible better solutions can be obtained by replacing few vertices. Given that MA has to escape from

the current local minimum F̂ , the identification of the vertices to be replaced is carried out by adding a

penalty to the vertices in F̂ . Then the first step of the second phase invokes the Penalize procedure on F̂

(Algorithm 2, line 22). This procedure randomly selects the 75% of vertices of F̂ and it sets their penalties

equal to max
v∈V
{w(v)} while the remaining vertices of the graph have the penalties set to zero. The fitness

of all the chromosomes in the population is recomputed according to the new penalties. Since the fitness

of the chromosomes is given by f(F ) =
∑
v∈F {w(v) + ρ(v)}, if a chromosome contains at least one of the

vertices selected by the Penalize procedure then its fitness value grows by penalizing it. The New Pop

procedure is invoked (line 23) on the population. This procedure implements the first phase (lines 4-21) with

the only difference that the number of iterations carried out is very low (MaxIt = 10). Since the fitness

of chromosomes is computed by adding the weight and the penalties of each vertex into the chromosome,

the algorithm tends to avoid the penalized vertices for the creation of new chromosomes. As a result, the

procedure generates a new population that, by using few vertices of F̂ , allows the exploration of a new part

of the space solutions. At the end of New Pop procedure, all the penalties are set to zero (line 24) and the

counter of diversification is increased by one. The algorithm restarts from the new population just generated.
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5. Test Results

The MA algorithm was coded in C++ and runs on a 2.33 GHz Intel Core2 processor. The tests are carried

out on the set of benchmark instances proposed in [7]. Besides the generic random graphs, this benchmark

set includes grid, toroidal and hypercube graphs whose practical applications are presented in [11, 22, 23].

Each instance is characterized by the number of vertices (size), the number of edges and a range of values

for the weight of the vertices. The instances are divided into two groups: the small instances, composed

of 25, 50 and 75 vertices, and the large instances, where the instance sizes range from 100 to 500 with

increments of 100. The weight of vertices is an integer value selected within the ranges: 10-25, 10-50 and

10-75. The combination of all these parameters allows us to verify the robustness of the solution produced by

the algorithms. In particular, we want to highlight how the effectiveness and performance of the algorithms

are affected by problem size, by density of the graph, by the weight ranges and by the classes of graphs. We

compare our MA algorithm with the two tabu search ITS [7] and XTS [4].

The XTS algorithm is based on the “eXploring Tabu Search” schema [8]. The basic idea behind this

schema is to select the best solution into the neighborhood but in the same time to create a set of “good”

solution of the neighborhood that could be used in the following as starting point to diversify the search,

leading it toward promising regions. When some conditions are satisfied, the search restarts from one of

these solutions. The effectiveness of this schema is proven by results obtained by XTS that, in few seconds,

finds solutions very close to the optimal one. In this metaheuristic the neighborhoods are represented by

k-diamond graphs generated by moving a single vertex from the fvs to the forest. These neighborhoods are

explored using an approximation algorithm [1]. The ITS algorithm is an iterative tabu search that uses the

same neighborhood of XTS but this last is explored in a more efficient way by replacing the approximation

algorithm with a linear procedure that is able to solve the WFVS problem on the k-diamonds and then to

always individuate the best solution inside the neighborhood. Since the authors of XTS and ITS provided us

their source codes, an accurate comparison of these three algorithms is carried out because they are compiled

and executed on the same machine.

5.1 Small Graphs

In Table 1 the results of the three algorithms on the small random graphs are reported. The first five columns

report the id (id) of the instance, the number of vertices (n), the number of edges (m), the lower (low) and

the upper (up) bounds of the vertex weight, respectively. The sixth column (Opt) shows the optimal solution

value. The columns ITS, XTS and MA are divided into two subcolumns (Value and Time) reporting their

solution value (in bold when equal to the optimal value) and the computational time in seconds, respectively.

The results reported in each line are the average values over five instances with the same characteristics but

with a different node weight assignment. The second last line reports, for each algorithm, its average gap

value (agv) and its average computational time (avgt). The average gap value is computed using the Opt
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Random graphs: Small Instances
Id Instance Opt ITS XTS MA

n m low up Value Time Value Time Value Time
S R1 25 33 10 25 63.8 63.8 0.00 63.8 0.00 63.8 0.08
S R2 25 33 10 50 99.8 99.8 0.00 99.8 0.00 99.8 0.08
S R3 25 33 10 75 125.2 125.2 0.00 125.2 0.00 125.2 0.08
S R4 25 69 10 25 157.6 157.6 0.00 157.6 0.00 157.6 0.08
S R5 25 69 10 50 272.2 272.2 0.00 272.2 0.00 272.2 0.08
S R6 25 69 10 75 409.4 409.4 0.00 409.4 0.00 409.4 0.09
S R7 25 204 10 25 273.4 273.4 0.02 273.4 0.00 273.4 0.09
S R8 25 204 10 50 507.0 507.0 0.01 507.0 0.00 507.0 0.09
S R9 25 204 10 75 785.8 785.8 0.01 785.8 0.00 785.8 0.09
S R10 50 85 10 25 174.6 175.4 0.03 176.0 0.03 174.6 0.20
S R11 50 85 10 50 280.8 280.8 0.03 281.6 0.03 280.8 0.20
S R12 50 85 10 75 348.0 348.0 0.02 349.2 0.03 348.0 0.23
S R13 50 232 10 25 386.2 389.4 0.07 386.8 0.05 386.2 0.26
S R14 50 232 10 50 708.6 708.6 0.06 708.6 0.05 708.6 0.28
S R15 50 232 10 75 951.6 951.6 0.04 951.6 0.05 951.6 0.28
S R16 50 784 10 25 602.0 602.2 0.11 602.0 0.05 602.0 0.35
S R17 50 784 10 50 1171.8 1172.2 0.15 1172.0 0.05 1171.8 0.42
S R18 50 784 10 75 1648.8 1649.4 0.14 1648.8 0.05 1648.8 0.37
S R19 75 157 10 25 318.2 321.0 0.13 320.0 0.11 318.2 0.54
S R20 75 157 10 50 521.6 526.2 0.14 525.0 0.12 522.6 0.53
S R21 75 157 10 75 751.0 757.2 0.11 754.2 0.12 751.0 0.53
S R22 75 490 10 25 635.8 638.6 0.16 635.8 0.18 635.8 0.60
S R23 75 490 10 50 1226.6 1230.6 0.27 1228.6 0.19 1227.6 0.76
S R24 75 490 10 75 1789.4 1793.6 0.13 1789.4 0.20 1789.4 0.77
S R25 75 1739 10 25 889.8 891.0 0.40 889.8 0.16 889.8 0.91
S R26 75 1739 10 50 1664.2 1664.8 0.35 1664.2 0.15 1664.2 0.86
S R27 75 1739 10 75 2452.2 2452.8 0.33 2452.2 0.16 2452.2 0.84
agv agvt 1.19 0.10 0.54 0.07 0.07 0.36
Hits 13/27 18/27 25/27

Table 1: Test results carried out on the small instances of random graphs.
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Figure 4: The average gap value of the three algorithms, on the small random
graphs, with respect to the instance size.
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column as the baseline, e.g. the agv of ITS algorithm is calculated by:
( p∑

i=1

ITSi −
p∑

i=1

Opti

)
/p where Opti

and ITSi are the optimal value and the solution value, computed by ITS, on the i-th instance, respectively,

and p is the number of instances in the table. The last line (Hits) of the table shows how many times the

algorithms find the optimal solution.

Random Graph. On the instances with 25 nodes the optimal solution is always found by the three

algorithms. On size 50, the optimal solution is found 4 times out of 9 by ITS and by XTS and it is always

found by MA. On size 75, MA does not find the optimal solution two times (S R20 and S R23) whereas

XTS misses it 4 times and ITS never finds it. In the following, the terms “hit” and “miss”, are used to

denote if an algorithm finds or not the optimal solution, on the small instances, or the best solution, on the

large instances, respectively. On the 27 instances of Table 1, 13 hits for ITS, 18 hits for XTS and 25 hits

for MA occur with an agv equal to 1.19, 0.54 and 0.07, respectively. These results show that MA overcomes

the effectiveness of the other two algorithms on random instances.

From the results of Table 1 it is possible to find the characteristics of the instances that affect the

effectiveness of the algorithms. For instance, ITS never finds the optimal solution on instances with range

weight 10-25, when n = 50 and n = 75. Moreover, the 0 hits of ITS, verified on the instances with 75 vertices,

show that this algorithm loses effectiveness, as the size of problem increases. For XTS the worst results (0

hits) are obtained on the graphs with lowest density (S R10, S R11, S R12, S R19, S R20, S R21). Unlike

the previous two metaheuristics, neither the size nor the weight range nor the density seem to affect the

effectiveness of MA as shown by its 25 hits out of 27 instances.

In order to show the agv trend of the three algorithms, as the size of the problems increases, we introduce

another value (agvs) representing the average gap value but computed on the instances with the same size.

For instance, on the small random graphs, the agvs of ITS are equal to 0.00, to 0.58 and to 3.00 for n=25,

n=50 and n=75, respectively. The agvs of the three algorithms is plotted in Figure 4 where on the x-axis

the size of the instances is reported and on the y-axis the corresponding agvs value. This figure clearly

shows that the agvs of ITS increases rapidly with the instance size while the growth of agvs for the other

two algorithms is slower. It is interesting to notice that, on size 75, the agvs of MA is five times lower than

agvs of XTS and thirteen times lower than agvs of ITS. Regarding the performance, all the algorithms are

very fast with a running time that is negligible because always lower than one second.

Squared and Not Squared Grid Graphs. The Tables 2 and 3 report the results on the squared and

not squared grid graphs, respectively. Here the columns x and y represent the number of the rows and of

the columns of the grid, respectively. From results of Tables 2 it is evident that ITS is the least effective

algorithm with only 2 hits (S SG1 and S SG2) out of 9 instances and an agv that is the highest one (1.73).

Since ITS has a similar behaviour also on the remaining classes of graphs, in the following the comparison
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Squared Grid graphs: Small Instances
Id Instance Opt ITS XTS MA

x y low up Value Time Value Time Value Time
S SG1 5 5 10 25 114.0 114.0 0.00 114.0 0.00 114.0 0.08
S SG2 5 5 10 50 199.8 199.8 0.00 199.8 0.00 199.8 0.08
S SG3 5 5 10 75 312.4 312.6 0.00 312.4 0.00 312.4 0.08
S SG4 7 7 10 25 252.0 252.4 0.03 252.0 0.03 252.0 0.18
S SG5 7 7 10 50 437.6 439.8 0.03 437.6 0.02 437.6 0.18
S SG6 7 7 10 75 713.6 718.4 0.03 717.4 0.02 713.6 0.18
S SG7 9 9 10 25 442.2 444.2 0.22 442.8 0.13 442.2 0.52
S SG8 9 9 10 50 752.2 754.6 0.29 753.0 0.14 752.2 0.59
S SG9 9 9 10 75 1134.4 1138.0 0.13 1134.4 0.14 1134.4 0.51
agv agvt 1.73 0.08 0.58 0.05 0.00 0.27
Hits 2/9 6/9 9/9

Table 2: Test results on the small squared grid graphs.
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Figure 5: The agvs on the small squared grid graphs.

Not Squared Grid graphs: Small Instances
Id Instance Opt ITS XTS MA

x y low up Value Time Value Time Value Time
S NG1 8 3 10 25 96.8 96.8 0.00 96.8 0.00 96.8 0.07
S NG2 8 3 10 50 157.4 157.4 0.00 157.4 0.00 157.4 0.07
S NG3 8 3 10 75 220.0 220.0 0.00 220.0 0.00 220.0 0.08
S NG4 9 6 10 25 295.6 295.8 0.07 295.8 0.04 295.6 0.29
S NG5 9 6 10 50 488.6 489.4 0.04 488.6 0.04 488.6 0.23
S NG6 9 6 10 75 755.0 755.0 0.04 755.2 0.04 755.0 0.26
S NG7 12 6 10 25 398.2 399.8 0.15 398.8 0.09 398.4 0.34
S NG8 12 6 10 50 671.8 673.4 0.12 671.8 0.09 671.8 0.36
S NG9 12 6 10 75 1015.2 1017.4 0.10 1015.4 0.09 1015.2 0.42
agv agvt 0.71 0.06 0.13 0.04 0.02 0.24
Hits 4/9 5/9 8/9

Table 3: Test results on the small not squared grid graphs.
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Figure 6: The agvs on the small not squared grid
graphs.

will be more focused on the other two algorithms. XTS finds 6 times the optimal solution, with an agv equal

to 0.58, whereas MA does even better with 9 hits out of 9 instances. On the not squared grid graphs there

is an improvement of ITS results with 4 hits and an agv decreased to 0.71. Lightly better are the results

of XTS that reports 5 hits with an agv equal to 0.13. Here it is evident how the range weight affect the

effectiveness of XTS because all its misses always and only occur on the instances with range weight 10-25

and 10-75. The best results are obtained by MA with 8 hits and an agv equals to 0.02. Also on the grid

graphs the running time of the three algorithm is still negligible.

The graphics depicted in Figures 5 and 6 show a very slow increase of agv for MA, as the problem size

increases. Since similar results are shown by MA also on the random graphs (Figure 4), we derive that the

effectiveness of our algorithm is affected only by problem size. The situation is completely different for the

other two algorithms that show less stable results. Indeed, on the squared grid graphs with size 50, the agvs

of XTS is greater than 1 and for ITS is around 2.5 while on the not squared grid graphs with same size both

values are lower than 0.5. This shows that the class of graphs used influences the effectiveness of ITS and

XTS algorithms.

Toroidal and Hypercube Graphs. The last set of the small instances concerns the toroidal and hyper-

cube graphs which results are reported into Tables 4 and 5, respectively. On the toroidal graphs the number
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Toroidal graphs: Small Instances
Id Instance Opt ITS XTS MA

x y low up Value Time Value Time Value Time
S T1 5 5 10 25 101.4 101.4 0.00 101.4 0.00 101.4 0.08
S T2 5 5 10 50 124.4 124.4 0.00 124.4 0.00 124.4 0.08
S T3 5 5 10 75 157.8 157.8 0.00 158.8 0.00 157.8 0.08
S T4 7 7 10 25 195.4 197.4 0.03 195.4 0.03 195.4 0.23
S T5 7 7 10 50 234.2 234.2 0.02 234.2 0.03 234.2 0.20
S T6 7 7 10 75 269.6 269.6 0.02 269.6 0.03 269.6 0.22
S T7 9 9 10 25 309.6 310.4 0.20 309.8 0.14 309.8 0.51
S T8 9 9 10 50 369.6 370.0 0.17 369.6 0.15 369.6 0.52
S T9 9 9 10 75 431.8 432.2 0.16 432.2 0.15 431.8 0.56
agv agvt 0.40 0.07 0.18 0.06 0.02 0.28
Hits 5/9 6/9 8/9

Table 4: Test results on the small toroidal graphs.
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Figure 7: The agvs on the small toroidal graphs.

Hypercube graphs: Small Instances
Id Instance Opt ITS XTS MA

n low up Value Time Value Time Value Time
S H1 16 10 25 72.2 72.2 0.00 72.2 0.00 72.2 0.05
S H2 16 10 50 93.8 93.8 0.00 93.8 0.00 93.8 0.05
S H3 16 10 75 97.4 97.4 0.00 97.4 0.00 97.4 0.05
S H4 32 10 25 170.0 170.0 0.01 170.0 0.01 170.0 0.10
S H5 32 10 50 240.6 241.0 0.00 240.6 0.01 240.6 0.11
S H6 32 10 75 277.6 277.6 0.00 277.6 0.01 277.6 0.11
S H7 64 10 25 353.4 354.6 0.13 353.8 0.08 353.8 0.30
S H8 64 10 50 475.6 476.0 0.05 475.6 0.09 475.6 0.35
S H9 64 10 75 503.8 503.8 0.05 504.8 0.09 503.8 0.38
agv agvt 0.22 0.03 0.16 0.03 0.04 0.17
Hits 6/9 7/9 8/9

Table 5: Test results on the small hypercube graphs.
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Figure 8: The agvs on the small hypercube graphs.

of hits is equal to 5 for ITS, 6 for XTS and 8 for MA with an agv equal to 0.40, 0.18 and 0.02, respectively.

The results on the single instances show a behaviour of the three algorithms already verified on the other

tables. ITS never finds the optimal solution on the largest instances with 81 vertices. On the same instances,

the misses of XTS occur when the range weight is 10-25 or 10-75, as already verified on the not squared grid

graphs. A single miss (S T7) occurs for the MA but with a very low gap equal to 0.06.

Finally, on the hypercube graph we have 6 hits for ITS, 7 hits for XTS and 8 hits for MA with an agv

equal to 0.22, 0.16 and 0.04, respectively. According to the number of the optimal solutions found and to

the very low agv, the hypercube graphs appear to be the easiest instances to solve by the three algorithms.

We will see later that this situation changes radically on the large instances.

From the results shown in the previous tables, it is evident that there are several instances where either

ITS or XTS algorithms do not find the optimal solution. However, these failures are not so regular as

on instances S R10, S R19 of Table 1 and the 7th instance of the remaining four tables where these two

algorithms never find the optimal solution. For this reason, we focus our attention on these instances, in

order to individuate any property that could justify these results. There are two characteristics that these

instances share: the range weight 10-25 and the low density. Our hypothesis is that the range weight 10-25

makes very small the gap between the optimal solution value and the local minimum values. Moreover, the
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low density of these graphs makes harder ”to jump” from a local minimum to another one. As a result, it

is easier for the ITS and XTS to be trapped into a local minimum. The complexity of these instances is

further certified by results of MA with its three misses on instances S NG7, S T7 and S H7.

In conclusion, from the results reported in Tables 1-5 it is evident that MA widely overcomes the ef-

fectiveness of ITS and of XTS algorithms. Indeed, our algorithm, with only 5 misses out of a total of 63

instances, reaches a success percentage around 92% that is much higher than 67% of XTS (with 21 misses)

and than 48% of ITS (with 33 misses). Besides the number of hits, MA shows also a better agv that, in

the worst case, is equal to 0.07 (on the random graphs) while this value increases to 0.58 for XTS and to

1.73 for ITS (both on the squared grid graphs). This prove that, every time a misses occurs for MA, the

solutions computed by our algorithm are very close to the optimal one. This behaviour is confirmed also by

agvs values. Indeed, the diagrams depicted in Figures 4-8 show that the agvs of MA is always lower than or

equal to the agvs of the other two algorithms, whatever is the size of instances and the class of graphs used.

Regarding the performance, MA appears lightly slower than the other two algorithms but its computa-

tional time is negligible because almost always lower than one second. This makes our algorithm particularly

suitable to be embedded into an exact approach where it is necessary to quickly generate upper bounds as

tight as possible. Where the instances present many local minimum very close to the optimal solution, it

is fundamental the individuation of very tight upper bounds because they can heavily speed up the exact

approach. This justifies our goal to improve the previous two metaheuristics although their results were

already very close to the optimal solution.

Finally, another very important property of MA, that makes it preferable to the other two algorithms,

is its robustness. The effectiveness of MA is essentially affected by instances size, as shown by its misses

that always occur on the largest instances. Different is the situation of the other two metaheuristics. The

main characteristic that affect the effectiveness of ITS is the size of problem but, unlike MA, its misses often

occurs also on instances with only 50 vertices. Moreover, the results, on the random and on the toroidal

graphs, show that ITS is not able to find the optimal solution when the range weight is 10-25 and the number

of vertices is greater than 25. Finally, for XTS the hardest instances to solve are those with low density and

range weight 10-25 and 10-75.

5.2 Large Graphs

To correctly evaluate a metaheuristics it is necessary to verify both its effectiveness and its performance on

the small instances, where the comparison is made with the optimal solutions, and on the large instances,

where the comparison is made directly with the solutions of the other metaheuristics. On the small instances

we showed that MA is the more effective algorithm. Now we have to verify if MA preserves its effectiveness

also on the large instances and what is its performance on these instances. To this end, we run the three

algorithms on a set of instances with a size that ranges from 100 to 500 vertices.
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Random graphs: Large Instances
Id Instance Best ITS XTS MA

n m low up Value Time Value Time Value Time
L R1 100 247 10 25 498.4 501.4 0.33 500.8 0.31 498.4 0.93
L R2 100 247 10 50 836.8 845.8 0.37 840.0 0.34 836.8 1.28
L R3 100 247 10 75 1207.6 1223.8 0.28 1208.0 0.34 1207.6 1.20
L R4 100 841 10 25 826.8 828.2 0.27 826.8 0.44 826.8 1.08
L R5 100 841 10 50 1724.4 1729.6 0.60 1724.6 0.45 1724.4 1.66
L R6 100 841 10 75 2420.6 2425.6 0.35 2420.6 0.45 2420.6 1.45
L R7 100 3069 10 25 1134.0 1134.0 0.59 1134.0 0.35 1134.0 1.70
L R8 100 3069 10 50 2179.0 2179.0 0.69 2179.0 0.36 2179.0 1.84
L R9 100 3069 10 75 3228.6 3228.8 0.77 3228.8 0.34 3228.6 2.08
L R10 200 796 10 25 1468.2 1488.4 3.48 1468.8 3.33 1468.2 6.01
L R11 200 796 10 50 2399.0 2442.6 2.50 2414.4 3.45 2399.0 8.20
L R12 200 796 10 75 3089.6 3157.0 2.78 3099.6 3.45 3089.6 10.34
L R13 200 3184 10 25 1986.2 2003.6 2.78 1986.8 3.42 1986.2 10.54
L R14 200 3184 10 50 3650.6 3683.6 2.67 3650.6 3.67 3651.8 10.84
L R15 200 3184 10 75 5135.8 5158.6 2.76 5137.2 3.56 5135.8 13.39
L R16 200 12139 10 25 2447.8 2450.0 11.31 2448.4 2.81 2447.8 26.35
L R17 200 12139 10 50 4148.6 4149.4 8.91 4148.6 2.79 4149.0 20.62
L R18 200 12139 10 75 5528.4 5531.4 6.98 5528.4 2.87 5528.4 21.93
L R19 300 1644 10 25 2045.4 2072.6 10.19 2045.4 12.42 2048.0 23.16
L R20 300 1644 10 50 4175.4 4239.4 9.12 4195.2 12.84 4175.4 24.27
L R21 300 1644 10 75 6065.2 6154.4 11.09 6102.8 12.74 6065.2 32.61
L R22 300 7026 10 25 3203.0 3231.0 19.59 3203.0 11.98 3207.6 42.07
L R23 300 7026 10 50 6211.0 6261.4 21.12 6211.0 12.64 6217.2 55.05
L R24 300 7026 10 75 8585.4 8660.6 17.21 8585.4 12.46 8613.2 50.78
L R25 300 27209 10 25 3726.6 3729.2 44.74 3726.6 9.61 3726.6 108.05
L R26 300 27209 10 50 5734.8 5738.0 29.26 5734.8 9.55 5734.8 97.12
L R27 300 27209 10 75 10467.0 10469.6 50.88 10467.0 9.56 10467.0 106.78
L R28 400 2793 10 25 2989.6 3015.2 29.99 2991.0 31.61 2989.6 49.95
L R29 400 2793 10 50 6410.0 6528.0 35.82 6435.8 32.16 6410.0 73.12
L R30 400 2793 10 75 8597.2 8730.0 35.36 8637.0 32.14 8597.2 75.73
L R31 400 12369 10 25 4428.8 4451.8 55.14 4428.8 28.92 4437.4 142.79
L R32 400 12369 10 50 6785.8 6837.4 35.88 6785.8 28.97 6800.6 141.25
L R33 400 12369 10 75 10599.4 10661.8 48.12 10599.4 28.40 10601.0 191.50
L R34 400 48279 10 25 5060.4 5060.8 123.27 5060.4 23.65 5060.6 282.71
L R35 400 48279 10 50 7106.8 7109.2 85.15 7106.8 23.57 7108.0 265.29
L R36 400 48279 10 75 15103.2 15114.6 127.31 15103.2 24.02 15117.8 240.77
L R37 500 4241 10 25 4056.4 4102.8 68.35 4063.0 64.11 4056.4 97.47
L R38 500 4241 10 50 7170.4 7285.0 70.14 7204.6 64.40 7170.4 127.22
L R39 500 4241 10 75 11135.6 11285.6 63.93 11179.6 63.65 11135.6 163.00
L R40 500 19211 10 25 5724.2 5745.8 99.12 5724.2 56.97 5741.4 520.63
L R41 500 19211 10 50 7677.8 7725.0 89.63 7677.8 55.49 7678.2 537.04
L R42 500 19211 10 75 14124.8 14167.8 80.09 14124.8 56.41 14164.8 546.12
L R43 500 75349 10 25 6361.6 6366.4 181.71 6362.0 47.09 6361.6 489.38
L R44 500 75349 10 50 8668.4 8671.2 155.18 8668.4 48.48 8668.4 536.60
L R45 500 75349 10 75 16932.4 16939.2 201.96 16932.4 49.03 16933.8 498.47
agv agvt 32.39 41.06 5.44 19.90 3.17 125.79
Hits 2/45 25/45 29/45

Table 6: Test results on the large instances of random graphs.
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Figure 9: The agvs on the large random graphs.
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Random Graphs. Table 6 reports the results on the large random graphs. The structure of the table

is similar to that of Table 1, except for the column Opt that is replaced by the column Best that reports

the best solution (the optimal one is not known for these instances), i.e. the minimum one, among those

computed by the three metaheuristics. In this case, the last line of the table shows how many times each

algorithm finds the best solution. There are only 2 hits for ITS, on the instances with 100 vertices (L R7

and L R8) and its agv is high (32.39). These results reveal the difficulties of ITS as the size of the problem

increases, indeed no hits occur on instances with at least 200 vertices. Because of these results the remaining

evaluations, on the large random instances, are carried out between XTS and MA.

The results of MA are better than the results of XTS, with 29 hits instead of 25. Moreover, the agv

of MA (3.17) is lower than the agv of XTS (5.44). Also on the large instances, the difficulties of XTS are

evident on the instances with low density (L 1-3, L 10-12,...). Indeed, on these instances the best solution is

computed always by MA except for the instance L R19. The opposite situation occurs on the graphs with

medium density (L R4-6,L R13-15,...) and with at least 300 vertices on whose the best solution is always

computed by XTS. We observe here a reduction of MA effectiveness as the size and density of instances

increase. This behaviour was expected and it is due to a lower number of iterations carried out by our

algorithm. Recall that, according to the formula that computes MaxIt, as the density and the size increase,

MaxIt decreases. This policy is necessary to obtain a trade-off between the effectiveness and performance

of MA because the local search procedures are more expensive on dense graphs. Indeed, from the value of

avgt it is evident that MA is much slower than the other two algorithms. Our algorithm runs in less than

5 minutes, on instances up to 400 vertices, and in less than 10 minutes, on instances with 500 vertices. We

consider acceptable this last running time because it occurs only on instances with 500 vertices and it allows

MA to compute the best solution in 65% of cases that is better than 55% obtained by XTS. Moreover, the

agvs of MA is always lower than agvs of XTS, as shown in Figure 9. The diagram depicted in this figure

shows that the quality of the solutions produced by MA is better than the solutions of XTS, whatever are

the size of the problem and the number of misses occurred. Finally, as shown in the follows, the random

graphs represent the pathological case for the performance of MA because, on the other classes of graphs,

its performance is much better.

Squared and Not Squared Grid Graphs. Tables 7 and 8 report the results on large squared and not

squared grid graphs. From these results it is evident that the effectiveness of ITS and, specially, of XTS is

strongly reduced on these classes of graphs. On the squared grid graphs ITS never finds the best solution, it

has the highest agv (14.60) and it is also the slowest algorithm. There are only 3 hits for XTS with an agv

equal to 6.37. This is a considerable reduction of XTS effectiveness that passes from ∼ 55% of hits, on the

large random graphs, to the ∼ 20% on the large squared grid graphs. The best results are produced by MA

with 12 hits and an agv equals to 0.87. Figure 10 shows that also the agvs of MA is always lower than or

equal to the agvs of the other two algorithms. In particular, the results, on the instances with 500 vertices,
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Squared Grid graphs: Large Instances
Id Instance Best ITS XTS MA

x y low up Value Time Value Time Value Time
L SG1 10 10 10 25 566.8 570.6 0.54 566.8 0.26 567.0 0.69
L SG2 10 10 10 50 947.0 948.8 0.41 949.4 0.26 947.0 0.88
L SG3 10 10 10 75 1557.8 1566.0 0.51 1565.2 0.27 1557.8 0.84
L SG4 14 14 10 25 1206.4 1209.4 8.07 1207.6 2.40 1206.4 3.43
L SG5 14 14 10 50 2007.8 2008.6 8.06 2010.2 2.46 2007.8 3.90
L SG6 14 14 10 75 3399.2 3401.2 7.23 3406.0 2.42 3399.2 5.06
L SG7 17 17 10 25 1829.4 1834.2 42.63 1830.4 9.20 1829.4 10.95
L SG8 17 17 10 50 3051.4 3070.6 29.71 3062.8 9.23 3051.4 10.65
L SG9 17 17 10 75 5071.2 5089.8 29.68 5071.2 9.32 5072.2 16.69
L SG10 20 20 10 25 2602.2 2619.8 85.42 2607.8 28.64 2602.2 19.35
L SG11 20 20 10 50 4299.8 4321.2 103.84 4306.6 29.00 4299.8 25.07
L SG12 20 20 10 75 7240.4 7272.6 127.81 7240.4 28.95 7252.2 26.50
L SG13 23 23 10 25 3453.6 3462.8 371.23 3460.6 78.43 3453.6 45.78
L SG14 23 23 10 50 5831.4 5865.4 291.52 5837.4 80.03 5831.4 55.77
L SG15 23 23 10 75 9681.0 9723.4 240.50 9718.6 79.80 9681.0 69.33
agv agvt 14.60 89.81 6.37 24.04 0.87 19.66
Hits 0/15 3/15 12/15

Table 7: Test results on the large squared grid graphs.
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Figure 10: The agvs on the large squared grid graphs.

Not Squared Grid graphs: Large Instances
Id Instance Best ITS XTS MA

x y low up Value Time Value Time Value Time
L NG1 13 7 10 25 512.20 513.00 0.36 513.00 0.19 512.20 0.76
L NG2 13 7 10 50 803.40 803.40 0.31 803.40 0.20 803.40 0.62
L NG3 13 7 10 75 1382.80 1390.80 0.34 1386.00 0.20 1382.80 1.06
L NG4 18 11 10 25 1204.60 1208.00 6.78 1206.40 2.46 1204.60 5.23
L NG5 18 11 10 50 2041.20 2049.80 8.77 2047.60 2.48 2041.20 4.52
L NG6 18 11 10 75 3417.40 3431.00 5.79 3422.20 2.48 3417.40 4.53
L NG7 23 13 10 25 1923.80 1930.60 42.54 1923.80 10.25 1925.20 14.92
L NG8 23 13 10 50 3178.20 3194.80 43.01 3187.60 10.43 3178.20 13.74
L NG9 23 13 10 75 5258.00 5286.60 34.27 5286.00 10.40 5258.00 18.73
L NG10 26 15 10 25 2522.60 2532.80 104.81 2522.60 25.75 2529.40 25.86
L NG11 26 15 10 50 4144.20 4164.80 82.30 4148.40 25.87 4144.20 22.17
L NG12 26 15 10 75 7031.40 7063.40 85.79 7031.40 25.83 7035.80 21.92
L NG13 29 17 10 25 3255.00 3270.00 236.94 3257.00 59.92 3255.00 33.89
L NG14 29 17 10 50 5410.80 5430.40 251.17 5422.60 60.35 5410.80 44.42
L NG15 29 17 10 75 8953.00 8993.20 196.66 8985.60 60.37 8953.00 47.74
agv agvt 14.93 73.32 7.00 19.81 0.84 17.34
Hits 1/15 4/15 12/15

Table 8: Test results on the large not squared grid graphs.
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Figure 11: The agvs on the large not squared grid
graphs.

show that the agvs of MA is 15 and 25 units lower than the agvs of XTS and of ITS, respectively. It is

important here to highlight that all these results are obtained by MA with an avgt equal to 19.66 seconds

that is lower than 24.04 seconds of XTS and much lower than 89.81 seconds of ITS. Very similar results

are observed on the not squared grid graphs on whose there are two aspects to highlight: MA is again the

fastest algorithm and, for the first time, the agvs of MA is greater than the agvs of XTS, on the instances

with 400 vertices, as shown in Figure 11.

Toroidal and Hypercube Graphs. In Table 9 and Table 10 the results on the toroidal and hypercube

graphs are shown. On the toroidal graphs there are 0 hits for ITS and 3 hits for XTS with an agv equal

to 4.65 and 2.20, respectively. On the contrary, there is only a miss for MA (L T4) that always finds the

best solutions on the instances with at least 289 vertices. Moreover, the agv equal to 0.05 is the lowest one

obtained by MA on the whole set of largest instances. The Figure 12 shows that, on the instances with 500

vertices, ITS and XTS have a similar agvs that is around 7 units greater than the agvs of MA. Finally, for
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Toroidal graphs: Large Instances
Id Instance Best ITS XTS MA

x y low up Value Time Value Time Value Time
L T1 10 10 10 25 388.0 388.8 0.38 389.0 0.28 388.0 0.80
L T2 10 10 10 50 457.6 458.6 0.37 457.6 0.29 457.6 0.72
L T3 10 10 10 75 504.6 504.8 0.25 504.6 0.29 504.6 0.75
L T4 14 14 10 25 748.8 750.8 5.96 748.8 2.43 749.6 4.14
L T5 14 14 10 50 874.4 875.6 3.68 875.4 2.49 874.4 3.52
L T6 14 14 10 75 1016.2 1017.2 3.59 1016.4 2.51 1016.2 3.85
L T7 17 17 10 25 1102.8 1110.2 21.98 1107.4 9.07 1102.8 7.01
L T8 17 17 10 50 1304.4 1307.6 20.93 1306.0 9.21 1304.4 8.48
L T9 17 17 10 75 1498.6 1502.4 23.18 1499.6 9.25 1498.6 12.00
L T10 20 20 10 25 1539.6 1548.6 88.75 1540.0 28.31 1539.6 18.01
L T11 20 20 10 50 1795.4 1803.4 81.03 1797.6 28.83 1795.4 19.77
L T12 20 20 10 75 2033.0 2042.6 55.19 2033.6 28.78 2033.0 19.45
L T13 23 23 10 25 2034.8 2043.4 278.08 2043.8 77.39 2034.8 50.01
L T14 23 23 10 50 2406.4 2412.2 177.53 2410.8 79.20 2406.4 40.77
L T15 23 23 10 75 2697.2 2705.4 184.99 2704.2 78.64 2697.2 43.95
agv agvt 4.65 63.06 2.20 23.80 0.05 15.55
Hits 0/15 3/15 14/15

Table 9: Test results on the large toroidal graphs.
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Figure 12: The agvs on the large toroidal graphs.

Hypercube graphs: Large Instances
Id Instance Best ITS XTS MA

n low up Value Time Value Time Value Time
L H1 128 10 25 731.8 740.0 1.09 742.0 0.71 731.8 1.11
L H2 128 10 50 1066.8 1071.0 0.40 1066.8 0.76 1067.2 1.75
L H3 128 10 75 1161.6 1163.6 0.34 1161.6 0.77 1162.4 1.98
L H4 256 10 25 1487.4 1542.6 9.41 1534.2 6.58 1487.4 5.03
L H5 256 10 50 2279.6 2311.4 6.45 2282.0 6.80 2279.6 11.54
L H6 256 10 75 2572.4 2590.8 3.94 2576.4 6.85 2572.4 13.23
L H7 512 10 25 3119.0 3240.8 73.51 3146.0 63.07 3119.0 49.83
L H8 512 10 50 4852.2 4921.8 67.58 4872.4 66.43 4852.2 77.71
L H9 512 10 75 5553.4 5588.6 51.74 5563.8 67.65 5553.4 85.99
agv agvt 38.49 23.80 13.44 24.40 0.13 27.60
Hits 0/9 2/9 7/9

Table 10: Test results on the large hypercube graphs.
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Figure 13: The agvs on the large hypercube graphs.

the third time our algorithm is the fastest one.

The results of Table 10 reveal the great difficulties of XTS and of ITS algorithms on the hypercube

graphs. XTS finds the best solutions only in two cases (L H2 and L H3) on the instances with only 128

vertices and its agv, equal to 13.44, is the highest agv of XTS on the whole set of large instances. Moreover,

Figure 13 shows that the agvs of XTS is 20 units greater than the agvs of MA on sizes 256 and 512. Even

worse are the results of ITS that never finds the best solution and it obtains its worst agv (38.49). Moreover,

on the instances with 512 vertices its agvs is 75 units greater than the agvs of MA. On the contrary, very

good are the results of MA with 7 hits, an agv equal to 0.13 and an agvs equal to 0 for the instances with

at least 256 vertices. These results are obtained with a computational time that is greater than the other

two algorithms but of only 3 seconds.

In conclusion, the results obtained on the large instances shows that MA is the more effective algorithm

with a percentage of hits equal to 70%. This last value is much higher than 3% and 35% obtained by ITS

and XTS, respectively. Moreover, on the instances up to 300 vertices, the percentage of hits of MA grows
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up to 80% while this percentage decreases on greater instances because MA is forced to use less iterations.

Beside the number of hits, it is interesting to evaluate even the quality of the solutions produced by the

algorithms when the misses occur. To this end, we analyze the agv and the agvs of the algorithms whose

values prove the robustness of MA. By selecting the best and worst cases, we observe that the agv of ITS

ranges from 4.65, on the toroidal graphs, to 38.49, on the hypercube graphs, and the agv of XTS ranges

from 2.20, on the toroidal graphs, to 13.44, on the hypercube graphs. These values reveal that the quality of

produced solutions depends on the classes of graphs used and, in particular for ITS, the gap from the best

solution is relevant. On the contrary, the agv of MA ranges from 0.05, on the toroidal graphs, to 3.17, on

the random graphs and this means that, when the misses occur, the solutions found by MA are very close to

the best ones, whatever are the classes of graphs. This statement is further highlight by the agvs values of

MA, depicted in Figures 9-13, that show a more regular trend, as the size increases, in respect to the other

two algorithms. Regarding the performance, MA is the fastest algorithm on the squared grid, not squared

grid and toroidal graphs while it is slower than the other two algorithms on the hypercube graphs and it is

significantly slower on the random graphs. The running times of MA on the random graphs highlight that

the main parameter that affects the performance of our algorithm is the density of the graph. This is evident

by observing that MA requires more time to solve the dense instances L R34, L R35, L R36 composed by

400 nodes than the sparse instances L R37, L R38, L R39 composed by 500 vertices.

Finally, we analyzed also the performance gap, between XTS and MA, taking in account only the instances

where the solutions of XTS are equal to or better than the solutions of MA. On the large Random graphs,

XTS finds the best solution 25 times and, on these instances, it results up to ten times faster than MA.

The situation change radically, on the 54 instances of the other kinds of graphs, with a significant reduction

of the performance gap and of the hits (only 12). In particular, on the instances L SG1, L NG2, L NG10,

L T2, L T3, L H2 and L H3 the performance gap is lower than a second. On the instances L SG9, L NG7

and LT 4 this gap is around 7, 5 and 2 seconds while on the instances L SG12 and L NG12, XTS is slower

than MA.

6. Conclusion

In this paper we presented a very effective memetic approach for the WFVS problem. Our algorithm is

characterized by three main aspects. The first is the Snd procedure that allows the creation of a variegated

initial population that befits to a better exploration of space solutions. The second aspect is the use of two

local search procedures, based on k-diamonds. These procedures represent the key of MA effectiveness but

they can slow down the algorithm, when invoked too many times. Thank to a wise application of these local

search procedure, we obtained a good trade-off between the effectiveness and the performance. The third

aspect is the diversification schema that, by applying the penalties on the vertices of incumbent solution,

moves the whole population toward a new part of the space solutions.
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The computational results show that our algorithm widely overcomes the effectiveness of the other two

metaheuristics, proposed in the literature, with a percentage of hits equal to 92%, on the small instances,

and equal to 70% on the large instances. Moreover, except for only one case, the agv of MA is always

lower than the agv of ITS and XTS on both the small and the large instances. These results certify the

robustness of our algorithm whose effectiveness seems not be affected by the density, by the range weight

and by the classes of graphs used. Regarding the performance, on the small instances, the running time of

MA is negligible because it is always lower than 1 second (often half a second). This makes our algorithm

particularly suitable to be embedded into an exact approach to quickly generate tight upper bounds. On the

large instances, MA results the fastest algorithm on three classes of graphs, (squared and not squared grid

and toroidal graphs) while it is significantly slower than the other two algorithms on the random graphs.

The results on these graphs show that, as the density increases the performance of our algorithm decreases.

Currently, this seems the only drawback our MA that essentially depends by the running time of local search

procedure that increases as the size of k-diamonds increases. Since the memetic algorithms are fit for parallel

implementation, this could be a possible direction for a future work that solves the only drawback of MA.
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