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Abstract In this paper we face the problem of maximizing the amount of time
over which a set of target points, located in a given geographic region, can be
monitored by means of a wireless sensor network. The problem is well known
in the literature as Maximum Network Lifetime Problem (MLP). In the last
few years the problem and a number of variants have been tackled with success
by means of different resolution approaches, including exact approaches based
on column generation techniques. In this work we propose an exact approach
which combines a column generation approach with a genetic algorithm aimed
at solving efficiently its separation problem. The genetic algorithm is specifi-
cally aimed at the Maximum Network α-Lifetime Problem (α-MLP), a variant
of MLP in which a given fraction of targets is allowed to be left uncovered at
all times; however, since α-MLP is a generalization of MLP, it can be used
to solve the classical problem as well. The computational results, obtained on
the benchmark instances, show that our approach overcomes the algorithms,
available in literature, to solve both MLP and α-MLP.
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1 Introduction

Wireless Sensor Networks (WSNs) are usually composed of a large amount
of sensing devices (sensors) scattered over a region of interest. Each sensor
is generally capable of monitoring a certain portion of the space around itself
(usually called its sensing area, and defined by the sensing range of the sensor).
While each individual device has obvious limits in terms of range extension
and battery lifetime, a coordinated use of multiple sensors together allows
to perform complex monitoring activities in possibly large areas, in fields as
diverse as environmental control, military and health care applications, among
others (see, for example, [1], [14], [16]).

Given the limited power of the batteries that usually keep sensing devices
operational, an issue which has generated intense research interest in the last
years is related to the optimization of battery consumption. In particular,
the problem of appropriately use sensors to monitor a set of specific points
of interests located inside the area (known as targets) for as long as possible
has been widely studied; the problem is usually known as Maximum Network
Lifetime Problem (MLP). It has been mainly approached with methods aimed
at finding several, possibly overlapping sets of sensors (defined covers) which
can individually provide coverage for all the targets, as well as an activation
time for each of them, such that the sum of the activation times of the covers
in which each sensor appears is not greater than the lifetime provided by its
battery. The idea is then to activate the covers one by one, where by activating
a cover we intend to turn on all the sensors which belong to it, while keeping
all other sensors turned off.

In [4] the authors showed that MLP can bring improvements with respect
to previous approaches in which sensors were divided into disjoint sets (that is,
each sensor could only belong to a single cover). They also proved the problem
to be NP-Complete and they proposed and approximation algorithm to solve
it.

A Column Generation approach aimed at solving the MLP was proposed in
[12]. In this work the authors propose a hybrid approach where the separation
problem of the Column Generation technique is either solved heuristically or
optimally by means of an appropriate ILP formulation. More details about this
technique are given in Section 3. For a survey on hybrid algorithms, includ-
ing the embedding of heuristics and metaheuristics into Column Generation
frameworks, the reader may refer to [3].

Several variants of MLP have been proposed as well, in order to adapt
the problem to different contexts. Some of the proposed variants take into
account cover connectivity ([2], [7], [8], [15], [19]) or reliability issues ([10]),
or consider sensors with adjustable sensing ranges ([5], [9], [17]). For many
of these variants, efficient algorithms based on Column Generation have been
proposed ([2], [6], [7], [8], [9], [10], [15], [17], [18]).

Another interesting variant of the problem is the Maximum Network α-
Lifetime Problem (α-MLP), which was proposed and studied in [13]. In such a
variant, a predefined portion of the overall number of the targets is allowed to
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be neglected in each cover. As will be better investigated in Section 2, α-MLP
generalizes MLP and therefore each method aimed at solving this problem
can also be used to face the original one. In [13] the authors presented both
a heuristic algorithm and an exact one, showing that large improvements in
terms of overall network lifetime can generally already be achieved by neglect-
ing a small percentage of targets in each cover. Furthermore, the authors also
showed that most of the advantage is usually retained when some additional
regularity conditions are taken into account in order to guarantee a minimum
global coverage level to each target.

In this work we propose an hybrid exact approach for the α-MLP problem,
named GCG. While the overall structure of the algorithm is again based on
the Column Generation technique, the main contribution of this work consists
in the proposal of an appropriately designed genetic metaheuristic which is
used to solve its separation problem. As will be shown in the discussion of our
computational tests our algorithm is proven to be highly efficient in terms of
requested computational time with respect to both the algorithms presented
in [12] for MLP and in [13] for α-MLP.

The rest of the work is organized as follows. Section 2 formally introduces
the problems and a mathematical formulation to describe them. Section 3
resumes the approaches presented in [12] and [13] to solve MLP and α-MLP.
Section 4 describes our proposed genetic algorithm, while Section 5 presents
the results of our computational experiments. Finally, Section 6 presents some
final remarks.

2 Problems Definition and Mathematical Formulation

Let N = (T, S) be a wireless sensor network, with T = {t1, . . . tn} being the
set of the targets and S = {s1, . . . , sm} being the set of sensors. As previously
introduced, each sensor is assumed to have a given sensing range and to be
powered by a battery that can keep it activated for a limited amount of time.
In this paper we assume each sensor to be identical, therefore each of them
has a sensing range of the same size, and all battery durations are normalized
to 1. In Figure 1(a) a sensor network with sensors s1, . . . , s6, targets t1, . . . , t6
and sensing ranges represented by circles is shown.

For each target tk ∈ T and sensor si ∈ S, let δki be a binary parameter
equal to 1 if tk is positioned within the sensing range of si (it is covered by the
sensor), 0 otherwise. For a subset of sensors S′ ⊆ S and tk ∈ T , let ∆kS′ be
another binary parameter equal to 1 if δki = 1 for a given si ∈ S′, 0 otherwise.

Given a value α ∈ (0, 1], we define C ⊆ S to be a feasible cover (or simply
a cover) for the network if its sensors cover at least Tα = α × n targets, that
is,

∑
tk∈T ∆kC ≥ Tα. Furthermore, we define a cover to be non-redundant if

it does not contain another cover as a proper subset.
The Maximum Network α-Lifetime Problem (α-MLP) consists then in find-

ing a collection of pairs (Cj , wj) where each Cj ⊆ S is a feasible cover and
each wj ≥ 0 is an activation time, such that the sum of the activation times
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Fig. 1 Example network

is maximized and each sensor is used for an amount of time that does not ex-
ceed its normalized battery duration. It is easy to understand that an optimal
solution can always be found by only considering non-redundant covers.

Assuming to be able to compute the whole set of feasible covers C1, . . . , C`
in advance, α-MLP could then be represented using the following Linear Pro-
gramming formulation, where the binary parameter aij = 1 if si ∈ Cj , 0
otherwise:

[P] max
∑̀
j=1

wj (1)

s.t.
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∑̀
j=1

aijwj ≤ 1 ∀i = 1, ...,m (2)

wj ≥ 0 ∀j = 1, ..., ` (3)

Objective function (1) maximizes the sum of the activation times, while
constraints (2) enforce the respect of the lifetime constraints for each sensor.

In the classical Maximum Network Lifetime Problem (MLP), each cover
has to provide information on the whole set of targets in order to be feasible;
therefore, MLP corresponds to the α-MLP with α = 1 (and hence Tα =
n). Under these assumptions, the problem definition and the [P] formulation
presented above represent the classical problem as well.

It is interesting to observe that, on the same wireless sensor network, the
maximum lifetime for the α-MLP is often greater than the maximum lifetime
for the MLP. For instance, let us consider again the network in Figure 1(a). It
is easy to see that the only two non-redundant feasible covers for MLP would
be {s1, s2, s5, s6} (Figure 1(b)) and {s1, s3, s4, s6} (Figure 1(c)). In this case,
it is possible to obtain a network lifetime equal to 1 time unit by activating
them for any couple of activation times w1, w2 ≥ 0 such that w1 + w2 = 1.
However, after this operation, the batteries of sensors s1 and s6 are exhausted,
and no more feasible covers can be obtained by using the remaining sensors,
therefore the final solution is equal to 1 as well. Let us consider now on the
same network an α-MLP problem with α = 0.8, that is 1 out of 6 targets
can be neglected. In this case there are four non-redundant covers {s1, s3, s4}
(Figure 1(d)), {s2, s5, s6} (Figure 1(e)), {s1, s2, s5} and {s3, s4, s6}, and we
can easily obtain a lifetime equal to 2 time unit by activating in sequence the
covers {s1, s3, s4} and {s2, s5, s6}, for 1 time unit.

On instances of real-world size, formulation [P] can not be expected to be
directly applicable due to the high (potentially exponential) number of covers.
This can be especially true for lower values of α; indeed, it is straightforward
to observe that given (α1, α2) ∈ (0, 1]2 with α2 < α1, each cover for α1-MLP
is also feasible for α2-MLP. For this reason, it is necessary to apply different
approaches, such as Column Generation which was proposed by [12] for MLP
and by [13] for α-MLP. We use the same type of approach in this work, however
we focus our attention on solving efficiently the subproblem, since it is a key
component to obtain an effective algorithm. To this end, we design a fast
genetic metaheuristic whose main characteristic is the ability to return several
good covers at once and, as we will see in Section 5, this feature is able to
bring significant improvements in terms of computational time, with respect
to the previous algorithms.

3 Column Generation Approaches for α-MLP and MLP

Given a Linear Programming formulation with a large number of variables
(in our case, formulation [P]), the Column Generation (CG) technique starts
by considering a version of the formulation which only uses a subset of those



6 Francesco Carrabs et al.

variables (in our case, a subset of feasible covers) in the so-called Master
Problem, and by solving it to optimality. The optimal solution of the Master
Problem is clearly a feasible solution for [P]. The CG then considers a specific
optimization problem (defined separation problem or subproblem) which either
produces an attractive cover to be added for a new iteration of the Master
Problem, or certifies that the last solution found by it (that we denote as
incumbent solution from now on) is indeed optimal for [P]. The procedure
iterates until the above described optimality condition is met. In this way, the
CG approach allows to implicitly discard most of the variables that will be
nonbasic in the optimal solution.

An attractive cover is a feasible cover corresponding to a nonbasic variable
with a negative reduced cost, which could therefore improve the incumbent
solution if introduced in the master problem. Conversely, such a solution can
not be improved if the reduced cost associated with the nonbasic variables
are all non negative. More in detail, given the dual prices πi associated to
each constraint of the Master Problem, that is, to each sensor, the incumbent
solution is optimal if

∑
i:si∈Cj

πi−cj ≥ 0 for each nonbasic cover Cj , which can

be rewritten as
∑
i:si∈Cj

πi ≥ 1 since the coefficients in the objective function

(1) of the original LP formulation are all equal to 1.
We can therefore define as subproblem the following formulation [SP],

where objective function (4) minimizes the sum of the dual prices in the sensors
chosen to be part of the newly produced cover, while constraints (5)-(8) define
a feasible cover:

[SP] min

m∑
i=1

πixi (4)

s.t.

m∑
i=1

δkixi ≥ yk ∀k = 1, ..., n (5)

n∑
k=1

yk ≥ Tα (6)

xi ∈ {0, 1} ∀i = 1, ...,m (7)

yk ∈ {0, 1} ∀k = 1, ..., n (8)

For each sensor si, the binary variable xi represents the choice on including
it in the new cover, while, for each target tk, the variable yk represents whether
the target is monitored in the cover. Constraints (5) make sure that each yk
can have value 1 only if at least one of the sensors that cover the target has
been added, while constraints (6) impose that at least Tα targets are covered.
The incumbent solution is then optimal if the value of objective function (4)
is greater or equal than 1, otherwise the new attractive cover is added to the
master problem.
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When α = 1, that is we are considering the MLP problem, constraints (5)
reduce to

∑m
i=1 δkixi ≥ 1 ∀k = 1, ..., n, and constraints (6) as well as variables

yk are not necessary.

3.1 Heuristics to enhance CG

The main disadvantage of the column generation approach presented above is
that [SP] is strongly NP-hard, being a specialization of the Set Covering prob-
lem. For this reason, it is advisable to limit as much as possible the number
of times in which it is required to be solved. In [12] the author faces the prob-
lem by introducing a constructive heuristic to quickly solve the subproblem.
This heuristic iteratively builds a cover by first choosing, in random way, an
uncovered target and then by selecting the sensor that can cover it, with the
minimal dual price value. This process is repeated until a complete coverage
has been obtained. The author introduces three column generation approaches
named Exact, Heur and Mixed, respectively. The first algorithm solves the
subproblem in an exact way, while the second one solves the subproblem by
invoking the above described constructive heuristic. When the heuristic does
not find attractive covers, Heur stops without certifying the optimality of the
incumbent solution. For this reason, the solutions provided by Heur can be
suboptimal. Finally, in the Mixed algorithm the attractive covers are provided
by constructive heuristic and, when it fails, by solving the exact subproblem,
which is also used to prove the optimality of the solution in the last iteration
of the algorithm.

In [13], the authors propose instead a heuristic meant to independently
produce a complete solution for α-MLP (that is, a collection of covers and ac-
tivation times). Each cover in this approach is again built iteratively, adopting
some heuristic criteria to favor the coverage of sensors which has been covered
for fewer amounts of time so far in the partial solution. Each newly produced
cover is assigned a predefined amount of time, and the algorithm ends when
the residual energy in the sensors do not allow to produce a new feasible one.
Finally, the set of produced covers is used as initial restricted set for the master
problem.

In this work, we attempt to heuristically solve [SP] at each iteration, by
using a genetic metaheuristic instead of a simple constructive heuristic as
the one proposed in [12]. As in the Mixed algorithm, the exact subproblem
formulation is used when the genetic algorithm fails in order to guarantee
that an exact solution is always found. We define this hybrid exact approach
GCG. As we show in the following sections, our column generation approach is
able to significantly outperform the previous algorithms for MLP and α-MLP
proposed in literature.
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Fig. 2 The chromosome representation.

4 A Genetic Algorithm to address the [SP] Subproblem

A genetic algorithm is a naturally randomized technique that emulates the
typical steps of the biological evolution based on the concept of natural se-
lection, crossover and mutation. Each problem solution is expressed by an
element, named chromosome, that represents the structure of an individual.
Given a starting population P of chromosomes, the genetic algorithm itera-
tively produces new chromosomes by means of the crossover operator which
combines, in a probabilistic manner, the genetic information of typically two or
more randomly selected elements of the population. On each newly generated
chromosome, a mutation operator is applied in order to provide a perturbation
of the solution to add diversity. The natural selection process and the fitness
function, which is used to rank each solution, aim at introducing in the popula-
tion new chromosomes which are better adapted to the environment. Genetic
algorithms take typically into account stop conditions, which could be for in-
stance a maximum number of iterations, a time limit, a lack of improvements
in the fitness function of the best individual for a given number of iteration,
or a combination of some of the above. For a complete and detailed descrip-
tion of genetic algorithms and their characteristics, the reader can refer to [11].

In order to overcome the hardness of the [SP] problem, we decided to solve
the subproblem heuristically through the design of a specific genetic algorithm,
defined GA from now on.

The aim of GA is to quickly find attractive covers, and return them to
the master problem. An interesting feature of our approach is its ability to
potentially produce several attractive covers at once, reducing dramatically the
number of required iterations. If GA fails in finding any attractive cover, GCG
solves the [SP] formulation instead, in order to either find a new attractive
cover or prove the optimality of the current solution. It follows that the greater
is the effectiveness of GA, the better are the performances of the whole GCG
framework. As will be shown in Section 5, GA appears to be very effective
since on the consider set of benchmark instances it often fails only once, i.e.
when the optimal solution is found.

Sections 4.1-4.5 describe in detail the different components of GA, while
Section 4.6 presents a general overview of the procedure.

4.1 Chromosome Representation and Fitness Function

In GA, the binary vector representation shown in Figure 2 is used for the
chromosomes. Each chromosome contains m = |S| positions, which are associ-
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ated to the sensors of the network. A chromosome represents a feasible cover,
meaning that each position i (i = 1, ...,m) is equal to 1 if the related sensor
si belongs to the cover (in which case the sensor is said to be active), and 0
otherwise. It can be observed that the value of position i corresponds in GA to
the value assigned to binary variable xi in the [SP] formulation. Analogously
to covers, a chromosome is defined to be redundant if it is possible to switch
off at least one of its active sensors, and the related cover remains feasible.
Since, as already mentioned, an optimal solution can always be found by only
considering non-redundant feasible covers, during the GA execution we only
allow non-redundant chromosomes to be part of the population.

The fitness function for a given chromosome is equal to the dot product
of the binary chromosome vector and the dual prices vector deriving from the
last iteration of the Master Problem (and therefore corresponds to objective
function (4) for [SP]). At the end of the GA procedure, each chromosome with
a fitness lower than 1 will be included in the Master Problem as a new column.

4.2 Crossover

One of the main aspects that influence the effectiveness of a genetic algorithm
is the crossover operator. This operator allows the creation of new chromo-
somes starting from previous individuals in the population. In particular, the
crossover usually selects two chromosomes of the population (defined parents),
and generates a new one starting from them (the child), which hopefully in-
herits good features from them. During the evolution process of a genetic
algorithm, special care should be taken in order to avoid the case in which
several identical chromosomes exist in the population; indeed, in that case the
crossover operator has failed to create offspring that is different from their par-
ents. This situation penalizes the effectiveness of the algorithm and therefore
the quality of the final solutions.

In our crossover, the selection of the parents is carried out through a typ-
ical binary tournament. To this end, the chromosomes of the population are
sorted, in ascending order, according to their fitness values. Subsequently, two
chromosomes are selected randomly, and the one with the best fitness func-
tion among them is chosen as first parent. The second parent is chosen is the
same way, avoiding the first parent to be chosen among the participants of the
second tournament.

Our crossover operator works exactly like the bitwise AND logical operator.
Figure 3 shows, on the left, the AND truth table and, on the right, two sample
parent chromosomes parent1 and parent2, as well as the building process of
the child chromosome starting from them. This type of operator is meant
to bring to the new child the genetic heritage which is common to the two
parents.
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4.3 Mutation

The mutation operator alters one or more genes in a chromosome in order
to introduce some perturbation, and thus providing diversification in the new
generated chromosomes.

As previously introduced, in our genetic algorithm no duplicated chromo-
somes are allowed in the population. This means that building a duplicate
chromosome is a waste of computational time since it would be rejected. Since
we do not build new chromosomes by taking into account all the previous
ones in the population, we try to differentiate each child from at least both its
parents, if possible. If two parent chromosomes have mostly identical genes,
which could be a common case especially towards the end of the procedure,
the child will be very similar to them as well, and therefore it is not uncommon
that the final operations carried out on it in order to guarantee feasibility and
remove redundancy (see Section 4.4) could make it exactly identical to one of
its parents. In order to face this problem, we use mutation to change the value
of one of a random single gene in the child whose value is identical into its
parents, if it exists, in order to differentiate it from both of them. This gene
will be switched back only if strictly needed by the feasibility or redundancy
operator described in the next section.

4.4 Feasibility and Redundancy Operators

It is easy to see that the chromosome produced by the crossover and mutation
operators could be not feasible, since it is not guaranteed that the Tα cov-
erage is satisfied. For this reason, it is necessary to apply another operator,
which we call feasibility operator, in order to restore feasibility. To this end,
the feasibility operator selects randomly one of the genes in the child with a
value equal to zero whose related sensor could cover some new targets, and
switches its value to one (thus activating the sensor). This process is repeated
until the threshold Tα is satisfied. Algorithm 1 shows the pseudocode of this
operator. The while loop of line 1 is repeated until the threshold is reached.
The procedure individuates the set of uncovered targets T̂ (line 2), and ran-
domly selects one of them, t (line 3). Then it randomly selects and activates a



A Hybrid Exact Approach for MLWSN with Complete and Partial Coverage 11

sensor s which can cover t (line 4). Finally, in the last two lines the operator
updates the child chromosome and the related set of covered targets.

Algorithm 1: feasibilityOperator
Input: unfeasible Child chromosome;
Output: feasible Child chromosome;

1 while Tcovered < Tα do

2 T̂ ← T \ Tcovered;

3 t← randomSelect(T̂ );
4 s← randomSelect(S, t);
5 update(Child, s);
6 update(Tcovered);

7 return Child;

The application of the feasibility operator can produce a redundant chro-
mosome. Therefore we apply a final operator called redundancy. The operator
checks whether each sensor in the chromosome could be switched off without
compromising feasibility, thus producing a list of redundant sensors. If the list
is not empty, it switches off a randomly chosen element of it. The chromosome
is updated, the list is rebuilt and the procedure iterates until the list is equal
to the empty set.

4.5 Building the Initial Population

Each individual of the initial population P is randomly built by applying in
sequence the feasibility and redundancy operator starting from a chromosome
whose positions are all set to zero.

As soon as a feasible chromosome is obtained, it is added to the population
if it is not already present in it and is rejected otherwise, until a fixed desired
number SizeP of different chromosomes is obtained. In order to avoid the
procedure to iterate indefinitely, a maxinitDB threshold is taken into account.
If the number of rejected chromosomes reaches the threshold, the procedure
stops and SizeP is updated to be equal to the current value of |P |.

4.6 GA Structure and GCG initialization

This section describes the overall structure of GA. The pseudocode is listed
in Algorithm 2. The input consists of a wireless sensor network (S, T ), where
S is the set of sensors and T is the set of targets, as well as a vector of dual
prices DP coming from the last iteration of the current Restricted Master
Problem. The GA first generates a starting population P of feasible solutions
and identifies an initial best chromosome through the computation of a best
initial fitness, named BestF it. During the evolution process the BestF it value
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Algorithm 2: WSNGenetic

Input: (S, T ), DP ;
Output: a subset of chromosomes(i.e. columns) for the MasterProblem;

1 P ← InitP ();
2 BestF it← bestF itness(P,DP );
3 criteria← setCriterion(MaxIT,MaxDB);
4 while check(criteria) do
5 (p1, p2)← tournament(P );
6 C ← Crossover(p1, p2);
7 C ←Mutation(C);
8 C ← feasibilityOperator(C);
9 C ← redundancyOperator(C);

10 if C /∈ Pop then
11 Insert(C,P );
12 if fitness(C) ≥ BestF it then
13 update(criteria);

14 else
15 BestF it← fitness(C);

16 else
17 update(criteria);

18 Chromos← chromosomes with fitness ≤ 1;
19 return Chromos;

stores the value of the incumbent solution and it is used as a comparison pa-
rameter through the overall procedure. The population of individuals has a
fixed size, named SizeP , throughout the algorithm execution, and it is initial-
ized as described in Section 4.5. The genetic algorithm builds iteratively new
chromosomes one by one, by executing the steps reported in Sections 4.2-4.4.
The new child produced at each iteration is inserted in current population P
only if it does not already belong to it and in this case it replaces an individual
which is chosen randomly among the |P/2| individuals with the worst fitness
values.

The procedure iterates until one of two stopping criteria is reached. The
first criterion is based on a MaxIT parameter, representing the maximum num-
ber of iterations without improvements with respect to the BestF it value, and
the second one is the maximum number of consecutive duplicate chromosomes,
named MaxDB.

The chromosomes in the final population P whose fitness value is less than
1 are then introduced in the Master Problem as new columns.

The GA algorithm was also used in our tests to provide the initial set of
columns which is required by the first step of the master problem. In this case,
however, the vector of dual prices which is used to evaluate the chromosomes
is not available. For this reason, in this first iteration a random positive value
is used as dual price for each sensor. The whole set of SizeP individuals is
returned to the master problem in this case.
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5 Computational Results

The purpose of the computational experience presented in this section is to
study the performance of our algorithm (GCG) with respect to column gener-
ation approaches proposed in literature by [12] for the case α = 1 and by [13],
named GR from now on, for the α-coverage problem. The computational tests
are carried out on the same set of instances used in these two papers. Our algo-
rithm was coded in C++ on a (SUSE) Linux platform running on a Intel Core2
Duo 2.4GHz processor with 4GB RAM (single thread mode). Mathematical
formulations within the GCG framework were solved using the Concert library
of IBM ILOG CPLEX 12.5.

We ran a preliminary tuning test phase to determine the values used by
the GA parameters. The Sizepop population size was set to be equal to 50.
The population initialization threshold maxinitDB was chosen equal to 100.
Finally, the two stopping criteria MaxDB and MaxIT were set to 100 and
2000, respectively.

Sensors Targets Lifetime Time Inv Col Flr
50 30 3.80 0.21 1.0 0.0 1.0

60 3.00 0.31 1.0 0.0 1.0
90 2.80 0.40 1.0 0.0 1.0

120 2.70 0.51 1.0 0.0 1.0
100 30 8.70 0.44 1.6 10.1 1.0

60 7.20 0.65 1.4 6.1 1.0
90 6.90 1.11 1.6 8.5 1.0

120 6.70 1.57 1.5 7.4 1.0
150 30 14.70 0.80 2.6 20.4 1.0

60 12.30 1.41 2.4 18.8 1.0
90 11.80 2.40 2.3 19.6 1.0

120 11.30 3.38 2.3 19.9 1.0
200 30 19.60 1.24 2.9 24.4 1.0

60 17.30 2.39 2.6 23.2 1.0
90 16.60 4.10 3.0 24.5 1.0

120 15.50 5.14 2.7 24.4 1.0
Avg 1.93 12.96 1.0

Table 1 Results obtained by the GCG algorithm on the benchmark instances proposed
in [12].

Let us start our comparison from the benchmark instances proposed in [12].
In Table 1 the results of GCG are reported. Each line in the table represents a
scenario composed of 10 instances with the same characteristics but different
topologies. Therefore, the results reported in each line are the average values
on these 10 instances. For a detailed description of the characteristics of these
scenarios see [12]. The first two columns (Sensors and Targets) report the
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number of sensors and targets into the scenarios. The columns Lifetime and
Time report the solution values and the CPU times, in seconds. The last
three columns Inv, Col and Flr report how many times the genetic algorithm
is invoked by the restricted master problem after the initialization phase, the
average number of columns (i.e. attractive covers) returned by the genetic
algorithm at each invocation (again excluding the starting one), and how many
times the genetic algorithm returns zero columns (i.e. the number of failures),
respectively. Finally, the last line of the table reports the average values of the
last three columns.

The values of the Time column show that GCG is very fast on the con-
sidered instances, with a running time that is always lower than 6 seconds on
all the scenarios. A more accurate analysis of the GCG performance will be
carried on while discussing the results reported in the Table 2. However, let us
first analyze the impact of the genetic algorithm within column generation ap-
proach. To this end, we focus on the values reported in the last three columns
of Table 1.

The values of the column Inv show that the genetic algorithm is invoked
very few times, with an overall average equal to 1.93. In particular, on the sce-
narios with 50 sensors, it is invoked just once and this means that the starting
columns, provided by genetic algorithm during the initialization phase, already
contain the columns of the optimal solution. Indeed, a single invocation after
the initialization means that the GA failed and the exact subproblem certified
that an optimal solution was indeed reached, otherwise GA would have been
invoked again in the following iteration.

On the other scenarios, the average number of invocations slowly increases
up to 3 (in the scenario with 200 sensors and 90 targets). The number of
invocations is small since the genetic algorithm returns a significant number
of attractive covers, which is on average equal to 12.96 columns, with a peak
of 24.5, which brings the columns needed to reach an optimal solution to be
quickly added to the master problem. In particular, on the largest instances
with 200 sensors the average number of returned columns is above 24, that is,
almost 50% of the chromosomes in the final population are attractive covers
for the restricted master problem. The more interesting results are, however,
those reported into the column Flr which measure the effectiveness of the
genetic algorithm. Remarkably, on all the scenarios provided by Deschinkel
the number of GA failures is equal to 1, meaning that we need to solve the
exact subproblem only once for each instance, in order to certify the optimality
of the current incumbent solution.

In order to verity the competitiveness of our approach with respect to those
proposed in the literature, the computational times of GCG and those of the
Exact, Heur and Mixed algorithms described in [12], are reported in Table 2.

The first three columns show the characteristics of the scenarios, as already
mentioned for Table 1. The subsequent four columns report the CPU time
required by the four algorithms. The last three columns report the percentage
gap, among GCG and the other three algorithms, computed as 100× (Alg −
GCG)/Alg where Alg ∈ {Exact,Heur,Mixed}, and GCG, Alg refer to the
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Sensors Targets Lifetime Exact Heur Mixed GCG GAP
Time Time Time Time vs Exact vs Heur vs Mixed

50 30 3.80 0.25 0.30 0.12 0.21
60 3.00 1.03 0.53 0.52 0.31
90 2.80 2.95 0.82 1.55 0.40 86.42% 74.15%

120 2.70 8.40 1.20 4.03 0.51 93.87% 87.22%
100 30 8.70 3.29 2.97 1.03 0.44 86.75% 85.32%

60 7.20 26.53 4.25 8.41 0.65 97.55% 84.71% 92.28%
90 6.90 243.95 6.82 74.19 1.11 99.55% 83.77% 98.51%

120 6.70 749.46 9.70 220.64 1.57 99.79% 83.79% 99.29%
150 30 14.70 17.17 14.51 4.94 0.80 95.37% 94.52% 83.89%

60 12.30 315.66 22.21 48.96 1.41 99.55% 93.65% 97.12%
90 11.80 2365.65 30.61 525.21 2.40 99.90% 92.17% 99.54%

120 11.30 9249.81 48.15 1987.04 3.38 99.96% 92.98% 99.83%
200 30 19.60 38.80 34.85 9.50 1.24 96.80% 96.44% 86.93%

60 17.30 750.40 56.34 126.39 2.39 99.68% 95.75% 98.11%
90 16.60 8229.53 132.46 1297.82 4.10 99.95% 96.91% 99.68%

120 15.50 28942.49 105.87 4393.04 5.14 99.98% 95.15% 99.88%
AVG 3184.09 29.47 543.96 1.63 96.79% 91.26% 93.57%

Table 2 Comparative of GCG, Exact, Heur and Mixed algorithms on the Deschinkel’s
benchmark instances.

computational time of the related procedure. Finally, the last line of the table
reports the average values for the last seven columns. Note that when the CPU
time gap between two algorithms is lower than 1 second, we do not report the
percentage gap because we consider this gap to be negligible.

As previously mentioned, the results of the Time column for GCG show
that it is able to find the optimal solution in less than 6 seconds on average
whatever are the characteristics of the considered scenario. Therefore, the in-
crement in terms of requested CPU time, as the size of scenarios grows, is
bounded to few seconds. The situation appears to be completely different for
the other three algorithms, that appear to be much slower, and whose compu-
tational times are significantly affected by the scenarios characteristics. More
in details, from the average values of the last line it is clear that GCG is faster
than Exact by three orders of magnitude, with a gap that is always greater
than 86%. In particular, for the scenario containing the largest instances (that
is, with 200 sensors and 120 targets) the Exact algorithm spends more than
8 hours to find the optimal solution while GCG requires less than 6 seconds.
The Mixed algorithm results faster than the Exact algorithm, however when
compared to the GCG algorithm it appears to be slower by two orders of mag-
nitude. Moreover, the performance gap between these two algorithm is always
greater than 83%. Finally, it is remarkable to note that GCG results to be 20
times faster than the heuristic approach Heur, with a percentage gap which
is always greater than 74%.

It has to be highlighted that this comparison cannot be completely accu-
rate since the algorithms proposed in [12] were run on a different hardware
and the mathematical models were solved using GLPK. However, since the
running time gap can be quantified in orders of magnitude, we believe that
the comparison still provides solid evidence about the effectiveness of our ap-
proach.

The results of GCG, on one hand, confirm our expectations on the effec-
tiveness and efficiency of our GA algorithm and, on the other hand, prove
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Inst. Subgroup Targets Tα LifeTime Time Inv Col Flr
Design 100 50 8.32 0.41 4.30 19.20 1.03

75 5.42 0.77 9.90 13.63 2.00
85 4.50 0.90 11.50 12.27 2.87
93 3.65 0.52 6.97 14.03 1.57
95 3.34 0.39 4.80 11.87 1.20
97 3.04 0.26 2.13 7.43 1.00
99 3.00 0.27 2.03 11.90 1.00

100 3.00 0.29 2.37 13.63 1.00
Scattering 100 50 20.50 1.19 6.20 23.30 1.03

75 13.36 9.14 39.77 10.03 8.07
85 10.57 9.12 52.57 8.13 10.47
93 7.73 2.35 16.10 17.77 2.10
95 6.64 1.22 7.63 20.27 1.40
97 5.37 0.74 3.37 17.00 1.03
99 3.83 0.56 1.67 7.17 1.00

100 3.00 0.48 1.00 0.00 1.00
Avg 10.77 12.98 2.36

Table 3 Results obtained by the GCG algorithm on the Group 2 benchmark instances
proposed in [13].

that a column generation approach, paired with a fast and effective method
to generate new columns, results to be a very suitable approach for lifetime
problems on sensor networks.

We now present the results of GCG when used to solve the Group 2 set
of benchmark instances proposed in [13] for the α-coverage problem. This
is the hardest set of instances considered in that paper, and therefore we
considered the results on it to be more relevant and interesting. Nevertheless,
we also tested our approach on the Group 1 dataset, and the related tables
are contained in the Appendix. As will be shown, GCG performs well on all
these instances as well.

The Group 2 instances contain 100 targets, while the number of sensors is
not fixed a priori, but is rather computed assuring that each target is covered
by at least 3 sensors. The instances are further divided in two subgroups,
named Scattering and Design respectively. In the Scattering group sensors
are added randomly until the desired coverage level is reached, while in the
Design group, sensors are added only when needed to reach such coverage. For
a detailed description of the characteristics of these instances see [13].

In Table 3, the results of GCG on the Scattering and Design scenarios are
reported. The first two columns specify the type of instance and the number
of targets present in it. The column Tα specifies the number of targets that
must be covered, while the columns Lifetime and Time reports the solution
value and the requested CPU time, respectively. Finally, the last 3 columns
report for GA the same values which we already mentioned regarding Table 1,
and the last line of the table reports the average values of these columns.
Each line in the table represents a scenario composed by 30 instances with the
same characteristics, therefore the results reported in each line are the average
values on these 30 instances.
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Inst. Subgroup Tα GR GCG GAP

LifeTime Time LifeTime Time
Design 50 8.32 3.20 8.32 0.41 87.28%

75 5.42 13.94 5.42 0.77 94.46%
85 4.50 11.46 4.50 0.90 92.15%
93 3.65 7.03 3.65 0.52 92.56%
95 3.34 2.68 3.34 0.39 85.41%
97 3.04 1.43 3.04 0.26 81.61%
99 3.00 0.59 3.00 0.27

100 3.00 0.21 3.00 0.29
Scattering 50 20.50 11.13 20.50 1.19 89.30%

75 13.36 216.98 13.36 9.14 95.79%
85 10.56** 302.91 10.57 9.12 96.99%
93 7.38* 36.18 7.73 2.35 93.50%
95 6.64 8.02 6.64 1.22 84.78%
97 5.37 2.01 5.37 0.74 63.15%
99 3.83 0.56 3.83 0.56

100 3.00 0.05 3.00 0.48

AVG 38.65 1.79 88.08%

Table 4 Computational results of GCG and GR algorithms for the α-coverage WSN prob-
lem.

The results of Table 3 show that for these instances the number of invo-
cations is on average 10.77, the number of columns returned is approximately
12.98 and the number of average failures is 2.36. More in detail, on the Design
scenarios we register a peak of GA invocations equal to 11.50 for the case
Tα = 85, which also corresponds to the peak of failures, equal to 2.87. The
average number of columns returned for each iteration is greater than 10 in
all cases except one, in the case Tα = 97. The Scattering instances result to
be harder to solve, with a peak of GA invocations and failures corresponding
to 52.57 and 10.47, respectively (again in the case Tα = 85). This can be ex-
plained considering the additional number of sensors, and therefore the higher
amount of feasible covers which exists in such instances.

It can be noticed that also on this dataset GA only fails once for the
highest values of Tα, and therefore the problem approaches the classical MLP.
In particular, this happens for each instance with Tα ≥ 97 for the Design
dataset and with Tα ≥ 99 for the Scattering one.

Despite the results appear to be less impressive than the ones presented
in 1, the values in the Time column show that GCG is still very fast. Indeed,
the algorithm finds the optimal solution in less than 1 second on average in
all scenarios for the Design instances, and always in less than 10 seconds on
average for the Scattering ones.

In Table 4 a performance comparison between GCG and the GR algorithm
is performed. As mentioned above, we do not evaluate gaps when both proce-
dures report a computational time which is below 1 second. On the Design
scenarios, the GR algorithm finds all solution within the considered 1 hour
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time limit. However, it is clear that GCG is generally much faster, with a
percentage gap greater than 81% on the first 6 scenarios and a CPU Time
always lower than a second. More interesting are the results on the Scattering
scenarios, where some of its instances are not solved within the time limit by
the GR algorithm. More in detail, it reaches the time limit on 2 instances of
the scenario with Tα = 85 and 3 instances of the scenario with Tα = 93. The
solution values of these scenarios are marked into the table with the symbols
“*” and “**” to highlight that these values are averages evaluated only on the
subset of instances which were solved to completion.

The values of column GAP show that GCG is at least 63% faster than GR
with a peak equal to 97% and an average equal to 88%. The values reported
in the last line show that GCG is faster than GR by an order of magnitude
with a CPU time lower than 2 seconds with respect to the 38 seconds required
by GR algorithm. These results certify that GCG is the fastest algorithm and
that it is also more effective, since it can solve within 10 seconds at most on
average all the considered scenarios.

6 Conclusion

In this work we addressed the maximum lifetime problem on wireless sensor
networks, and more in particular we considered two variants in which either all
sensors have to be covered, or a portion of them can be neglected at all times
in order to increase the overall network lifetime. We presented an efficient
genetic algorithm aimed at producing new covers, which can be embedded
within a Column Generation framework. The obtained algorithm is shown to
be highly efficient in terms of requested computational time, and to perform
significantly better than the ones proposed in the literature.

Further research will involve the study of more complex problem variants,
able to model aspects such as sensor-to-sensor communication.
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Appendix

Tables 5 and 6 contain the results related to the Group 1 instances proposed
in [13]. Each instance in this group contain 15 targets, while the number of
sensors for the different scenarios is specified by the Sensor heading in the
tables. Each line in the tables contain averages over 5 different instances with
the same characteristics. For a description of the table headings, refer to the
description of Tables 3 and 4 in the paper.
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Sensors Tα Lifetime Time Inv Col Flr
25 8 13.60 0.29 3.00 11.80 1.00

11 10.40 0.26 3.40 16.40 1.00
13 6.60 0.19 2.80 17.00 1.00
15 3.60 0.19 2.00 19.60 1.00

50 8 27.23 0.59 4.60 19.40 1.00
11 19.40 0.40 4.60 18.80 1.00
13 13.93 0.33 3.60 21.00 1.00
15 9.40 0.26 2.40 15.20 1.00

100 8 54.90 1.27 9.20 21.00 1.00
11 41.49 1.25 11.00 23.20 1.20
13 30.40 0.87 7.00 26.60 1.00
15 15.40 0.52 3.00 21.80 1.00

150 8 87.60 2.39 11.80 22.00 1.00
11 66.98 2.40 15.40 22.80 1.40
13 51.72 1.97 12.20 27.60 1.00
15 25.00 0.89 4.00 24.60 1.00

AVG 6.25 20.55 1.04

Table 5 Results obtained by the GCG algorithm on the Group 1 benchmark instances
proposed in [13].

Sensors Tα GR GCG GAP

LifeTime Time LifeTime Time

25 8 13.60 0.26 13.60 0.29
11 10.40 0.44 10.40 0.26
13 6.60 0.11 6.60 0.19
15 3.60 0.01 3.60 0.19

50 8 27.23 1.11 27.23 0.59
11 19.40 0.68 19.40 0.40
13 13.93 0.39 13.93 0.33
15 9.40 0.01 9.40 0.26

100 8 54.90 5.95 54.90 1.27 78.72%
11 41.49 8.03 41.49 1.25 84.39%
13 30.40 2.74 30.40 0.87 68.42%
15 15.40 0.02 15.40 0.52

150 8 87.60 15.24 87.60 2.39 84.31%
11 66.98 13.90 66.98 2.40 82.74%
13 51.72 9.79 51.72 1.97 79.86%
15 25.00 0.02 25.00 0.89

AVG 3.67 0.88 79.74%

Table 6 Computational results of GCG and GR algorithms on the Group 1 benchmark
instances proposed in [13].


