
An exact algorithm to extend lifetime through roles
allocation in sensor networks with connectivity

constraints

Technical Report n 63994, Department of Mathematics, University of Salerno,
29/10/2015.

Francesco Carrabsa, Raffaele Cerullia, Ciriaco D’Ambrosioa, Andrea Raiconia

aDepartment of Mathematics, University of Salerno, Via Giovanni Paolo II 132, 84084
Fisciano, Italy (e-mail: {fcarrabs,raffaele,cdambrosio,araiconi}@ unisa.it).

Abstract

The Maximum Lifetime Problem with Role Allocation and Connectivity Con-

straints consists of defining an optimal scheduling of the activities in a wireless

sensor network in order to ensure that, in each instant of time, the activated

sensors can monitor all the points of interest (targets) and route the collected

information to a given processing facility. Each sensor is assigned a role, depend-

ing on whether it is actually used to monitor the targets, to forward information

or kept idle, leading to different battery consumption ratios. We propose a col-

umn generation algorithm that embeds a highly efficient genetic metaheuristic

for the subproblem. Moreover, to optimally solve the subproblem, we introduce

a new formulation with an inferior number of integer variables with respect to

a previous one proposed in the literature. Finally, we propose a stopping crite-

rion to interrupt the optimal resolution of the subproblem as soon as a favorable

solution is found. The results of our computational tests show that our algo-

rithm consistently outperforms previous approaches in the literature, and also

improves the best results known to date on some benchmark instances.

Keywords: Wireless Sensor Network, Roles Allocation, Column Generation,

Genetic Algorithm, Connectivity Constraints

Preprint submitted to Elsevier October 29, 2015

1. Introduction

Recent technology advances in several fields, including miniaturization and

wireless communications, have enabled the use of Wireless Sensor Networks to

monitor and process information in a wide scope of different real world appli-

cations. One may consider, for instance, new technology concepts such as the

Internet of Things [2], and its applications, which include the research project

known as Array of Things1.

In comparison, battery technologies have seen smaller improvements. Opti-

mizing energy consumption remains therefore an issue of great relevance, and

has been object of many research efforts. Indeed, a problem of interest is re-

lated to prolonging for as much as possible the network lifetime, that is, the

amount of time over which the network can keep under observation some target

locations (generally simply referred to as targets). This issue is particularly

relevant for networks composed of a large number of low-cost sensors, where the

fundamental idea is to optimize the energy expense of the individual devices by

exploiting their redundancy. In more detail, the problem is faced by appropri-

ately scheduling the sensor activities, in such a way that at any given time only

some sensors, that can jointly monitor all targets, are activated, while all the

others are switched off or kept in a low-power idle mode. Such a set is usually

called cover, and by extension, it is said to cover the set of the targets. It was

shown in [5] that allowing non-disjoint covers can greatly prolong the network

lifetime, and that the resulting problem, known as the Maximum Lifetime Prob-

lem (MLP), is NP-Complete. Exact, heuristic and approximation algorithms

have been proposed in the literature for its resolution ([4], [5], [9], [14]).

Many variants of MLP have been proposed and studied, as well. Among

others, resolution approaches have been proposed for the cases in which only a

subset of targets need to be monitored by each cover ([9], [17], [22]), or that con-

sider networks composed of heterogeneous sensing devices ([3], [7]), or sensing

1https://arrayofthings.github.io

2

devices with adjustable ranges ([6], [12], [13], [15], [21]).

Other MLP variants take into account the need to transmit the sensed in-

formation to a central processing node, which is defined in the literature using

different names, such as base station, sink or gateway ([1], [8], [11], [18], [20]).

An interesting variant belonging to this latter area, called Maximum Life-

time Problem with Role Allocation and Connectivity Constraints (CMLP-MR),

was recently faced in [10]. Consider an underlying undirected graph where two

sensors (or a sensor and the base station) are connected by an edge if and only

if they are close enough to communicate. In CMLP-MR the sensors composing

each cover have to ensure the coverage of all targets and, together with the

base station, they have to induce a subtree in this graph. Such a tree, that

we name routing tree, represents how the information is routed to the base sta-

tion. Furthermore, since some sensors are used only to transmit information,

it is realistic to assume that they consume their battery at a lower rate, dur-

ing the cover activation period, with respect to the ones with sensing duties.

Such sensors are defined relay nodes, while the ones used to monitor the targets

are called source nodes. Therefore in CMLP-MR, besides individuating feasible

covers and assigning activation times to them, appropriate roles must also be

assigned to the sensors within each cover. In [10] the authors propose an exact

resolution approach for the problem, which is based on the column generation

method (CG). Starting from an initial subset of feasible covers, this algorithm

alternates the resolution of a LP formulation (the master problem) which finds

the optimal solution for the current subset, and of an auxiliary problem (the

pricing subproblem, or simply subproblem) which identifies new favorable cov-

ers that may improve the objective function value, until it finally certifies the

optimality of the latest solution found by the master problem. In order to solve

the subproblem, [10] presents three different approaches, namely an ILP for-

mulation, a branch-and-cut algorithm based on Benders’ decomposition and a

method based on constraint programming.

In this work, we present a new CG algorithm for CMLP-MR that presents

several new features with respect to the ones proposed in literature. We propose

3

an efficient genetic algorithm (GA) to solve the subproblem, which is able to

return multiple favorable covers at each iteration. Whenever the GA fails, we

solve the subproblem by using an ILP model, which contains an inferior number

of integer variables with respect to the one reported in [10]. Furthermore, we

prematurely interrupt the ILP resolution as soon as it is able to find a favorable

cover, avoiding to solve it to optimality whenever possible. As will be shown in

the computational tests, thanks to these features our algorithm is generally able

to solve the instances proposed by [10] in noticeably less computational time,

also providing optimal solutions for instances that were unsolved to date.

The rest of the paper is organized as follows. Section 2 formally defines

CMLP-MR. Section 3 describes the CG algorithm structure, and presents the

two alternative methods to solve the pricing subproblem. Section 4 presents

the computational test results. Our conclusions and insights on future work are

contained in Section 5.

2. Problem Definition

Let S = {s0, s1, . . . , sm} denote the set composed of the base station s0 and

the sensor nodes, and let T = {t1, . . . , tn} be the set of the targets. For each

sensor si and target tk, let δki be a parameter whose value is 1 if tk is located

within the sensing range of the sensor, and 0 otherwise. For each subset S′ of

S \ {s0} and each target tk, let parameter ∆kS′ be equal to 1 if δki = 1 for at

least a sensor si ∈ S′, and 0 otherwise. Furthermore, consider an undirected

connectivity graph G = (S,E), such that (si, sj) ∈ E if and only if they are

close enough to exchange data.

Consider for instance the network represented in Figure 1(a), with S =

{s0, . . . , s6} and T = {t1, . . . , t8}. The circles centered at the sensors represent

their sensing ranges; hence, for instance, s2 can monitor t2 and t3 (δ22 = δ32 =

1). Figure 1(b) shows the transmission ranges of the elements of S, represented

by the circles with dashed borders, and the resulting connectivity graph. It

can be seen that, for instance, the base station (represented by a triangle) is

4

(a)

(b)

Figure 1: Example wireless sensor network (a); transmission ranges and connectivity graph

(b).

connected to s3 and s4, and the subgraph induced by {s4, s5, s6} is complete,

since these three sensors are included into each other’s transmission range.

Let R = {0, 1, 2} be the roles that can be assumed by each sensor, where

0 corresponds to the switched off (or idle) mode, 1 to the relay role and 2

to the source role. An allocation of roles to sensors defines a partition Pp =

{S0
p , S

1
p , S

2
p} of the set S \ {s0}, where Sr

p is the subset of sensors assigned to

role r. In CMLP-MR, a feasible cover corresponds to such a partition Pp, for

which the following two conditions hold:

• ∆kS2
p

= 1 for each target tk, hence the source nodes cover the whole set

of targets;

• the subgraph of G induced by the set of nodes {s0}∪S1
p ∪S2

p is connected,

and therefore it contains a routing tree.

5

By extension, a partition representing a feasible cover is defined to be feasible

as well. From now on, we will use the terms cover or partition interchangeably,

and refer to feasible ones where unspecified.

Figure 2: Partition {{s6}, {s2}, {s1, s3, s4, s5}} for the network in Figure 1

A feasible partition and its related routing tree for the network in Figure 1

are illustrated in Figure 2. The chosen set of source nodes is {s1, s3, s4, s5}, that

can cover all the targets. Sensor s2 is needed as a relay (represented by a square

in the figure), since the subgraph induced by {s0, s1, s3, s4, s5} would not be

connected otherwise. Since it does not have covering purposes, its sensing range

is not shown in the figure. Sensor s6 is not needed, therefore it is kept idle and is

not shown in the figure. The resulting partition is {{s6}, {s2}, {s1, s3, s4, s5}}.

Each role r ∈ R is assigned an energy consumption rate lr ≥ 0, representing

how quickly a sensor in such a role consumes its battery. Since role 0 is by

definition used to preserve energy, and since a source node may also transmit

information, it is assumed that l0 ≤ l1 ≤ l2. Furthermore, for each sensor si,

let bi ≥ 0 represent its battery charge. In a CMLP-MR solution, a sensor can

be allocated to different roles in different partitions. The energy consumption

needed to switch roles is assumed to be negligible.

For a given feasible partition Pp, each sensor si and each role r, let arip be a

binary parameter which is equal to 1 if si ∈ Sr
p and 0 otherwise. Assuming to

know in advance the whole set of feasible partitions {P1, . . . , PM}, CMLP-MR

can be represented using the following LP formulation:

6

[P] max

M∑
p=1

wp (1)

M∑
p=1

∑
r∈R

lraripwp ≤ bi ∀si ∈ S \ {s0} (2)

wp ≥ 0 ∀p = 1, . . . ,M (3)

Continuous variables wp represent the activation times assigned to the partitions

in the optimal solution. Constraints (2) ensure that the sum of the energy

consumptions of each sensor si in the partitions is not greater than its maximum

battery capacity.

The model can not be used in practice on large scenarios, due to the expo-

nentially large number of feasible partitions (and thus of variables in the model).

For this reason, we developed the CG approach described in Section 3.

3. Column Generation approach

Our exact CG approach to solve CMLP-MR, from now on called ECG-MR,

allows us to find the optimal solution for [P] without explicitly enumerating

the variables corresponding to each feasible partition. We start by solving the

master problem, corresponding to a version of [P] which only uses a subset

of feasible partitions. We then use the dual prices πi corresponding to each

sensor si to build the feasible partition corresponding to the nonbasic vari-

able with minimum reduced cost, using an appropriately designed pricing sub-

problem. For a given partition Pp, the related reduced cost is evaluated as∑
si∈S\{s0}

∑
r∈R lraripπi− cp, where cp = 1 is the coefficient of wp in the objec-

tive function of [P]. If the minimal reduced cost is non-negative, the solution

found by the master problem is optimal for [P]. Otherwise, the new variable

(partition) could increase the objective function value, and is defined to be at-

tractive; it is therefore added to the master problem, and the procedure iterates.

7

The subproblem is NP-Hard, since it is a particular set cover problem.

Hence, in addition to an ILP formulation to solve it exactly, we propose a

GA to obtain high-quality heuristic solutions whenever possible. Another fea-

ture of our GA is its ability to find several attractive partitions at once. In

more detail, after solving the master problem, each iteration of ECG-MR first

attempts to solve the subproblem using our GA. If the GA is able to find attrac-

tive partitions, they are added to the master problem, and the current iteration

ends. If the GA fails, the ILP formulation is used instead. Given the complex-

ity of solving such formulation, we prematurely interrupt its resolution as soon

as it identifies an attractive partition that satisfies a predefined objective value

threshold. It follows that the subproblem needs to be solved to optimality at

least once, in the final iteration which is used to certify the optimality of the

current solution.

We now describe our two methods to solve the subproblem in Sections 3.1

and 3.2. The generation of the subset of feasible partitions which is used to

initialize the CG is described in 3.3.

3.1. GA to solve the subproblem

The use of evolutionary algorithms to produce feasible covers has been suc-

cessfully exploited in the literature regarding lifetime optimization problems

([7], [9], [21]). As will be shown in Section 4, the GA proposed in this work is

able to significantly speed-up the convergence of ECG-MR.

In our GA algorithm, each chromosome represents a partition, and each

sensor is weighted according to its dual price. GA starts from a randomly built

population of chromosomes, and it attempts to build new attractive partitions

that could be added to the master problem. In this section we first define the

chromosome representation of each individual, we then give a general overview

of the algorithm, and finally we describe each genetic operator.

8

3.1.1. Chromosome Representation and Fitness Function

Each solution of the pricing subproblem is represented by a chromosome C,

which is encoded using a vector of real values with length |S|. A chromosome

that represents a feasible partition is defined by extension to be feasible.

Each position C[i], for i = 0, ...,m, is called gene and is associated to si ∈ S.

For i ≥ 1, the gene C[i] represents the role of the related sensor si ∈ S \ {s0} in

the partition. In more detail, if C represents the partition Pp and si ∈ Sr
p , then

the value reported in position C[i] is the consumption rate lr.

The C[0] gene is associated to the base station. In this special case, its value

is l2 if, given the partition Pp corresponding to C, the connectivity subgraph

induced by {s0} ∪ S1
p ∪ S2

p is connected, and l0 otherwise. Clearly, C[0] = l2

in every feasible chromosome. In Figure 3, the example partition discussed in

Section 2 and its chromosome representation are illustrated. The sensing role

is assigned to the sensors {s1, s3, s4, s5} that together cover all the targets. As

a consequence, their consumption ratio is equal to l2. The sensor s6 is switched

off and its consumption ratio is equal to l0. Finally, the sensor s2 is used to

satisfy the connectivity constraints and its consumption ratio is set to l1, and

as introduced, the value for s0 is set to l2.

Using its operators, our GA ensures that every chromosome introduced in the

population is feasible. The elements of the population are ranked according to

a fitness function, which is computed by performing the dot product of the C[i]

values, for i = 1, ...,m, and the dual prices vector. It follows that by computing

the fitness function value of a feasible chromosome, the reduced cost of the

corresponding partition is obtained as well. Therefore, any feasible chromosome

with a fitness function value lower than 1 corresponds to an attractive partition.

3.1.2. GA Structure

The structure of our GA is resumed by the pseudocode presented in Algo-

rithm 1. The input is represented by the Wireless Sensor Network WSN =

(S, T), the connectivity graph G = (S,E), the dual prices vector dp and the

vector of consumption rates values l = [l0, l1, l2]. GA first initializes the pop-

9

Figure 3: A partition and its chromosome representation

ulation Pop with randomly built individuals (line 1), storing the best fitness

function value encountered in the process (line 2). Section 3.1.5 describes how

the population initialization process works. Moreover, in this phase, each edge

belonging to E is also assigned a cost, and a shortest path among each cou-

ple of elements of S is computed. The shortest paths are found by using the

Floyd-Warshall algorithm (see [19]). These paths will be used while attempting

to guarantee connectivity for the newly generated chromosomes, as discussed in

Section 3.1.4.

The evolutionary process is carried out within the while loop reported in lines

4-21. Each iteration builds a new feasible chromosome, and the loop is iterated

until one of two thresholds (MaxIt and MaxDup) have been reached. The first

one defines a maximum number of consecutive iterations without improvements

with respect to the incumbent best fitness value bestF , while the latter sets a

maximum number of consecutive created individuals that have a duplicate in

the current population. Given two randomly selected members of Pop, defined

parents (line 5), a new, possibly unfeasible one C (the child) is built using a

crossover operator (line 6). Then, a mutation operator is applied to C (line 7) to

increase its diversity. If the resulting chromosome is unfeasible, two additional

operators, cover feasibility and connect feasibility, are applied to guarantee the

coverage of all the targets and to ensure connectivity (lines 8-9). Finally, an

operator which may allow to switch some sensors to role 0 in the special case

10

Algorithm 1: GA algorithm

Input: WSN = (S, T), G = (S,E), dp, l;

Output: Chromos (a set of attractive partitions);

1 Pop← initPop();

2 bestF ← bestF itness(Pop);

3 it← 0, dup← 0;

4 while it ≤MaxIt and dup ≤MaxDup do

5 (Cp1, Cp2)← Tournament(Pop);

6 C ← Crossover(Cp1, Cp2);

7 C ←Mutation(C);

8 C ← CoverFeasibility(C);

9 C ← ConnectFeasibility(C);

10 if (l1 == l2) then

11 C ← redundancyRemoval(C);

12 if C /∈ Pop then

13 dup← 0;

14 Pop← insert(C);

15 if fitness(C) ≥ bestF then

16 it← it+ 1;

17 else

18 bestF ← fitness(C);

19 it← 0;

20 else

21 dup← dup+ 1;

22 Chromos← {C ∈ Pop | fitness(C) < 1};

23 return Chromos;

l1 = l2 is applied (lines 10-11). These operators are described in Sections 3.1.3-

3.1.4.

11

If the new chromosome C is already inside the population, it is rejected,

otherwise it will replace one of the |Pop/2| worst chromosomes in Pop (lines

12-14). The bestF value and two counters used to check whether MaxIt or

MaxDup have been reached (it and dup) are updated according to the new

solution found (lines 12-21).

As soon as a stopping condition is reached, the GA ends, returning all the

attractive chromosomes contained in Pop (lines 22-23).

3.1.3. Crossover and Mutation

The crossover operator represents the first main step for the generation of

a new chromosome. A binary tournament is used to select the parents; each

parent is chosen by first selecting two random elements of Pop, and then taking

among them the one with the better fitness function value. Given the parent

chromosomes Cp1 and Cp2, the child C resulting from the crossover operator is

such that C[i] = l2 if and only if Cp1[i] = l2 and Cp2[i] = l2 for i ∈ {1, . . . ,m}.

All other positions of C are set to l0. This choice was made since the relay

nodes of the parents may not be useful in the case in which they connected

source nodes missing in the child. Hence, we chose to delegate the task to

efficiently connect the source nodes and the base station in C to the connect

feasibility operator, described in Section 3.1.4.

In order to guarantee a diversification with respect to the parents, the muta-

tion operator alters one of the genes corresponding to source nodes individuated

by the crossover, switching its value from l2 to l0. If there are no such genes in

C after the crossover, the mutation does not perform any operation, and C will

be built from scratch by the two operators discussed in Section 3.1.4.

3.1.4. Coverage, Connectivity and Redundancy Operators

The set of source nodes resulting by the crossover and mutation operators

may not guarantee the feasibility of the corresponding partition, in terms of

neither coverage, nor connectivity. In order to make C feasible, we introduce

two operators that fix each issue individually.

12

The cover feasibility operator checks the set of targets T ′ covered by the

current source nodes in C; if |T ′| < |T |, it randomly selects a sensor that would

cover some new targets, and updates its gene in C from l0 to l2. The selection

and activation of source nodes is iterated, until all targets are covered. In the

last step of the cover feasibility operator, the presence of redundant source nodes

is checked. To this end, by checking the targets which are covered by more than

one source node, a list of genes that would not compromise coverage if they

were switched from l2 to l0 is built. Then, one of them is randomly chosen and

switched; the list is recomputed and the procedure is iterated until no source

node can be removed.

The connect feasibility operator is then applied to activate sensors in the

relay role, if needed. Given the partition Pp corresponding to the C chromo-

some resulting after the application of the cover feasibility operator, it is first

checked whether the subgraph induced in G by {{s0} ∪ S2
p} is connected. In

this case, C[0] is switched to l2, and no further operation is needed. Otherwise,

a procedure based on the CHINS-Q heuristic for the Steiner Tree problem (see

[16]) is applied. The aim of the procedure is to build a connected subgraph of

G that includes all the nodes belonging to the set of required nodes N ⊂ S,

containing the individuated source nodes and the base station s0, attempting to

favor the choice of additional sensors with low dual prices values. To this end,

the cost assigned to each edge in G corresponds to the sum of the dual prices

of its endpoints, assuming the base station s0 to have a dual price equal to 0.

The procedure starts by building a new chromosome C ′, such that the gene

C ′[i] of a single element si ∈ N is set to l2 and all other genes are set to l0.

Then, the algorithm finds the shortest path in G between si and an element

sj ∈ N \ {si}. The gene C ′[j] is set to l2, and all the genes corresponding to

the internal nodes of the path are set to l1 in the chromosome. The described

steps are iterated, finding in each iteration the shortest path between a node

whose gene is equal to either l2 or l1 in C ′ and a required node whose gene is

equal to l0. Once the genes of all the elements of N are set to l2 in C ′, a feasible

chromosome has been obtained, and a routing tree has been individuated in

13

the process. The procedure is repeated |N | times, varying in each iteration

the element of N used as starting point. Finally, C is set to be equal to the

chromosome with the best fitness function found, and is returned.

A particular situation occurs in the case in which the consumption rates of

source and relay sensors are equal. In this case, that was taken into account in

the computational tests performed in [10], the problem reduces to the Connected

Maximum Lifetime Problem ([8], [11], [20]) in which the sensors roles are either

source or idle. Indeed, if l1 = l2, all sensors added by the connect feasibility

operator may be considered to be source nodes at no additional expense, and

therefore coverage redundancy may have been added to the related partition.

The redunancy removal operator, that is applied in this special case, works

similarly to the procedure executed after the cover feasibility operator to remove

redundancy. However, in order to guarantee that connectivity is not violated,

only nodes that have degree 1 in the routing tree, individuated by the connect

feasibility operator, are taken into account (eventually excluding s0).

3.1.5. GA initialization

The initial population Pop of GA is composed of randomly built feasible

chromosomes. Each chromosome is initialized by setting all its genes to l0, and

then updated using the operators discussed in Section 3.1.4. If a generated

chromosome is equal to one that has been already added to Pop, to avoid hav-

ing duplicate chromosomes it gets discarded. The initialization is iterated until

either Pop contains a predefined PopSize number of chromosomes, or a maxi-

mum number (InitMaxDup) of duplicated chromosomes have been generated.

Since each chromosome built after the initialization replaces an older one, the

cardinality of Pop does not change during each execution of GA.

3.2. ILP formulation to solve the subproblem

We propose a network flow formulation to build the nonbasic solution with

minimum reduced cost. Our formulation is based on a directed graph Gd =

(S,Ed), such that for each couple of sensors si and sj belonging to S \ {s0},

14

both arcs (si, sj) and (sj , si) belong to Ed if the related edge (si, sj) belongs to

E. Furthermore, for each si ∈ S \ {s0}, (s0, si) ∈ Ed if the related edge belongs

to E. Our proposed formulation is the following:

[SP] min
∑

si∈S\{s0}

∑
r∈R

πil
ryri (4)

∑
r∈R

yri = 1 ∀si ∈ S \ {s0} (5)

∑
si∈S\{s0}

δkiy
2
i ≥ 1 ∀tk ∈ T (6)

∑
(s0,si)∈Ed

f0i =
∑
si∈S

2∑
r=1

yri (7)

∑
(sj ,si)∈Ed

fji −
∑

(si,sj)∈Ed

fij =

2∑
r=1

yri ∀si ∈ S \ {s0} (8)

2∑
r=1

yri ≤
∑

(sj ,si)∈Ed

fji ≤ (|S| − 1)

2∑
r=1

yri ∀si ∈ S \ {s0} (9)

fij ∈ Z+ ∪ {0} ∀(si, sj) ∈ Ed (10)

yri ∈ {0, 1} ∀si ∈ S \ {s0}, r ∈ R (11)

For each (si, sj) ∈ Ed, the fij variable represents the number of flow units

transmitted on the arc. For each si ∈ S \ {s0} and r ∈ R, the binary variable

yri is equal to 1 if si is allocated to role r in the new partition, and 0 otherwise.

Objective function (4) minimizes the reduced cost of the partition. Con-

straints (5) impose that each sensor is allocated to exactly a role, while Con-

straints (6) make sure that each target can be monitored by a sensor which is

chosen to be a source. Constraints (7)-(8) are the flow conservation constraints.

The base station produces a number of flow units which is equal to the number

of sensors allocated to the source or relay role, while each of these sensors retain

exactly one flow unit. Constraints (9) ensure that if positive flow is transmitted

along the arc (sj , si) ∈ Ed, then si cannot be allocated to role 0. By effect of

15

Constraints (7)-(9), the arcs with positive flow define a subtree composed of the

base station and source or relay nodes. Along with the other constraints, they

guarantee that it is a valid routing tree, and thus that a feasible partition is

individuated.

In [10], the authors also proposed a network flow formulation for the pricing

subproblem (called Model M2), which is however based on a directed graph

whose set of nodes is S ∪ T , with three types of arcs: (i) target-to-sensor; (ii)

sensor-to-sensor; (iii) sensor-to-base station. In M2, a flow unit is produced by

each target, and transmitted to its chosen source node using a type (i) arc. The

flow constraints ensure that each flow unit is transmitted to the base station

through a path of source or relay nodes, using arcs of type (ii)-(iii). It is easy to

note that [SP] has fewer flow variables than M2, since the cardinality of Ed is

equal to the number of arcs belonging to type (ii) or (iii). Furthermore, M2 uses

a set of binary variables for roles allocation which is equal to ours. A detailed

comparison among the two models is provided in Section 4.

3.3. Initializing ECG-MR

Our ECG-MR procedure needs an initial set of feasible partitions to solve the

master problem in the first iteration. To obtain this set, we use the initialization

procedure described in Section 3.1.5, using random values for the dp dual prices

vector. All the partitions corresponding to the obtained chromosomes are added

to the master problem.

4. Computational Results

In this section we evaluate the effectiveness and performance of the ECG-

MR algorithm by comparing it with the CG+BBC and CG+CP algorithms

proposed by [10] on the instances considered in that work. The two algorithms

correspond to CG procedures using a branch-and-cut approach and a constraint

programming approach to solve the subproblem, respectively. A third approach

(CG+ILP) using the ILP formulation M2 was shown in [10] to be consistently

16

outperformed by CG+BBC and CG+CP, therefore we discarded it from the

comparison with ECG-MR.

Our algorithm was coded in C++ on an OSX platform, running on an Intel

Core2 Duo 3.4 GHz processor with 8 GB of RAM. The mathematical formula-

tions embedded in the CG framework were solved using the Concert library of

IBM ILOG CPLEX 12.6. The algorithm was executed in single thread mode,

hence we did not take advantage of the parallelism offered by CPLEX. We fixed

a maximum running time equal to 1 hour for the resolution of each instance.

When a certified optimal solution is not found within this threshold, the best

solution found is returned and used for the comparisons. After a tuning phase,

we determined the values for the parameters used by ECG-MR in all compu-

tational tests. In more detail, the solution value threshold for the premature

interruption of [SP] was set to 0.9, while the PopSize, MaxIt, MaxDup and

InitMaxDup parameters of GA were set to 100, 1000, 100 and 100, respectively.

In [10], the tests were performed on a machine using an Intel Xeon Quad-

Core W3550 3.06 GHz processor with 6 GB of RAM. As in our tests, a 1 hour

time limit was considered, and the best results found within this time interval

were reported. Furthermore, they allowed their procedures to run for additional

10 hours, in order to find as many certified optima as possible. In this way, they

were able to report optimal solutions for all instances except 2. As will be

discussed in this section, ECG-MR was instead able to report the whole set of

optimal solutions, including the missing 2, within the 1 hour time limit.

The instances proposed in [10] have a number of sensors |S \ {s0}| varying

in the set {100, 200, 300, 400, 500} and a number of targets |T | equal to either

15 or 30. Sensors and targets are disposed in a two-dimensional area with size

500× 500. The communication range (Rc) of the sensors is equal to 125, while

their sensing range (Rs) is equal to either 100 or 125. The consumption rates

vector l is either [l0 = 0, l1 = 0.8, l2 = 1] or [l0 = 0, l1 = 1, l2 = 1]. Each sensor

is assumed to have an equal battery lifetime, normalized to 1 time unit. For

each combination of parameters, 4 different instances were generated, for a total

of 160 instances.

17

One of the main contributions of our work is the introduction of an alter-

native ILP formulation for the subproblem ([SP]). In order to verify the effec-

tiveness of this formulation, before introducing the comparison between ECG-

MR, CG+BBC and CG+CP, we compare [SP] with M2, the ILP subproblem

formulation proposed in [10]. We implemented both formulations within a CG

approach that is executed on the same machine, using the same master problem.

For both these CG algorithms, the subproblem is always solved to optimality

using the related ILP formulation. We call these two algorithms CG-SP and

CG-M2, respectively. For each tested instance, both compared procedures were

initialized with an equal set of randomly generated partitions. The results of

this comparison, performed on the instances with up to 200 sensors, are reported

in Table 1.

Each line in the table represents a scenario composed of 4 instances, and

reports average values. The detailed results can be downloaded from the site of

authors. The first two columns of the table report the number of sensors and

targets in the scenarios. The next four columns show the network lifetime (in

time units) and the computational time (in seconds) for the two algorithms. The

last two columns report how many times the two algorithms found an optimal

solution. We start the comparison on the scenarios with Rs = 100 and l1 = 1.

On these scenarios, it can be noted that when CG-M2 reaches the time limit,

the lifetimes computed are often far from the optimal values. In particular, for

the scenarios with 200 sensors, CG-SP finds 3 out of 4 optimal solutions when

|T |=15, and all of them when |T |=30, with average lifetimes equal to 10.16

and 8.75, respectively. On the other hand, CG-M2 finds no optimal solutions

for these scenarios, and the returned lifetimes are equal to 6.61 when |T |=15

and 6.21 when |T |=30. The overall number of instances solved to optimality is

remarkably different as well. Indeed, CG-SP finds the optimal solution for 14

out of 16 instances, while CG+M2 optimally solves 7 instances. Regarding the

algorithms performance, CG-SP is always faster than CG-M2, and the time gap

is often significant.

The results on the scenarios l1 = 0.8 and Rs = 100 are slightly better for

18

CG-M2 CG-SP #Opt

|S \ {s0}| |T | LT Time LT Time CG-M2 CG-SP

Rs = 100, l1 = 1

100 15 4.00 42.63 4.00 1.79 4 4

100 30 3.97 943.88 3.99 904.13 3 3

200 15 6.61 3593.42 10.16 1050.73 0 3

200 30 6.21 3592.44 8.75 147.71 0 4

Rs = 100, l1 = 0.8

100 15 4.29 131.23 4.29 10.86 4 4

100 30 3.99 916.81 4.00 44.43 3 4

200 15 9.21 2859.29 10.58 1271.69 1 3

200 30 7.83 3482.92 8.85 654.72 1 4

Rs = 125, l1 = 1

100 15 4.63 1803.61 4.75 663.07 2 4

100 30 4.49 1808.76 4.73 1175.51 2 3

200 15 7.12 3591.53 12.39 1838.54 0 2

200 30 6.55 3592.86 10.93 951.49 0 3

Rs = 125, l1 = 0.8

100 15 5.09 1808.88 5.11 1142.11 2 3

100 30 4.87 1813.78 5.03 1804.80 2 2

200 15 9.53 3058.47 13.03 2714.96 1 1

200 30 7.56 3591.55 11.68 1837.54 0 2

Table 1: Comparison between CG-M2 and CG-SP

both the algorithms. Indeed, CG-SP optimally solves 15 out of 16 instances,

while CG+M2 solves 9 of them. On the scenarios with 200 sensors, we can

observe that the lifetimes gap is again significant (over 10%) between the two

algorithms. Finally, a slight overall increase of the computational times for

CG-SP can be noted. However, CG-SP remains always noticeably faster than

CG-M2.

From these results, we can conclude that on these smaller instances the

19

consumption ratio value for the relay nodes does not seem to heavily impact

the effectiveness of the two approaches.

By increasing the sensing range to Rs = 125, instead, we can observe higher

increases in terms of computational time for the algorithms, and a larger de-

crease with respect to the number of optimally solved instances. Such a result

was expected, since as the sensing range increases, the number of feasible parti-

tions is likely to increase as well. In more detail, in the scenarios with Rs = 125

and l1 = 1, the gap in terms of effectiveness increases with respect to the in-

stances with Rs = 100 and the same l1 value. Indeed, on the scenarios with 200

sensors, the solutions found by CG-SP are over 40% greater than the ones found

by CG-M2. The computational time of CG-SP is often half the computational

time of CG-M2. The overall number of optima found by CG-SP is 12, while

CG-M2 finds 4 of them. Finally, in the scenarios with Rs = 125 and l1 = 0.8,

we observe for CG-SP an overall increase of the computational times and a

reduction in the number of found optima, that is equal to 8. CG-M2 reports

computational times that are similar to the previous case, and finds 5 optimal

solutions. The instances with l1 = 0.8 and Rs = 125 resulted to be overall the

hardest to solve in these tests.

Summarizing, the results reported in Table 1 highlight that it is very impor-

tant to use efficient methods to solve the subproblem, in particular when it has

to be solved to optimality. In our comparison, formulation M2 resulted to be

more computationally expensive to solve, slowing down the whole CG approach.

We now compare ECG-MR with the two best-performing approaches re-

ported in [10], namely CG+BBC and CG+CP. Again, we report average values,

while the detailed results can be found online on the authors’ website.

Table 2 reports the results of the comparison for the instances with Rs = 100.

As in the previous table, the columns |S \ {s0}| and |T | report the number of

sensors and targets, while the LT and Time columns report average network

lifetimes in time units and average computational times in seconds, respectively.

Since ECG-MR solves all instances within the time limit, its LT column also

coincides with the optimal solution values. Finally, the %Dev columns report

20

|S \ {s0}| |T | ECG-MR CG+BBC CG+CP

LT Time LT Time %Dev LT Time %Dev

Rs = 100, l1 = 1

100 15 4.00 0.57 4.00 31.40 0.00 4.00 2.58 0.00

100 30 4.00 0.67 4.00 190.58 0.00 4.00 3.58 0.00

200 15 10.25 2.55 10.25 51.65 0.00 10.25 31.60 0.00

200 30 8.75 1.67 8.75 54.68 0.00 8.75 27.68 0.00

300 15 15.00 3.61 15.00 550.58 0.00 15.00 172.65 0.00

300 30 13.25 4.11 13.25 111.40 0.00 13.25 169.28 0.00

400 15 18.25 6.15 18.25 169.85 0.00 18.25 619.35 0.00

400 30 18.00 18.94 18.00 144.48 0.00 18.00 915.15 0.00

500 15 29.00 21.22 27.58 1158.90 4.91 29.00 2319.48 0.00

500 30 26.25 18.13 25.34 1800.50 3.47 26.25 2122.03 0.00

Rs = 100, l1 = 0.8

100 15 4.29 0.43 4.29 23.28 0.00 4.29 3.70 0.00

100 30 4.00 0.59 4.00 48.90 0.00 4.00 6.50 0.00

200 15 10.90 2.25 10.24 911.88 6.06 10.90 52.73 0.00

200 30 8.85 1.50 8.85 347.35 0.00 8.85 44.25 0.00

300 15 16.06 4.22 15.65 981.88 2.58 16.06 735.13 0.00

300 30 13.30 3.11 13.30 105.78 0.00 13.30 161.68 0.00

400 15 18.90 7.37 18.82 944.15 0.42 18.90 461.50 0.00

400 30 18.40 12.63 18.40 94.98 0.00 18.40 590.95 0.00

500 15 29.00 12.97 27.58 1158.75 4.91 29.00 1676.45 0.00

500 30 26.25 16.79 26.25 670.95 0.00 26.25 1752.05 0.00

Table 2: Computational results for ECG-MR, CG+BBC and CG+CP on the scenarios with

Rs = 100.

how much CG+BBC and CG+CP deviate from the optimal solutions, in terms

of percentage gap.

All the scenarios with l1 = 1 and Rs = 100 are optimally solved by CG+CP

as well, while CG+BBC did not find the optimal solutions for the two scenarios

with 500 sensors. The gaps from optimal solutions in these cases are always

lower than 5%. What mostly distinguishes ECG-MR from the other two algo-

rithms on these instances are the performances. All the scenarios are, indeed,

optimally solved by ECG-MR in less than 22 seconds, while CG+CP requires

21

|S \ {s0}| |T | ECG-MR CG+BBC CG+CP

LT Time LT Time %Dev LT Time %Dev

Rs = 125, l1 = 1

100 15 4.75 0.50 4.75 96.53 0.00 4.75 3.83 0.00

100 30 4.75 0.73 4.59 952.18 3.32 4.75 33.65 0.00

200 15 13.00 2.46 12.76 1519.78 1.87 13.00 77.30 0.00

200 30 11.75 2.76 11.18 1804.08 4.85 11.68 922.53 0.60

300 15 16.75 5.10 15.41 2749.33 8.01 16.75 189.18 0.00

300 30 16.00 5.33 14.95 1826.63 6.55 16.00 237.65 0.00

400 15 24.88 10.83 22.69 2704.18 8.77 24.88 878.65 0.00

400 30 22.38 30.63 21.74 1833.40 2.86 22.38 906.43 0.00

500 15 37.75 42.19 30.81 3600.00 18.38 35.14 2839.95 6.92

500 30 35.50 70.27 31.68 3600.00 10.75 33.35 3023.25 6.05

Rs = 125, l1 = 0.8

100 15 5.28 0.52 5.12 1354.38 2.98 5.28 4.45 0.00

100 30 5.24 0.56 5.17 1809.83 1.34 5.24 6.50 0.00

200 15 14.35 2.16 13.73 984.08 4.34 14.35 77.03 0.00

200 30 12.60 1.88 12.23 1833.28 2.92 12.60 70.75 0.00

300 15 18.46 4.50 17.42 2735.93 5.65 18.46 179.53 0.00

300 30 16.65 4.23 15.72 2289.53 5.57 16.65 179.55 0.00

400 15 26.25 8.84 24.71 2472.95 5.87 26.25 688.45 0.00

400 30 23.55 15.01 21.76 3600.00 7.62 23.55 709.00 0.00

500 15 38.45 36.07 33.29 3182.55 13.41 37.18 2647.23 3.32

500 30 36.15 56.58 31.79 3600.00 12.06 34.93 3004.83 3.37

Table 3: Computational results of ECG-MR, CG+BBC and CG+CP on the scenarios with

Rs = 125.

up to about 2320 seconds, and CG+BBC, as discussed, reaches the time limit

in some cases. By decreasing the consumption rate l1 to 0.8, we can observe

that ECG-MR and CG+CP require less computational time to optimally solve

all the scenarios. However, there is again an impressive performance gap among

the two algorithms, since they require about 17 and 1750 seconds in the worst

case, respectively. On the contrary, CG+BBC has worse performances on these

scenarios, since it does not solve to optimality 4 of them.

Finally, in Table 3 the results of the three algorithms on the scenarios with

22

Rs = 125 are reported. As already observed discussing the results in Table 1,

increasing the sensing ranges makes the instances harder to solve. Indeed, the

computational times of all the algorithms increase for these scenarios, although

ECG-MR is still able to solve to optimality all of them. Let us first consider the

case ls = 1. On these scenarios, the computational time for ECG-MR grows up

to about 70 seconds in the worst case. As mentioned earlier in this section, 2

instances (which belong to these scenarios) were not solved to optimality in [10],

even considering additional 10 hours of computational time; these two instances

were solved in less than 3 minutes each by ECG-MR.

On the other hand, CG+BBC optimally solves only the first scenario, with

a solution gap in the other cases that grows up to 18.38%. CG+CP also gets

less effective, with 3 scenarios that are not solved to optimality, and a solution

gap that grows up to about 7%.

The scenarios corresponding to l1 = 0.8 appear to be easier to solve for ECG-

MR and CG+CP. In particular, CG+CP does not solve to optimality only the

2 scenarios corresponding to 500 sensors, with smaller solution gaps than in the

previous case, up to 3.37 %. The performance gap with ECG-MR continues to

be remarkable, since the latter algorithm solves each scenario within 57 seconds

in the worst case. No scenario of this group is solved to optimality by CG+BBC.

The computational results show ECG-MR to be highly effective with re-

spect to the previous algorithms proposed in the literature. In addition to the

reformulated ILP for the pricing subproblem, we mostly ascribe these results to

the application of an appropriately designed GA to solve its heuristically, and

to the the use of a callback function to prematurely interrupt the ILP resolu-

tion. Indeed, our GA was able to quickly return multiple useful columns at

once, which in our opinion results in a more effective strategy than spending a

considerable amount of time to find the optimal solution at each subproblem

invocation. Furthermore, whenever the GA fails, the premature subproblem

interruption allows us to introduce a new partition that may help the GA to

regain effectiveness in the next iteration, again requiring a computational time

that can be significantly inferior to solving the subproblem to optimality.

23

5. Conclusions

In this work, we addressed the Maximum Lifetime Problem with Role Al-

location and Connectivity Constraints, a problem defined in sensor networks

in which the aim is to appropriately schedule activation times and assign roles

(source, relay or idle) to sensors, in order to prolong the amount of time over

which the network can monitor a given set of target locations and route the

information to a central base station. We developed an exact approach based

on the column generation framework, which includes a genetic metaheuristic for

the pricing subproblem resolution. The proposed ECG-MR approach was shown

experimentally to overcome previous algorithms proposed in the literature, also

providing exact solutions for benchmark instances that were unsolved to date.

Regarding our future research efforts, we intend to study the effect of partial

coverage constraints, that is, the case in which a percentage of targets may be

left uncovered at any given time. These types of constraints have proven to

remarkably complicate lifetime problem variants in the literature, hence we

believe that they represent an interesting line of research.

References

[1] A. Alfieri, A. Bianco, P. Brandimarte, C. F. Chiasserini, Maximizing sys-

tem lifetime in wireless sensor networks, European Journal of Operational

Research 181 (1) (2007) 390–402.

[2] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Computer

Networks 54 (15) (2010) 2787–2805.

[3] W. Awada, M. Cardei, Energy-efficient data gathering in heterogeneous

wireless sensor networks, in: Proceedings of the IEEE International Con-

ference on Wireless and Mobile Computing, Networking and Communica-

tions, 2006, pp. 53–60.

[4] P. Berman, G. Calinescu, C. Shah, A. Zelikovsky, Power efficient monitoring

24

management in sensor networks, in: Proceedings of the Wireless Commu-

nications and Networking Conference, vol. 4, 2004, pp. 2329 – 2334.

[5] M. Cardei, M. T. Thai, Y. Li, W. Wu, Energy-efficient target coverage

in wireless sensor networks, in: Proceedings of the 24th conference of the

IEEE Communications Society, vol. 3, 2005, pp. 1976–1984.

[6] M. Cardei, J. Wu, M. Lu, Improving network lifetime using sensors with

adjustable sensing ranges, International Journal of Sensor Networks 1 (1-2)

(2006) 41–49.

[7] F. Carrabs, R. Cerulli, C. D’Ambrosio, M. Gentili, A. Raiconi, Maximizing

lifetime in wireless sensor networks with multiple sensor families, Comput-

ers & Operations Research 60 (2015) 121–137.

[8] F. Carrabs, R. Cerulli, C. D’Ambrosio, A. Raiconi, Exact and heuristic

approaches for the maximum lifetime problem in sensor networks with cov-

erage and connectivity constraints, Tech. rep., Department of Mathematics,

University of Salerno. (2015).

[9] F. Carrabs, R. Cerulli, C. D’Ambrosio, A. Raiconi, A hybrid exact approach

for maximizing lifetime in sensor networks with complete and partial cover-

age constraints, Journal of Network and Computer Applications 58 (2015)

12–22.

[10] F. Castaño, E. Bourreau, N. Velasco, A. Rossi, M. Sevaux, Exact ap-

proaches for lifetime maximization in connectivity constrained wireless

multi-role sensor networks, European Journal of Operational Research

241 (1) (2015) 28–38.

[11] F. Castaño, A. Rossi, M. Sevaux, N. Velasco, A column generation ap-

proach to extend lifetime in wireless sensor networks with coverage and

connectivity constraints, Computers & Operations Research 52 (B) (2014)

220–230.

25

[12] R. Cerulli, R. De Donato, A. Raiconi, Exact and heuristic methods to max-

imize network lifetime in wireless sensor networks with adjustable sensing

ranges, European Journal of Operational Research 220 (1) (2012) 58–66.

[13] R. Cerulli, M. Gentili, A. Raiconi, Maximizing lifetime and handling relia-

bility in wireless sensor networks, Networks 64 (4) (2014) 321–338.

[14] K. Deschinkel, A column generation based heuristic for maximum lifetime

coverage in wireless sensor networks, in: SENSORCOMM 11, 5th Int. Conf.

on Sensor Technologies and Applications, vol. 4, 2011, pp. 209 – 214.

[15] A. Dhawan, C. T. Vu, A. Zelikovsky, Y. Li, S. K. Prasad, Maximum lifetime

of sensor networks with adjustable sensing range, in: Proceedings of the

Seventh ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, 2006, pp.

285 – 289.

[16] C. Duin, S. Voss, Steiner tree heuristics - a survey, in: H. Dyckhoff, U. De-

rigs, M. Salomon, H. C. Tijms (eds.), Operations Research Proceedings

1993. Papers of the 22nd Annual Meeting of DGOR in Cooperation with

NSOR, Springer-Verlag, 1994, pp. 485–496.

[17] M. Gentili, A. Raiconi, α−coverage to extend network lifetime on wireless

sensor networks, Optimization Letters 7 (1) (2013) 157–172.

[18] Y. Gu, Y. Ji, B. Zhao, Maximize lifetime of heterogeneous wireless

sensor networks with joint coverage and connectivity requirement, in:

EmbeddedCom-09, 8th International Conference on Embedded Comput-

ing, 2009, pp. 226–231.

[19] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms

and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[20] A. Raiconi, M. Gentili, Exact and metaheuristic approaches to extend life-

time and maintain connectivity in wireless sensors networks, in: J. Pahl,

26

T. Reiners, S. Voss (eds.), Network Optimization, vol. 6701 of Lecture Notes

in Computer Science, Springer, Berlin/Heidelberg, 2011, pp. 607–619.

[21] A. Rossi, A. Singh, M. Sevaux, An exact approach for maximizing the

lifetime of sensor networks with adjustable sensing ranges, Computers &

Operations Research 39 (12) (2012) 3166–3176.

[22] C. Wang, M. T. Thai, Y. Li, F. Wang, W. Wu, Minimum coverage breach

and maximum network lifetime in wireless sensor networks, in: Proceedings

of the IEEE Global Telecommunications Conference, 2007, pp. 1118–1123.

27

