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Abstract

Wireless sensor networks are generally composed of a large number of hardware

devices of the same type, deployed over a region of interest in order to perform a

monitoring activity on a set of target points. Nowadays, several different types

of sensor devices exist, which are able to monitor different aspects of the region of

interest (including sound, vibrations, proximity, chemical contaminants, among

others) and may be deployed together in a heterogeneous network. In this

work, we face the problem of maximizing the amount of time during which such

a network can remain operational, while maintaining at all times a minimum

coverage guarantee for all the different sensor types. Some global regularity

conditions in order to guarantee a fair level of coverage for each sensor type

to each target are also taken into account in a second variant of the proposed

problem. For both problem variants we developed an exact approach, which

is based on a column generation algorithm whose subproblem is either solved

heuristically by means of a genetic algorithm or optimally by an appropriate

ILP formulation. In our computational tests the proposed genetic algorithm is

shown to be able to dramatically speed up the procedure, enabling the resolution

of large-scale instances within reasonable computational times.
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1. Introduction

Due to technological advances which enabled their deployment in relevant

and diverse scenarios, Wireless Sensor Networks (WSNs) have been studied ex-

tensively in the last years. Possible application contexts include environmental

monitoring, traffic control, patient monitoring in healthcare and intrusion de-5

tection, among others (see, for example, [1], [2], [3]). The general structure

of a WSN is composed of several hardware devices (sensors) deployed over a

given region of interest. Each sensor can collect information or measure physical

quantities for a subregion of the space around it (its sensing area), or monitor

specific points of interest in the area (targets). The targets inside the sensing10

area of a given sensor are defined as covered by it.

Individual sensors are usually powered by batteries which make it possible

to keep them functional for a limited time interval, with obvious constraints

related to cost and weight factors. Using a network of such devices in a dy-

namic and coordinated fashion makes it possible to overcome the limitations in15

terms of range extension and battery duration which characterize each individ-

ual sensor, enabling elaborate monitoring of large regions of interest. Prolonging

the amount of time over which such monitoring activity can be carried out has

therefore emerged as an issue of paramount relevance. This problem, generally

known as Maximum Lifetime Problem (MLP), has been widely approached in20

the literature by proposing methods to determine several possibly overlapping

subsets of sensors which are independently able to provide coverage for the tar-

get points (covers), and by activating them one by one for appropriate amounts

of time such that battery constraints are not violated. It should be noted that

while sensors could be considered as belonging to different states during their25

usage in the intended application (such as receiving, transmitting, or idle) in

this context two essential states can be identified. That is, each sensor may

currently be active (i.e. used in the current cover, and consuming its battery)

or not. Activating a cover refers therefore to switching all its sensors to the

active state, while switching off all the other ones.30

Many works have been proposed in the literature to address MLP and several

problem variations. The problem was shown to be NP-Complete in [4]. Earlier

works such as [5] and [4] presented approximation and heuristic algorithms to
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solve it. The proposed variants of the problem include, among others, cases

where a certain percentage of targets may be left uncovered by each cover ([6],35

[7], [8]) or where the sensing ranges can be adjusted in order to provide optimal

trade-offs among coverage and energy consumption ([9], [10], [11], [12]). In

works such as [13], [14] and [15], connectivity issues are taken into account in

order to route the collected information to a central processing facility. In [16],

the authors assume this data collecting node (which they call sink) to be able40

to move to different positions during the monitoring phase, and present two

MLP variants; in the first one, the information collected by each node must be

forwarded to the sink at all times, while in the second one, nodes may decide

to locally store information to forward it to the sink when it moves to a more

favorable location.45

Moreover, while the sensing range of each device is typically only limited by

a certain threshold distance (i.e. they provide coverage on 360 degrees around

them), some authors also investigated the case in which the sensing activity

is limited to an adjustable restricted angle ([17], [18], [19]), as in the case of

video cameras or ultrasonic sensors. Among the proposed resolution methods50

for MLP variants, Column Generation algorithms have recently proved to be

effective methods to solve reasonably large instances to optimality ([6], [10],

[11], [12], [13], [14], [16], [19]).

Most of the above presented works take into account homogeneous networks,

that is, networks whose sensing devices are perfectly equal and therefore have55

the same capabilities. This assumption makes sense in many scenarios where a

large number of devices based on the same hardware is deployed. However sen-

sor heterogeneity in this contest has been studied as well, in terms of different

metrics. In [20], [21], [22], [23], [24] a subset of sensors is provided with larger

batteries, and in some cases has longer transmission ranges and better process-60

ing capabilities, often in relation to clustering schemes where such sensors serve

as cluster heads (sometimes called supernodes). Other works consider hetero-

geneity in a non-hierarchical context, allowing individually different sensors. For

example, sensors with possibly variable battery durations are discussed in [25]

and [19], while heterogeneous sensing ranges were analyzed in [26] and [27].65

Fewer research efforts have been devoted to the case of networks composed

of distinct categories of sensors, each fulfilling a different purpose. Indeed, it

could be of interest to monitor several aspects of the same region of interest. For
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example, while monitoring a certain geographical area for environmental control

purposes, different types of sensors could be employed to monitor pollution70

levels, temperatures, vibrations, as well as for intrusion detection and other

relevant properties. This interpretation of heterogeneity was discussed in [28],

where the authors propose a hardware and software testbed for wireless sensor

network applications, including sensors with auxiliary energy sources based on

solar cells and modular sensor headers.75

In this work, we study WSNs where sensors belong to different types, from

now on defined as families, and present two variants of MLP, namely the Maxi-

mum Lifetime with Multiple Families Problem (MLMFP) and the Regular Max-

imum Lifetime with Multiple Families Problem (MLMFP-R).

Note that, if each target needs to be covered by every family where the WSN80

is activate, then finding a solution would merely reduce to solving MLP sepa-

rately for each family, with an objective function value equal to the minimum

among such maximum lifetimes. In fact, the covers could be activated in par-

allel, and the monitoring activity would continue until one of the families has

no covers available. However, such a hard requirement could be too restrictive85

for many real-world cases. It could be reasonable for a portion of the targets

to be left uncovered by each family in each cover, as long as some minimum

family-dependent threshold is met, and coverage of all the targets is provided

by at least one of the families at all times. Consider, for instance, a fire de-

tection scenario which makes use of different types of sensors to monitor heat,90

humidity and smoke levels. While perfect knowledge using all types of sensors

for all target points would be ideal, detections with a high level of accuracy may

still be possible if each target is covered by only one or two types of sensors,

and the information gathered by sensors monitoring a subset of targets located

in the same portion of the area suggests that a fire event is indeed happening.95

Some sensor types may be more relevant for the detection of the phenomenon

of interest (for example, heat or smoke); therefore, a balance between network

lifetime and detection accuracy may be obtained by choosing a percentage of

the targets that should be covered by such families at all times, which represents

the above mentioned threshold.100

The regular version of the problem (MLMFP-R) also takes into account

some regularity constraints where the aim is to maximize the minimum amount

of time for which each target is covered by each family in the solution.
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For both problem variants, an exact approach based on Column Genera-

tion (CG) is developed and presented, as well as a genetic algorithm which is105

embedded within the CG to improve its performances.

The rest of the paper is organized as follows. In Section 2 we formally intro-

duce the two problems. The Column Generation exact approach is described in

Section 3. In Section 4 we present our genetic algorithm as well as its integration

within the CG framework. Section 5 presents the results of our computational110

experiments. Finally, Section 6 contains our final remarks.

2. Notation and Problems Definition

Consider a wireless network (S, T, F ), where S = {s1, . . . , sm} is the set of

the sensors, T = {t1, . . . , tn} is the set of the targets, and F = {f1, . . . , fz} is

the set of the sensor families. As previously introduced, each sensor is assigned115

to a family and is able to monitor a subset of targets defined by its sensing

range. For each tk ∈ T and si ∈ S, let γki be a binary parameter equal to 1 if

tk is covered by si, 0 otherwise. Furthermore, let {S1, . . . , Sz} be a partition of

S, such that si ∈ Sa if the family of sensor si is fa, ∀a ∈ {1, . . . , z}.
A cover Cj ⊆ S is defined in the classical MLP problem as a subset of120

sensors such that each target of T is covered by at least one sensor in Cj , that

is,
∑
si∈Cj

γki ≥ 1, ∀tk ∈ T . For a cover to be feasible, we consider an additional

condition which imposes a minimal coverage threshold to be satisfied by each

family. That is, given the coverage requirement 0 ≤ τa ≤ na associated with fa,

where na is the number of targets covered by the sensors in Sa, Cj is feasible if125

and only if the sensors in Cj ∩ Sa cover at least τa different targets.

The MLMFP problem consists of finding a set of feasible covers C1, . . . , Cu

and of assigning a positive activation time w1, . . . , wu with each of them, such

that the overall network lifetime is maximized and the battery duration con-

straint for each sensor is not violated.130

Let us assume that we can compute in advance the complete set of feasible

covers C = {C1, . . . , C`}. For each si ∈ S and Cj ∈ C, let φij be a binary

parameter equal to 1 if si belongs to Cj and 0 otherwise. Let us assume each

battery duration is normalized to 1 time unit. Then, MLMFP can be described
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by the following linear programming formulation:135

[P] max
∑
Cj∈C

wj (1)

s.t.

∑
Cj∈C

φijwj ≤ 1 ∀si ∈ S (2)

wj ≥ 0 ∀Cj ∈ C (3)

The objective function (1) maximizes the total network lifetime. Constraints

(2) ensure that, for each sensor, the sum of the activation times of the covers in

which it is contained does not exceed its normalized battery duration.

Let us consider a solution of MLMFP composed of a set of feasible covers and140

the related activation times. Additionally, for each target tk and each family

fa, let wka be the amount of time tk is covered by sensors belonging to Sa in

the solution. We define the solution to be regular if wmin = min{wka|tk ∈
T, fa ∈ F} is maximized. The regular version of the problem (i.e., MLMFP-R)

consists of finding a regular solution which maximizes the network lifetime. The145

motivation for seeking a regular solution is to avoid any target to be neglected

by any family for as much as possible, by making sure that each coverage time

wka is at least equal to this achievable threshold wmin.

Let us consider the full set of feasible covers C = {C1, . . . , C`}. For each

tk ∈ T , fa ∈ F and Cj ∈ C, let ψkaj be a binary parameter equal to 1 if a sensor150

in Sa belongs to Cj and covers tk, 0 otherwise. The problem is then defined as

follows:

[P2] max (W + ε)wmin +
∑
Cj∈C

wj (4)

s.t.

(2), (3)

(
∑
Cj∈C

ψkajwj)− wmin ≥ 0 ∀tk ∈ T, ∀fa ∈ F (5)

wmin ≥ 0 (6)
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Constraints (5) ensure, for each tk ∈ T and fa ∈ F , the quantity wmin to be155

not greater than wka (that is, the sum of the activation times wj for each Cj ∈ C
such that ψkaj = 1). In the objective function (4) the W parameter represents

an upper bound on the maximum lifetime
∑
Cj∈C wj and ε is a small positive

coefficient, such that the weighting ensures a regular solution to be sought as

primary objective.160

It should be noted that while MLMFP and MLMFP-R have different objec-

tive functions and the latter introduces additional constraints, each individual

cover which may be part of a solution has to satisfy the same conditions in order

to be feasible, and therefore the set C is the same for both problem variants.

The provided formulations cannot be used to solve real world instances165

of MLMFP or MLMFP-R, since the cardinality of the set of feasible covers

{C1, . . . , Cu} is potentially exponential. For this reason, we developed Column

Generation algorithms to solve both the problems, as described in Section 3.

Section 2.1 to follow discusses how to adapt model formulations [P] and [P2]

when hardware differences among the sensors are taken into account. Section 2.2170

discusses the issue of redundant covers in the feasible region of the two problems.

2.1 Modeling hardware differences

The above presented models work under the assumption that all sensor fam-

ilies have the same battery durations. When this is not the case both the models

can be easily adapted as follows.175

For each fa ∈ F , let ∆a ≥ 1 be its consumption ratio, that is, a parameter

such that the battery duration of the sensors belonging to family fa is normalized

to 1/∆a time units. Given the family fb ∈ F with the longest battery duration,

we consider ∆b = 1. Therefore, for example, if sensors of family fa consume

their batteries twice as fast as sensors of fb, then ∆a = 2 and they can be180

activated for 0.5 time units.

Furthermore, sensors may individually have an initial charge level which is

different from the maximum for their family (for example, if the sensor was

previously employed for different activities). For a given sensor s, let 0 <

charges ≤ 1 be its initial charge percentage. Again, let s ∈ Sa with ∆a = 2,185

and let charges = 0.5. Then, sensor s can be used for charges/∆a = 0.25 units

of time. For both problems, constraints (2) can then be modeled in the following

more general form:
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∑
Cj∈C

φijwj ≤ chargesi/∆a ∀fa ∈ F, si ∈ Sa (7)

2.2 MLMFP, MLMFP-R and cover redundancy

Given a feasible cover C1, we define it redundant if it contains another fea-190

sible cover C2 as a proper subset. It is straightforward to observe that if an

optimal solution for MLMFP contains C1, then an alternative one where C2

replaces C1 can be found. Therefore, when looking for optimal solutions for

MLMFP, in the methods described in Sections 3 and 4 we focus on individuat-

ing non-redundant covers, in order to reduce the search space and speed-up the195

convergence of our Column Generation algorithm.

Conversely, it can be shown that an optimal solution for MLMFP-R may

involve redundant coverage. To illustrate this, consider a simple network with

T = {t1, t2}, S = {s1, s2, s3}, F = {f1, f2}, S1 = {s1, s2}, S2 = {s3}, τ1 =

τ2 = ∆1 = ∆2 = charges1 = charges2 = charges3 = 1. Furthermore, let s1 and200

s2 cover t1 and t2, respectively, while s3 covers both of them. This network is

shown in Figure 1C, where sensors belonging to S1 and S2 are represented by

dotted and dashed lines, respectively.

The only two feasible non-redundant covers in this network are C1 = {s1, s3}
and C2 = {s2, s3}, shown in Figures 1A-1B. Indeed, due to τ2 being nonzero,205

s3 needs to be in each feasible cover, and since it already covers both targets

either s1 or s2 can be used to also satisfy the τ1 requirement. Using this set of

covers, the maximum achievable wmin value is 0.5, obtained when both C1 and

C2 are activated for such amount of time. This is easy to verify, since the sum

of the activation times of the two covers cannot be higher than the lifetime of210

s3 which is 1, and any other feasible activation time choice (e.g., 0.6 for C1 and

0.4 for C2) would bring a reduction to the amount of time for which either t1

or t2 are covered by sensors belonging to family f1. Conversely, by activating

the redundant cover C3 = {s1, s2, s3} for a full time unit, both wmin and the

network lifetime are equal to 1.215

3. Column Generation Approach

Delayed Column Generation (CG) is a widely used linear programming ap-

proach for LP problems with a large number of variables. The approach initially
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Figure 1: Sample network. A-B: Feasible non-redundant covers C1, C2. C: Complete network
and feasible redundant cover C3.

considers the original LP formulation (in our case formulations [P] and [P2]),

called the Master Problem, restricted to a subset of variables, and optimally220

solves it. CG then considers a specific optimization problem (called the Separa-

tion Problem) which either identifies a new attractive variable to be entered in

the problem or certifies the optimality of the last solution found. If a new vari-

able is identified, it is included in the Master Problem and the procedure iterates

until the optimality test is satisfied. The solution of the Separation Problem225

therefore avoids the enumerative assessment of all the (potentially exponential)

variables that will be nonbasic in the final solution.

Consider the MLMFP problem first and let us call [SP] its Separation Prob-

lem. Given the last iteration of the master problem, let πi be the dual prices

associated with its constraints, that is, with each sensor. The current solution230

is optimal if and only if the reduced costs associated with all nonbasic variables

are non negative, i.e.
∑
i:si∈Cj

πi − cj ≥ 0 for each nonbasic Cj . In our case cj
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are the coefficients of the objective function (1) and are all equal to 1; there-

fore, the optimality condition reduces to
∑
i:φij=1 πi ≥ 1 for each nonbasic Cj .

The [SP] objective function minimizes the sum of the dual prices of the sensors235

selected to be part of the new cover, and the optimality test is satisfied if the

optimum value of [SP] is greater than or equal to 1. Constraints in [SP] define

the construction of a feasible cover.

Let xi, i = 1, . . . ,m and yka, k = 1, . . . , n, a = 1, . . . , z be two sets of binary

variables. Each variable xi represents the choice of whether or not to include240

the related sensor si in the new cover, while each variable yka will be set to 1 if

target tk is covered by a sensor belonging to fa in the cover, 0 otherwise. The

separation problem is as follows:

[SP] min
∑
si∈S

πixi (8)

s.t.

∑
si∈Sa

γkixi ≥ yka ∀fa ∈ F, tk ∈ T (9)

yka ≥ γkixi ∀fa ∈ F, si ∈ Sa, tk ∈ T (10)∑
tk∈T

yka ≥ τa ∀fa ∈ F (11)

∑
fa∈F

yka ≥ 1 ∀tk ∈ T (12)

xi ∈ {0, 1} ∀si ∈ S (13)

yka ∈ {0, 1} ∀fa ∈ F, tk ∈ T (14)

The objective function (8) makes sure that the reduced cost of the newly245

generated column is minimized. Constraints (9)-(10) bind the two sets of vari-

ables, by letting yka be equal to 1 if and only if at least one sensor si that

belongs to fa and covers tk, is selected.

Constraints (11) ensure that the coverage requirement for each family is

respected. Finally, Constraints (12) impose that all the targets are covered by250

at least one family (and therefore by at least one sensor).

Note that new redundant columns may be introduced when dual prices are

equal to zero. This may occur in particular in the first iterations of the CG
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procedure. To avoid this, we modify objective function (8) by adding a small

positive costant ε to each dual price, as follows:255

min
∑
si∈S

(πi + ε)xi (15)

By assigning a positive weight to each xi variable, the new objective function

(15) ensures that each sensor added to the new column is needed. Note that the

value of the original objective function (8) still has to be evaluated after each

[SP] iteration in order to determine whether the optimality test is satisfied.

We now define the [SP2] subproblem for the MLMFP-R problem. Let πi and260

qka be the dual prices related to Constraints (2) (or their generalized form (7))

and (5) for the last iteration of the [P2] master problem; the current solution

is optimal if
∑
i:φij=1 πi +

∑
k,a:ψkaj=1 qka ≥ 1 for each nonbasic Cj . Therefore,

[SP2] can be expressed as follows:

[SP2] min
∑
si∈S

πixi +
∑
tk∈T

∑
fa∈F

qkayka (16)

s.t.265

(9)-(14)

Finally, for both [SP] and [SP2] we consider the following set of valid in-

equalities, which limits for each family the number of selected sensors to be

equal to the cardinality of the set of targets at most:

∑
si∈Sa

xi ≤ T ∀fa ∈ F (17)

The main drawback of the CG approach presented above is that the subprob-270

lems are NP-Hard combinatorial optimization problems, being specializations

of the set covering problem. For this reason, in the next section we introduce a

genetic algorithm able to quickly compute good feasible solutions for the sub-

problems. We embedded this genetic algorithm in our CG approach to improve

its performance.275
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4. Genetic Algorithm

As discussed in Section 3, the subproblems are NP-Hard and therefore it

is preferable to solve them heuristically, especially for instances of considerable

size. We addressed this problem by developing a genetic algorithm (GA) able

to return new attractive covers, i.e. covers with an objective value lower than 1.280

The procedure generates feasible solutions for both the problems and evaluates

the associated objective function value according to (8) for MFMLP and (16)

for MFMLP-R. Furthermore, the GA for MFMLP always removes redundancy,

while redundant covers may be generated by the GA for MLMFP-R, due to the

motivations provided in Section 2.2.285

The GA works within the CG framework as follows. After each iteration

of the master problem, the GA is called to solve the subproblem; if it can find

attractive covers, then they are added to the master problem, and the procedure

iterates. Otherwise, the separation problem, i.e. either [SP] or [SP2], is solved,

such that either an attractive cover is found or the current solution is proved to290

be optimal.

The genetic algorithm has the advantage of considering several solutions at

once. This approach can find more than a single attractive cover, potentially

making it possible to reduce the number of required CG iterations and thus

further reducing the computational effort.295

The GA is a well-known and widely used meta-heuristic technique for op-

timization problems. The GA algorithms emulate the biological evolution pro-

cess based on chromosomes, which represent solutions (e.g. feasible covers in

our case) for the considered problem. Step by step, the GA produces solutions

which are typically better adapted to the environment, encoded by the fitness300

function, used to rank each chromosome. This is achieved through two mecha-

nisms, named crossover and mutation. The crossover operator combines, in a

probabilistic manner, two or more selected individuals (parent solutions). The

mutation operator, instead, randomly modifies a child chromosome derived from

the crossover in order to increase diversity. The overall process is repeated until305

some desired stop conditions are reached. For a complete and detailed descrip-

tion of the genetic algorithms and their characteristics the reader can refer to

[29].

The remaining part of this section describes in detail our genetic algorithm.
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Figure 2: Chromosome structure.

4.1 Chromosome representation and fitness function310

The chromosome representation is based on the binary encoding represented

in Figure 2. It stores the set of sensors activated in a given candidate cover, as

well as the related covered targets for each sensor family.

The structure is composed of two distinct components, named Head and

Body respectively.315

The Head component is a binary vector of length |S|. Each position is related

to a sensor, and is equal to 1 if it belongs to the cover, 0 otherwise. Moreover,

the sensors are sorted by family so that the first |S1| positions (defined section

αf1) of the Head contain the binary values related to the sensors of family f1,

the subsequent |S2| positions (αf2) refer to the sensors of family f2, and so on320

for all subsequent families. For instance, the αf1 segment in Figure 2 consists

of 5 positions (meaning that |S1| = 5 in the network), and three of them (the

second, third and fifth) are currently activated in the chromosome.

The Body component represents which targets are covered by each family.

This component is partitioned in |F | segments of size |T |, sorted by family. More325

in detail, the i-th position in βfa is equal to 1 if there is at least one sensor of

fa that covers target ti and that is currently activated in αfa , 0 otherwise. For

instance, in Figure 2 the segment βf1 consists of the first |T | = 7 positions of

the Body component, and it shows that the three sensors activated in αf1 cover

the targets t1, t4, t5 and t6.330

In the following, we will refer to the sections αfa and βfa of a specific chro-

mosome C as αCfa and βCfa , respectively. Furthermore, let βCka be the position

related to target tk ∈ T of segment βfa of chromosome C.

The chromosome representation can be used to check whether it represents

a feasible solution. Formally, a given chromosome C is feasible if and only if the335

following two conditions hold:
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∑
tk∈T

βCka ≥ τa ∀fa ∈ F (18)

∑
fa∈F

βCka ≥ 1 ∀tk ∈ T (19)

Condition (18) ensures that each family meets its coverage requirement,

while condition (19) states that each target must be covered at least once. For

instance, in the example in Figure 2, condition (18) is respected for family f1 if

τ1 ≤ 4.340

Our GA considers in each iteration a population consisting of only feasi-

ble chromosomes. In the case of MFMLP, chromosomes will always be non-

redundant as well. The chromosomes are evaluated according to the objective

function of [SP] for MFMLP and of [SP2] for MFMLP-R. That is, in the case

of MFMLP, given the vector of dual prices provided by the last Master Problem345

iteration and sorted by family, the fitness function of a given chromosome is

equal to the dot product of its Head component and the dual prices vector. For

each cover that is found to be attractive at the end of the GA procedure, the

Head component corresponds to the new column to be included in the restricted

columns set of master problem [P]. In the case of MFMLP-R, both the Head350

and the Body components are used to evaluate the fitness function of a given

chromosome, and both components represent the column to be added to [P2].

4.2 GA overall structure

In this section we describe the general structure of the GA, whose pseudocode

is given in Algorithm 1.355

The procedure takes as input the wireless sensor network (S, T, F ) and the

vector DP of the dual prices provided by the Master Problem. The first step is

the generation of an initial population Pop and the identification of the chro-

mosome with the best fitness (BestF it). This chromosome is the incumbent

solution and it will be used for comparisons during the evolution process. The360

population consists of a predefined number (SizePop) of feasible covers and it

is initialized by the procedure described in Section 4.7.

The while loop (line 4) iterates until either MaxIT consecutive iterations,

without improvements in the incumbent solution fitness BestF it, are carried out

14



Algorithm 1: Genetic Algorithm for MLMFP or MLMFP-R

Input: DP, (S, T, F );
Output: a subset of chromosomes(i.e. columns) for [P] or [P2];

1 Pop← InitPopulation();
2 BestF it← bestF itness(Pop,DP );
3 criteria← setCriterion(MaxIT,MaxDB);
4 while check(criteria) do
5 (P1, P2)← tournament(Pop);
6 C ← Crossover(P1, P2);
7 C ←Mutation(C);
8 C ← fixingOperator(C);
9 C ← redundancyOperator(C);

10 if C /∈ Pop then
11 Insert(C,Pop);
12 if fitness(C) ≥ BestF it then
13 update(criteria);

14 else
15 BestF it← fitness(C);

16 else
17 update(criteria);

18 Chromos← chromosomes with fitness ≤ fitThreshold;
19 return Chromos;

or MaxDB consecutive duplicates chromosome are generated. A chromosome is365

a duplicate if it is already present in the population. Forbidding the presence of

duplicates in the population makes it possible to avoid looping over a solution

space that has almost been exhausted.

Each iteration includes a tournament for the selection of two parent chromo-

somes (see Section 4.3), a crossover function (Section 4.4) and a mutation func-370

tion (Section 4.5). Furthermore, two operators, called fixing and redundancy,

are applied. The first one is used to check and eventually restore feasibility for

the newly generated chromosome. The redundancy operator always removes

eventual redundancy for the MFMLP while, for the MFMLP-R, it may return

a redundant cover if it is considered useful to improve the objective function.375

The two operators are described in Section 4.6.

Each newly generated child chromosome is inserted in the current population

Pop if and only if it does not already belong to it. If this is the case, it takes

the place of one of the |Pop|/2 individuals with the worst fitness function value,
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selected uniformly at random.380

Finally, the chromosomes in the final population whose fitness function is

better than a predefined threshold value fitThreshold are returned to the mas-

ter problem.

4.3 Tournament selection

The selection of the parents is implemented by means of a random binary385

tournament. In particular, given the current population Pop, two individuals

are selected at random, and then the one with the best fitness function is chosen

as first parent. The process is iterated to select the second parent, making sure

that both the chromosomes chosen for the second tournament differ from the

first chosen parent.390

4.4 Crossover

The crossover function represents the process of coupling between two se-

lected parents. Recall from the chromosome description in Section 4.1 that each

family-related segment αfa in the Head component is strongly linked to a spe-

cific segment βfa in the Body section, since the former represents the selected395

sensors for a given family, and the latter the related covered targets. By def-

inition, a feasible chromosome ensures that each couple (αfa , βfa) satisfies the

related constraint (18). Therefore, in our genetic algorithm we consider such

couples to be genes of the chromosome, which will be used as building blocks

for the child chromosome during the crossover. A graphical representation of400

the gene structure is given in Figure 3.

Given the chromosome structure and the gene definition, the crossover func-

tion randomly selects each gene one at a time between the two input parents. In

particular, let C1 and C2 be the two parents, and Child the child chromosome

to be built. For each family fa ∈ F , the gene (αChildfa
, βChildfa

) will be equal to405

(αC1

fa
, βC1

fa
) with probability 0.5, otherwise it will be equal to (αC2

fa
, βC2

fa
). The

crossover is illustrated in Figure 4.

It is straightforward to observe that this construction ensures that the cov-

erage requirements (18) are satisfied for each family, since by definition both

parents are feasible, and therefore each of their genes satisfies the requirement410

as well.
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Figure 3: Gene structure

4.5 Mutation

The mutation randomly alters the child chromosome produced by the crossover

function in order to create diversity during the exploration of the solution space.

The mutation operates in two steps. In the first step, it randomly selects a sin-415

gle family fa, 1 ≤ a ≤ z. Successively, it randomly selects a sensor si ∈ Sa,

and switches its position in the αfa component either from 1 to 0, or from 0 to

1. The mutation also involves a change in the βfa segment if deactivating or

activating the selected sensor leads to a different target coverage for family fa.

4.6 Fixing and redundancy operators420

As noted in Section 4.4, at the end of the crossover phase, the coverage

requirement is respected for all families (that is, condition (18)). However, due

to the perturbation brought by the mutation, this may no longer be the case for

one of them. Moreover, there is no guarantee that condition (19) is respected;

that is, there could be targets that are not covered by any sensor. Therefore,425

after crossover and mutation, the fixing operator (whose pseudocode is given

in Algorithm 2) is applied on each generated chromosome to ensure feasibility.

The operator works in two phases, one for each of the two conditions.

If the first condition is not met for some family fa (Algorithm 2, lines 1-6),

let Ŝa ⊆ Sa be the set of sensors of family fa that are currently not activated430

in Child. Futhermore, let T̂a be the targets which are currently not covered by

the family in the chromosome. The procedure iteratively selects sensors in Ŝa
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Figure 4: Crossover

which cover some elements of T̂a, until τa targets are covered by the family. The

gene (αChildfa
, βChildfa

) is updated accordingly at each step.

Regarding the second feasibility condition (Algorithm 2, lines 7-12), the435

algorithm puts all the globally uncovered targets in T̂ , if they exist. Then, the

procedure iteratively selects a target t ∈ T̂ and a sensor s ∈ S that can cover

t. The gene of Child related to the family of s is updated to include the new

sensor, and t is removed from T̂ , along with any previously uncovered target

which is covered by s. The procedure iterates until T̂ is empty.440

After the application of the fixing operator, the Child chromosome may

be redundant. Redundancy is taken into account by two procedures, namely

redundancy1 and redundancy2. The redundancy1 procedure first builds a list

Sred of redundant sensors and then it randomly selects a sensor belonging to it

to be switched off. The list of redundant sensors Sred is then recomputed, and445

the process is repeated until Sred is equal to the empty set.

The redundancy2 operator builds the Sred list of redundant sensors, as well.
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Algorithm 2: Fixing Operator

Input: Child chromosome;
Output: fixed Child chromosome;

1 for a← 1 to z do
2 while

∑
tk∈T β

Child
ka < τa do

3 Ŝa ← inactiveSensors(Child, fa);

4 T̂a ← uncoveredTargets(Child, fa);

5 s← randomSelect(Ŝa, T̂a);
6 update(Child, s);

7 T̂ ← uncoveredTargets(Child);

8 while |T̂ | > 0 do

9 t← randomSelect(T̂ );
10 s← randomSelect(S, t);

11 update(T̂ );
12 update(Child, s);

13 return Child;

Then, the procedure checks whether removing a random sensor sr1 ∈ Sred from

Child would lead to a worse fitness function. If that is the case, a second element

sr2 ∈ Sred \ {sr1} is randomly selected and checked for removal. Iteratively, the450

elements in Sred are visited according to a random order; as soon as one can be

removed is found, Child is updated and Sred is recomputed. The procedure ends

when either Sred is empty or all its elements have been visited. The redundancy2

operator results to be more computationally intensive than redundancy1.

Redundancy1 operator is used when solving MFMLP. On the other hand,455

when solving MFMLP-R, redundancy1 is used with a given probability probred,

and redundancy2 with probability 1− probred.

4.7 Building the initial population

The procedure for initializing GA builds the initial population Pop, com-

posed of SizePop random feasible individuals. The population is built itera-460

tively. For each individual, the procedure applies the fixing and redundancy

operators, as discussed in Section 4.6, with the only difference that they start

from an empty chromosome. If a chromosome is equal to a previously gener-

ated one, it is discarded and generated again. If the procedure fails to build a

new chromosome for MaxInitDB consecutive iterations, it is interrupted, and465
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SizePop is set to the current value of |Pop|.

5. Computational Results

This section presents the test scenarios and the results obtained by perform-

ing our extensive computational phase. The algorithms were coded in C++ and

the tests were performed on a computer with an Intel Xeon 2 GHz processor470

and 8GB of RAM, equipped with the IBM ILOG CPLEX 12.5.1 solver and the

Concert Technology Library for the mathematical formulations. Section 5.1 de-

scribes our instances and the test scenarios being considered. The values used

for the GA parameters as well as a description of the CG initialization are given

in Section 5.2. Finally Section 5.3 presents our computational results organized475

in tables, along with several comments on them.

5.1 Description of instances and test scenarios

The instances were generated by randomly placing targets and sensors on an

area of size 500 × 500. All the instances can be downloaded from the authors’

web site3. We assumed the sensing range of each sensor to be equal to 150. We480

considered instances containing a number of target points |T |= 30, 60, 90 or

120, and whose sensors are divided in |F | = 2, 4 or 6 sensor families.

For each value of |F |, we considered 6 different values for the overall number

of sensors |S|, corresponding to the cases in which each family has on average

50, 100, 150, 200, 300 or 400 sensors, leading to the values reported in Table 1.485

However, to better model the heterogeneity which may characterize real-world

scenarios, sensors were not evenly distributed among the different families, but

rather randomly assigned to them, leading to families with different numbers

of sensors. Each family is always guaranteed to cover each target with at least

one sensor in order to ensure feasibility for each possible coverage request value,490

as well as strictly positive wmin optimal solution values for MLMFP-R, for the

whole set of instances.

For each combination of the above mentioned parameters, we generated 5

different instances. The total number of test instances is therefore equal to 360.

Furthermore, for each instance, two different scenarios were considered, re-495

lated to the possible values of the coverage request parameters. In the uniform

3http://www.dmi.unisa.it/people/gentili/www/PublicationM.htm
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Avg. sensors per family Overall sensors
|F | = 2 |F | = 4 |F | = 6

50 100 200 300
100 200 400 600
150 300 600 900
200 400 800 1200
300 600 1200 1800
400 800 1600 2400

Table 1: Settings of the |S| parameter.

coverage request scenario, each family fa is required to provide coverage for

τa = b|T |/|F |c sensors in each feasible cover. In the variable coverage request

scenario, we assigned either 2 or 3 different coverage request values to the fam-

ilies, with the lowest one being set to 0. In particular, when |F | = 2, one of500

the families has a coverage request equal to b 3
4 |T |c, while the coverage request

is equal to 0 for the other family. For |F | = 4, the coverage request is set to

b 3
8 |T |c for a family, b 3

16 |T |c for 2 of them and 0 for the remaing one. Finally, for

instances with 6 families, the three coverage request values are b 3
12 |T |c, b

3
24 |T |c

and 0, and are assigned to 2 families each. Furthermore, for both scenarios we505

considered the case in which the consumption ratio of the family with index

i ∈ {1, . . . , |F |} is equal to (1.0) + (0.1)(i− 1). All sensors are always assumed

to have fully charged batteries at the beginning of the monitoring phase (that

is, chargesi = 1 ∀si ∈ S). The coverage request and the consumption ratio

values being considered for the two scenarios are summarized in Table 2.510

By considering the two above mentioned coverage request scenarios for each

of the 360 instances, it follows that 720 experiments were run for each of our

two proposed approaches.

As discussed in Section 5.3, we also ran some tests for a “pure” CG approach

which does not embed the GA after the CG initialization, and therefore relies515

on the [SP] formulation to generate new covers. We performed this comparison

on a subset of the generated instances for the MFMLP problem, as explained

in Section 5.3.

5.2 Parameter setting and CG initialization

Parameter values were chosen after a preliminary tuning phase. The popu-520

lation size SizePop was chosen to be equal to 50 + d
√
|S|e. The two termina-

tion criteria, namely the maximum number of iterations without improvements
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uniform coverage requests
|T | |F | = 2 |F | = 4 |F | = 6
30 15;15 7;7;7;7 5;5;5;5;5;5
60 30;30 15;15;15;15 10;10;10;10;10;10
90 45;45 22;22;22;22 15;15;15;15;15;15
120 60;60 30;30;30;30 20;20;20;20;20;20

variable coverage requests
|T | |F | = 2 |F | = 4 |F | = 6
30 22;0 11;5;5;0 7;7;3;3;0;0
60 45;0 22;11;11;0 15;15;7;7;0;0
90 67;0 33;16;16;0 22;22;11;11;0;0
120 90;0 45;22;22;0 30;30;15;15;0;0

consumption ratios
|F | = 2 |F | = 4 |F | = 6
1.0;1.1 1.0;1.1;1.2;1.3 1.0;1.1;1.2;1.3;1.4;1.5

Table 2: Coverage request and consumption ratio values.

MaxIT and the maximum number of consecutive duplicates MaxDB were cho-

sen to be equal to 1500 and 100, respectively. During the initialization phase,

the limit on the number of consecutive duplicates MaxInitDB was set to 100 as525

well. The probred value regulating the redundancy operator choice was set to 0.8.

Finally, the value 0.9 was chosen for the fitness threshold value fitThreshold

when solving MFMLP, and 0.5 when solving MFMLP-R.

As introduced in Section 3, in order to initialize the CG algorithm, a subset

of feasible covers has to be provided for the first iteration of the master problem.530

We generated these covers using a first run of the GA. As a heuristic criterion,

during this GA execution each sensor is given an equal, strictly positive weight,

meaning that when fitness function is evaluated covers with fewer sensors are

favored. Furthermore, for this iteration the fitThreshold value is unbounded,

meaning that the whole set of SizePop covers is returned and added to the535

master problem.

During the computational tests performed on the CG algorithm which does

not embed the GA to produce new covers, the same heuristic initialization

method is still used to identify the starting subset. Hence, the GA is executed

once for each of these tests.540
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5.3 Tests and Results

Let us analyze the impact of embedding the proposed GA within the CG

paradigm by comparing our proposed algorithm (referred to as CG+GA) with a

pure Column Generation approach (referred to as CGonly). This last approach

only uses the genetic algorithm during the initialization phase, as reported in545

Section 5.2, and generates each sub-sequent attractive cover by solving the mixed

integer formulation [SP] to optimality.

The results are reported in Table 3 for the basic (i.e. non regular) version

of the problem, similar conclusions can be derived for the regular version of the

problem whose results are reported in Table 6 in the Appendix. We performed550

the comparison on the subset of 60 instances corresponding to the lowest values

of the |S| parameter, that is |S| = 100 for |F | = 2, |S| = 200 for |F | = 4 and

|S| = 300 for |F | = 6. For each of those instances, computational tests were

performed for both the coverage request scenarios. As shown in the tables, the

performances of the pure approach tend to degrade quickly as the size of the555

instances grows, therefore, it cannot be expected to find solutions in reasonable

time on the largest ones. The table entries contain average values and standard

deviations for the 5 tests corresponding to each choice of |T |, |F |, |S| and cov-

erage requirement scenario type.

560

The CG+GA approach consistently outperforms the pure CG approach, and

the computational times difference between the two procedures increases with the

number of sensors. The minimum average speed-up (column speed-up in Table

3) is equal to 7.35 for |S| = 100, 31.75 for |S| = 200, and 46.43 for |S| = 300.

Overall, the CG+GA is up to 112.85 times faster than CGonly and required a565

maximum computational time of 6.83 seconds on average, on a set of 5 instances

which required on average 683.68 seconds when solved by CGonly (which is the

maximum value for this procedure as well). CG+GA shows a consistent and

robust behavior on all the instances with a coefficient of variation (i.e., the

ratio between standard deviation and average value) for the speed-up always570

less than 50% for the uniform coverage request scenarios and less than 42% for

the variable requests scenarios (except for two instances for |S| = 100 for both

the cases).

The good performance of the CG+GA approach is due to multiple good

columns that are returned by GA and added to the master problem. The number575
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Table 3: Comparison of our approach (CG+GA) and a pure column generation
approach (CGonly) when solving MFMLP.

Each entry reported in the table refers to the same scenario corresponding to different
choices of |T |, |F |, |S| and coverage requirement. Columns avg. and std. dev. are average
and standard deviation values computed among the five different instances generated for each
scenario, respectively. Column solution contains the average solution value computed among
the five different instances of the scenario. Columns SP it. and time refer to the number of
times the subproblem [SP] was solved to optimality and to the computational time in seconds for
both the algorithms, respectively. Column GA it. refers to the number of times GA is invoked.
The speed-up heading refers to the ratio between the computational time of CGonly and that of
CG+GA.

|F | = 2, |S| = 100, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.35 104.8 67.84 8.48 9.35 6.2 4.97 1.0 0.00 0.61 0.59 12.65 3.58
60 6.22 35.6 24.06 3.60 2.14 2.8 0.84 1.0 0.00 0.35 0.09 10.44 6.01
90 6.73 29.6 25.46 5.35 4.84 2.4 0.55 1.0 0.00 0.46 0.09 11.15 8.43
120 7.15 44.8 40.57 11.50 10.57 2.8 1.30 1.0 0.00 0.66 0.26 15.56 7.54

|F | = 2, |S| = 100, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.44 72.2 16.42 3.62 0.81 3.8 1.30 1.0 0.00 0.38 0.14 9.85 2.10
60 6.22 28.6 16.13 2.52 1.39 2.4 0.55 1.0 0.00 0.36 0.07 7.35 4.62
90 6.73 39.6 28.18 6.48 5.30 2.8 1.10 1.0 0.00 0.52 0.16 11.15 6.96
120 7.15 41.4 27.48 8.61 5.47 3.4 1.14 1.0 0.00 0.83 0.25 9.68 4.09

|F | = 4, |S| = 200, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.25 157.8 122.73 31.00 25.54 6.8 5.26 1.0 0.00 0.99 0.89 31.75 6.66
60 13.02 117.0 42.66 53.78 20.91 4.2 1.30 1.0 0.00 0.92 0.42 61.39 18.72
90 14.39 179.6 58.88 131.32 41.83 6.8 3.03 1.0 0.00 2.07 0.72 65.45 11.85
120 15.12 196.6 47.11 206.82 72.04 5.6 2.07 1.0 0.00 2.28 0.84 94.53 39.23

|F | = 4, |S| = 200, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.43 180.2 125.79 32.87 22.69 7.0 4.80 1.0 0.00 0.96 0.66 35.65 6.27
60 12.12 88.8 32.58 41.30 20.17 4.4 1.67 1.0 0.00 0.95 0.28 41.69 11.11
90 14.39 149.0 43.05 103.40 33.64 5.4 2.07 1.0 0.00 1.56 0.55 71.39 28.86
120 15.12 174.0 60.45 164.13 62.48 4.8 1.48 1.0 0.00 1.89 0.50 88.01 35.89

|F | = 6, |S| = 300, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 22.34 239.4 59.18 91.96 16.03 10.4 4.72 2.2 1.64 2.02 1.26 56.99 26.68
60 19.49 267.2 124.98 239.55 128.92 9.2 3.11 1.4 0.89 2.86 1.64 93.68 47.52
90 17.50 296.2 217.06 273.03 153.98 9.0 7.07 1.6 1.34 4.43 4.46 88.39 37.70
120 19.04 351.8 118.54 683.68 246.88 11.6 5.03 1.2 0.45 6.83 3.89 112.85 30.66

|F | = 6, |S| = 300, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 21.18 216.4 53.34 68.24 18.09 7.8 1.92 1.0 0.00 1.49 0.35 46.43 11.57
60 23.22 354.4 194.68 268.46 148.10 12.2 7.05 1.0 0.00 3.64 2.66 78.85 13.71
90 18.99 278.6 126.06 204.70 87.68 8.2 3.77 1.0 0.00 2.78 1.60 79.32 14.01
120 18.24 263.4 129.20 433.61 173.85 9.6 3.13 1.0 0.00 5.25 2.50 85.70 22.64
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of subproblem iterations (column SP it.) is much lower for CG+GA with re-

spect to CGonly. Note in particular that, for all instances with |S| = 100, 200,

it is equal to 1, meaning that for all the related tests it was only needed to

certify the solution optimality in the last iteration. The maximum number of

subproblem iterations on average performed by the CG+GA approach is equal580

to 2.2. Conversely, for CGonly the average number of needed subproblem iter-

ations varies between a minimum of 28.6 and a maximum of 354.4.

Let us analyze the performance of our approach on the entire set of instances.

We report in the paper tables and figures corresponding to the scenarios with585

|F | = 4, the equivalent tables and figures for |F | = 2 and |F | = 6 are given in

Appendix.

The performances of CG+GA scale well when bigger instances are considered

and, overall, all tests could be executed within reasonable computational times590

for both problems versions. In particular, the computational time increases with

the size of the instance, as expected, for both the problems and for both the

two different coverage requests scenarios.

This trend is evident from Figure 5 and column time of Table 4, where

the computational times of our algorithm when solving the basic version of the595

problem (on the left) and the regular version of the problem (on the right), for

the uniform coverage request scenario (on the top) and the variable coverage

request scenario (on the bottom), with |F | = 4, are shown. The same figures

and tables for |F | = 2 (Figure 7 and Table 7) and |F | = 6 (Figure 8 and Table

8) are given in the Appendix. The average computational time when solving600

the basic version of the problem with uniform coverage request is equal to 5.75

seconds (varying between 0.35 and 29.83) for |F | = 2, 27.95 seconds (varying

between 0.92 and 120.88) for |F | = 4, and 155.06 seconds (varying between

2.02 and 1040.16) for |F | = 6. The average computational time when solving

the basic version of the problem with variable coverage request is equal to 8.10605

seconds (varying between 0.36 and 29.65) for |F | = 2, 23.36 seconds (varying be-

tween 0.95 and 99.79) for |F | = 4, and 94.12 seconds (varying between 1.49 and

510.03) for |F | = 6. The average computational time when solving the regular

version of the problem with uniform coverage request is equal to 32.65 seconds

(varying between 0.51 and 344.57) for |F | = 2, 321.01 seconds (varying between610
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Table 4: Results of CG+GA for |F | = 4 scenarios when solving the basic version
of the problem (MLMFP) and the regular version (MLMFP-R).

Each entry is an average of five instances. Column lifetime contains the average lifetime
(which is the same for both the problems). Column GA it. contains the number of times GA
is invoked. Column SP it. contains the number of times the separation problem is solved to
optimality. Column GA columns reports the average number of columns generated by GA. Column
time shows the computational time in seconds.

Uniform coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 200 17.25 6.8 1.0 368.4 0.99 12.0 1.2 648.0 2.71
60 200 13.02 4.2 1.0 205.8 0.92 6.6 1.0 356.0 1.62
90 200 14.39 6.8 1.0 371.2 2.07 8.0 1.0 439.8 2.94
120 200 15.12 5.6 1.0 295.0 2.28 9.0 1.0 500.6 3.93
30 400 25.85 6.6 1.0 385.2 1.42 12.2 1.0 770.6 4.18
60 400 28.00 8.4 1.0 509.8 2.57 17.0 1.0 1098.8 8.41
90 400 33.24 13.4 1.0 860.4 6.52 24.2 1.0 1565.6 24.93
120 400 28.64 10.2 1.0 637.4 6.03 16.0 1.2 1005.6 12.64
30 600 46.17 11.8 1.0 797.2 4.70 25.2 1.0 1729.6 14.53
60 600 38.42 8.2 1.0 534.6 3.66 20.6 1.0 1438.8 14.74
90 600 40.47 10.2 1.0 682.6 6.40 23.0 1.0 1612.8 20.40
120 600 40.42 12.6 1.0 862.2 11.56 26.0 1.0 1830.6 37.60
30 800 63.49 13.0 1.2 922.0 6.60 39.0 1.0 2956.4 38.65
60 800 59.14 15.0 1.0 1099.6 10.87 39.6 1.0 3002.0 58.11
90 800 55.31 14.4 1.0 1045.2 13.64 33.2 1.0 2484.6 60.36
120 800 55.30 16.0 1.0 1174.4 24.19 37.0 1.0 2780.8 139.75
30 1200 130.22 35.8 1.0 2935.0 59.64 98.4 1.0 8048.2 704.44
60 1200 99.19 36.2 1.0 2970.8 120.88 84.2 4.8 6433.6 1555.31
90 1200 84.25 23.8 1.0 1918.8 46.09 61.2 1.0 5005.6 477.89
120 1200 75.51 18.6 1.0 1485.4 37.36 56.4 1.0 4640.4 480.58
30 1600 149.97 33.4 1.0 2888.2 101.12 94.6 1.2 8225.4 978.93
60 1600 116.75 21.0 1.0 1782.8 49.63 79.0 1.2 6843.2 729.54
90 1600 108.17 25.0 1.2 2123.6 83.00 82.0 1.0 7150.4 1590.86
120 1600 99.55 21.0 1.0 1784.0 68.66 67.0 1.4 5796.6 741.10

Variable coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 200 17.43 7.0 1.0 378.4 0.96 11.6 1.2 647.0 1.95
60 200 12.12 4.4 1.0 217.4 0.95 7.8 2.4 341.8 2.50
90 200 14.39 5.4 1.0 283.0 1.56 7.2 1.0 391.2 2.07
120 200 15.12 4.8 1.0 245.2 1.89 9.6 1.0 541.8 3.85
30 400 24.69 6.2 1.0 359.4 1.37 12.0 1.2 734.4 3.20
60 400 28.00 7.2 1.0 432.0 2.24 18.0 1.0 1165.2 7.43
90 400 33.24 12.2 1.0 779.6 5.47 22.0 1.0 1436.0 15.72
120 400 28.64 9.8 1.0 609.4 5.39 16.4 1.0 1053.0 10.92
30 600 46.17 9.6 1.0 636.2 3.10 19.0 1.0 1309.0 7.99
60 600 38.42 8.8 1.0 575.8 4.20 21.8 1.0 1531.4 14.75
90 600 40.47 9.2 1.2 591.8 5.99 24.8 1.0 1748.0 23.44
120 600 40.42 11.6 1.0 789.0 9.93 27.0 1.4 1876.0 38.97
30 800 63.49 13.4 1.2 951.0 6.66 38.8 1.2 2927.2 39.19
60 800 59.14 12.0 1.2 844.2 8.07 38.6 1.0 2919.8 49.34
90 800 55.31 13.8 1.0 1001.0 13.39 36.4 1.0 2749.6 60.72
120 800 55.30 15.0 1.2 1078.4 19.00 36.8 1.0 2771.4 107.64
30 1200 130.22 33.2 1.0 2717.8 46.27 96.8 1.0 7991.0 525.88
60 1200 99.19 32.4 1.0 2641.2 99.79 75.2 3.0 5905.8 820.74
90 1200 84.25 21.2 1.0 1698.0 34.33 55.6 1.4 4511.8 337.06
120 1200 75.51 18.2 1.0 1452.6 34.28 53.4 1.0 4380.8 385.51
30 1600 149.97 33.6 1.4 2871.0 85.19 94.6 1.8 8157.8 1185.02
60 1600 116.75 23.2 1.2 1963.0 48.70 75.4 1.0 6584.2 669.72
90 1600 108.17 25.2 1.2 2145.2 75.31 81.8 1.4 7122.2 1381.18
120 1600 99.55 18.0 1.0 1516.6 46.67 63.0 1.0 5504.6 615.62
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1.62 and 1590.86) for |F | = 4, and 1100.89 seconds (varying between 4.01 and

5219.41) for |F | = 6, while it is equal to 37.46 seconds (varying between 0.42

and 142.02) for |F | = 2, 262.93 seconds (varying between 1.95 and 1381.18) for

|F | = 4, and 836.97 seconds (varying between 2.18 and 3563.90) for |F | = 6, on

scenarios with variable coverage requirement.615

The requested average time to solve the regular version of the problem is

generally higher than the average time required to solve the basic version of the

problem. Indeed, the GA requires more iterations when solving the MLMFP-R

as can be observed in our results (column GA it. in Table 4 for |F | = 4, and Ta-620

ble 7 for |F | = 2 and Table 8 for |F | = 6 in the Appendix) where the number of

GA iterations is higher when solving the regular version of the problem and the

total number of returned columns is much greater. Solving the regular version of

the problem, with uniform coverage requests, requires on average 129.94% more

GA iterations with respect to the solution of the basic version of the problem625

for |F | = 2, 134.72% more iterations for |F | = 4, and 101.17% more iterations

for |F | = 6. Solving the regular version of the problem, with variable coverage

requests, requires on average 101.87% more iterations with respect to the solu-

tion of the basic version of the problem for |F | = 2, 145.68% more iterations for

|F | = 4, and 117.80% more iterations for |F | = 6. We believe that this could be630

due to the different objective function of the regular problem which forces the

GA to explore more deeply the solution space to find the right combination of

covers to satisfy the regularity condition. The number of subproblem iterations

(column SP it. in the tables) keeps being low for both problem variants, witness-

ing the effectiveness of the GA algorithm. More in particular, for MLMFP and635

uniform coverage requests, the subproblem is solved on average 1.43, 1.02 and

1.42 times for |F | = 2, |F | = 4 and |F | = 6, respectively, while for variable cov-

erage requests it is solved on average 2.39, 1.07 and 1.10 times. For MLMFP-R,

the correspondent numbers of subproblem invocations are 6.78, 1.21 and 2.84 for

uniform coverage requests and 6.38, 1.25 and 1.72 for variable coverage requests.640

When comparing the quality of the solutions returned by the two problems

we can observe that the maximum lifetime is the same on all the instances both

for the original version of the problem and for the regular version. This is a

counterintuitive result since, by enforcing the individuation of a regular solu-645
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tion, one would expect a deterioration in terms of lifetime for MLMFP-R with

respect to MLMFP. Furthermore, as will be discussed later, MLMFP-R is in-

deed able to improve significantly the value of wmin in the returned solution,

in particular for the variable scenario. Therefore, we believe that this result is

due to the existence of several alternative solutions corresponding to the same650

optimal lifetime value in the feasible region on each instance. Hence, a regular

solution could always be found for the considered set of instances without com-

promising the maximum lifetime value which can be obtained when regularity

is not enforced.

655

The maximum lifetime increases, as expected, with the size of the instance

for both the problem variants, as we can observe in Figure 6 for |F | = 4 (Figure

9, 10 in Appendix for |F | = 2 and |F | = 6, respectively). This was a predictable

result since a larger number of sensors allows more covers to exist.

660

For a given version of the problem, the network lifetime is usually the same

for the two coverage requirement scenarios, except for instances with fewer num-

ber of sensors. For example, identical solutions values were found in 21 out of

24 cases for |F | = 4 except for two cases with |S| = 200, and one case with

|S| = 400. Overall, in these three cases the difference between average solutions665

is always less than 7.43%. On these datasets, one could expect a fewer number

of feasible covers to exist. Therefore, if some of the covers are feasible for a

given type of coverage requirement and not for the other, on bigger instances

a larger set of alternative covers may be available and help to converge to the

same optimal lifetime. This result is significant, since it suggests that when a670

particular robustness level is needed for a given application in terms of coverage

request for a subset of particularly relevant sensor families, it can be expected

to be obtained with reasonable trade-offs in terms of solution quality, especially

if many sensors are available in the network.

675

We can also compare the quality of the optimal solutions of the two problems

with respect to the level of regularity by comparing the value of the variable

wmin, which, we recall, is the minimum amount of time, among all the families,

for which a target is covered. Refer to Table 5 for |F | = 4, and Tables 9 and 10

in the Appendix for |F | = 2 and |F | = 6, respectively.680
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Figure 6: Lifetime values when solving the two problems for the uniform coverage request
scenario (on the top) and the variable coverage request scenario (on the bottom), with |F | = 4.

Solving the regular version of the problem improves the value of wmin. This

is an expected result, since, when solving the regular version of the problem,

we look for solutions such that wmin is maximized, while there are no require-

ments for wmin in the basic version of the problem. Hence, alternative opti-685

mal solutions with the same lifetime but lower value of wmin can be generally

selected when solving the basic variant of the problem. In particular, the av-

erage percentage difference between the optimum wmin obtained when solving

MLMFP-R, and the value of wmin, obtained when solving MLMFP, with uni-

form coverage requests is equal to 11.89% for |F | = 2, 11.66% for |F | = 4, and690

30



Table 5: Values of wmin for |F | = 4 scenarios.

Each entry is an average of five instances. Results are reported for both the problems and
for both the coverage requirements. Column wmin for MLMFP is evaluated by checking the
minimum amount of time for which, among all the families, a target is covered in the optimum
solution. Column wmin for MLMFP-R is the optimum value of the related variable obtained
when solving this problem variant. Column % Gap reports the percentage difference between the
optimum wmin obtained when solving MLMFP-R and the value of wmin obtained when solving
MLMFP.

|F |=4 Uniform coverage requests Variable coverage requests

Instance MLMFP MLMFP-R % Gap MLMFP MLMFP-R % Gap
|T | |S| wmin wmin wmin wmin

30 200 1.74 2.11 21.26 1.41 2.11 49.65
60 200 1.12 1.40 25.00 1.09 1.40 28.44
90 200 0.59 1.07 81.36 0.80 1.07 33.75

120 200 1.26 1.34 6.35 0.81 1.34 65.43

30 400 3.95 3.96 0.25 2.87 3.96 37.98
60 400 3.34 4.19 25.45 3.06 4.19 36.93
90 400 4.21 4.41 4.75 4.27 4.41 3.28

120 400 3.36 3.72 10.71 3.03 3.72 22.77

30 600 6.34 6.34 0.00 5.54 6.34 14.44
60 600 4.78 6.02 25.94 3.57 6.02 68.63
90 600 6.24 6.58 5.45 5.02 6.58 31.08

120 600 6.02 6.20 2.99 5.64 6.20 9.93

30 800 11.04 12.19 10.42 7.61 12.19 60.18
60 800 9.33 10.11 8.36 7.55 10.11 33.91
90 800 8.96 9.44 5.36 8.43 9.44 11.98

120 800 8.74 9.11 4.23 8.10 9.11 12.47

30 1200 24.01 24.35 1.42 21.88 24.35 11.29
60 1200 16.81 17.78 5.77 15.85 17.78 12.18
90 1200 15.45 15.54 0.58 12.90 15.54 20.47

120 1200 13.49 14.91 10.53 13.42 14.91 11.10

30 1600 28.60 29.45 2.97 22.94 29.45 28.38
60 1600 21.50 22.31 3.77 18.22 22.31 22.45
90 1600 18.02 20.27 12.49 15.39 20.27 31.71

120 1600 16.98 17.72 4.36 15.26 17.72 16.12

4.60% for |F | = 6. The average percentage difference when solving the prob-

lems with variable coverage requests is equal to 86.03% for |F | = 2, 28.11% for

|F | = 4, and 52.43% for |F | = 6.

The value of wmin, when solving the regular version of the problem are the695

same for both the uniform and the variable request scenarios. This is due to

the fact that the wmin value depends on target-family combinations of the most
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unfortunate coverage situations for each instance. In order to investigate this as-

pect, we checked for each solution provided by MLMFP-R, which target-family

combinations corresponded to the wmin coverage level. We found that, for any700

given input instance at least one of such unfortunate combinations was always

found to be common to the uniform and variable scenarios.

The value of wmin, when solving the basic version of the problem, is higher

for the uniform coverage request scenario. This result can be explained by the705

fact that in the uniform request scenarios, targets are roughly uniformly divided

between the families in each cover. This may bring naturally to a fair level of

coverage between targets and families, which brings the minimal coverage level

to approach the optimum value of wmin. On the other hand, in the case of

variable coverage requests there are unconstrained families which could bring to710

more unpredictable coverage levels.

6. Conclusions

In this work we addressed the maximum network lifetime problem on het-

erogeneous networks composed of different sensor families, as well as a variant715

of this problem which takes into account some regularity conditions in order to

guarantee a fair level of coverage for each sensor family to each target. These

problems are of great interest, since nowadays many different sensor types exist

and they may be needed to work in a coordinated fashion in many relevant

application contexts. To the best of our knowledge, the problems have not been720

previously studied in the literature. For each problem we developed an exact

approach based on column generation, in which the subproblem is solved either

heuristically by means of a genetic algorithm or optimally using an appropriate

ILP formulation. The proposed genetic algorithm is proven to be able to signifi-

cantly reduce the computational time of the procedure. Indeed, in our extensive725

computational phase we were able to optimally solve instances of significant size

within reasonable computational times. With respect to future research direc-

tions, we intend to further study the use of multiple sensor families, due to

its great relevance for real world scenarios. In particular, we intend to explore

issues such as connectivity, routing and resistance to failures, which may arise730

in specific applications.
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Appendix: Additional Figures and Tables825

Table 6: Comparison of our approach (CG+GA) and a pure column generation
approach (CGonly) when solving MFMLP-R.

Each entry reported in the table refers to the same scenario corresponding to different
choices of |T |, |F |, |S| and coverage requirement. Columns avg. and std. dev. are average
and standard deviation values computed among the five different instances generated for each
scenario, respectively. Column solution contains the average solution value computed among
the five different instances of the scenario. Columns SP it. and time refer to the number of
times the subproblem [SP] was solved to optimality and to the computational time in seconds for
both the algorithms, respectively. Column GA it. refers to the number of times GA is invoked.
The speed-up heading refers to the ratio between the computational time of CGonly and that of
CG+GA.

|F | = 2, |S| = 100, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.35 120.6 63.33 9.39 9.43 12.6 17.01 7.6 14.76 2.21 3.89 9.33 5.53
60 6.22 33.6 22.10 3.31 1.95 3.8 1.64 1.0 0.00 0.51 0.20 6.54 3.07
90 6.73 42.0 35.33 6.82 5.83 3.8 1.64 1.0 0.00 0.69 0.20 9.08 5.15
120 7.15 51.0 36.28 12.32 9.00 4.0 2.35 1.0 0.00 0.95 0.55 12.45 3.69

|F | = 2, |S| = 100, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 10.44 111.2 51.83 5.72 2.92 5.8 1.64 1.0 0.00 0.50 0.15 11.55 4.36
60 6.22 36.8 15.94 3.18 1.38 3.4 1.14 1.0 0.00 0.42 0.10 7.54 3.31
90 6.73 47.6 36.47 6.87 5.50 4.0 2.00 1.0 0.00 0.67 0.27 9.19 4.47
120 7.15 57.0 26.01 11.78 4.89 4.2 1.79 1.0 0.00 0.92 0.39 12.77 2.72

|F | = 4, |S| = 200, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.25 239.4 259.96 44.88 57.63 12.0 10.17 1.2 0.45 2.71 3.64 16.64 4.78
60 13.02 131.4 64.37 58.04 29.55 6.6 3.65 1.0 0.00 1.62 1.04 38.16 12.99
90 14.39 174.6 66.21 126.81 50.65 8.0 2.65 1.0 0.00 2.94 1.40 44.13 3.86
120 15.12 201.2 49.50 197.79 66.78 9.0 3.08 1.0 0.00 3.93 1.73 54.76 25.05

|F | = 4, |S| = 200, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 17.43 225.8 158.32 37.19 28.53 11.6 7.83 1.2 0.45 1.95 1.87 22.28 5.37
60 12.12 109.4 51.03 47.42 26.65 7.8 2.77 2.4 3.13 2.50 2.69 25.89 11.38
90 14.39 148.8 57.70 98.46 42.23 7.2 2.68 1.0 0.00 2.07 0.80 47.69 12
120 15.12 167.4 60.59 147.08 55.89 9.6 5.13 1.0 0.00 3.85 2.70 45.37 23.31

|F | = 6, |S| = 300, uniform coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 22.34 298.0 78.04 99.81 18.78 14.8 4.76 3.0 3.08 4.01 2.30 32.07 18.78
60 19.49 282.6 115.50 244.68 121.84 12.6 1.34 1.0 0.00 4.49 0.33 54.86 27.58
90 17.50 282.2 213.34 277.24 182.21 12.8 7.50 1.8 1.79 7.66 6.89 44.52 13.65
120 19.04 386.4 154.33 708.71 311.89 18.0 7.31 3.2 2.68 17.77 14.60 55.28 24.82

|F | = 6, |S| = 300, variable coverage requests
instance CGonly CG+GA speed-up

SP it. time GA it. SP it. time
|T | solution avg std dev avg std dev avg std dev avg std dev avg std dev avg std dev
30 21.18 278.8 42.41 74.74 16.02 11.2 2.28 1.0 0.00 2.18 0.65 36.73 12.88
60 23.22 408.2 232.85 326.88 203.10 18.0 8.69 1.6 1.34 8.96 9.29 44.72 12.05
90 18.99 235.2 122.47 185.30 99.77 11.8 4.44 1.0 0.00 4.56 2.63 42.01 14.21
120 18.24 287.4 160.52 452.93 220.10 15.2 6.06 1.6 1.34 10.83 7.40 50.09 22.58
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Table 7: Results of CG+GA for |F | = 2 scenarios when solving the basic version
of the problem (MLMFP) and the regular version (MLMFP-R).

Each entry is an average of five instances. Column lifetime contains the average llifetime
(which is the same for both the problems). Column GA it. contains the number of times GA
is invoked. Column SP it. contains the number of times the separation problem is solved to
optimality. Column GA columns reports the average number of columns generated by GA. Column
time shows the computational time in seconds.

Uniform coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 100 10.35 6.2 1.0 273.4 0.61 12.6 7.6 279.2 2.21
60 100 6.22 2.8 1.0 104.2 0.35 3.8 1.0 165.2 0.51
90 100 6.73 2.4 1.0 82.0 0.46 3.8 1.0 166.2 0.69
120 100 7.15 2.8 1.0 104.8 0.66 4.0 1.0 176.2 0.95
30 200 19.65 5.6 1.0 294.4 0.75 9.2 1.4 475.6 1.47
60 200 18.62 6.8 1.0 370.6 1.33 10.0 1.0 569.6 2.31
90 200 13.69 4.4 1.0 218.2 1.14 6.0 1.0 319.6 1.74
120 200 12.29 3.6 1.0 165.8 1.05 6.2 1.4 305.8 2.21
30 300 20.78 3.8 1.0 187.8 0.67 7.2 1.0 412.6 1.40
60 300 21.31 4.4 1.0 227.8 1.12 10.8 1.0 657.8 3.48
90 300 24.04 7.2 1.0 417.2 2.33 14.2 1.0 883.8 6.66
120 300 20.20 6.0 1.0 338.2 2.45 10.4 1.0 627.0 5.64
30 400 36.90 27.8 11.0 1030.2 29.83 149.8 131.4 1200.6 344.57
60 400 32.91 8.4 1.0 510.2 2.97 19.2 1.0 1237.8 10.47
90 400 33.33 10.2 1.0 636.8 4.52 26.4 1.0 1756.2 22.21
120 400 26.93 5.8 1.0 333.8 2.99 15.2 1.0 978.8 9.74
30 600 67.44 16.0 1.0 1111.8 7.03 42.2 1.4 3002.8 31.54
60 600 44.71 8.8 1.0 576.6 4.58 23.2 1.0 1633.8 15.16
90 600 41.73 11.0 1.2 727.4 7.46 25.0 1.0 1776.8 33.70
120 600 43.09 12.0 1.0 817.2 11.18 32.6 1.2 2316.4 64.69
30 800 74.44 12.0 1.2 837.8 6.34 39.4 1.2 2966.4 34.71
60 800 59.25 13.6 1.0 983.2 11.15 34.6 1.0 2609.8 38.71
90 800 63.64 16.6 1.0 1224.6 21.40 39.6 1.0 2975.2 85.71
120 800 55.58 9.4 1.0 657.2 15.62 29.8 1.0 2243.8 63.08

Variable coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 100 10.44 3.8 1.0 165.0 0.38 5.8 1.0 280.6 0.50
60 100 6.22 2.4 1.0 80.4 0.36 3.4 1.0 140.6 0.42
90 100 6.73 2.8 1.0 106.0 0.52 4.0 1.0 178.2 0.67
120 100 7.15 3.4 1.0 142.6 0.83 4.2 1.0 189.8 0.92
30 200 18.74 45.6 34.0 660.4 29.65 128.2 118.6 611.0 82.64
60 200 18.62 10.4 1.0 606.4 2.31 14.4 1.0 854.2 3.59
90 200 13.69 5.0 1.0 258.8 1.35 8.2 1.0 462.0 2.28
120 200 12.29 4.2 1.0 204.4 1.35 7.8 1.0 437.6 2.53
30 300 20.78 4.6 1.0 243.2 0.91 9.8 1.0 592.2 1.75
60 300 21.31 7.4 1.0 428.4 2.07 13.4 1.0 833.0 4.16
90 300 24.04 9.8 1.0 592.8 3.78 20.8 1.0 1326.2 11.02
120 300 20.20 8.0 1.0 473.4 3.76 12.8 1.4 760.8 6.71
30 400 38.35 10.4 1.0 647.8 3.09 19.2 1.0 1246.0 6.75
60 400 32.91 13.4 1.0 858.6 5.45 23.2 1.0 1518.8 13.90
90 400 33.33 16.0 1.0 1044.0 8.47 32.6 1.0 2173.8 36.27
120 400 26.93 9.8 1.0 613.4 5.77 17.6 1.0 1145.2 13.12
30 600 67.44 28.6 1.0 2047.4 21.84 60.8 11.4 3569.4 132.09
60 600 44.71 11.8 1.0 802.8 6.55 31.0 1.0 2215.4 26.84
90 600 41.73 11.6 1.0 786.2 9.09 31.8 1.2 2268.8 53.57
120 600 43.09 15.2 1.0 1056.8 17.18 37.4 1.2 2664.6 97.65
30 800 74.44 15.8 1.0 1155.4 9.24 46.6 1.2 3542.8 53.59
60 800 59.25 17.4 1.4 1255.4 13.79 40.6 1.0 3081.0 72.27
90 800 63.64 21.8 1.0 1633.6 26.29 45.0 1.0 3416.4 142.02
120 800 55.58 14.0 1.0 1021.2 20.27 38.8 1.0 2952.0 133.87
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Table 8: Results of CG+GA for |F | = 6 scenarios when solving the basic version
of the problem (MLMFP) and the regular version (MLMFP-R).

Each entry is an average of five instances. Column lifetime contains the average llifetime
(which is the same for both the problems). Column GA it. contains the number of times GA
is invoked. Column SP it. contains the number of times the separation problem is solved to
optimality. Column GA columns reports the average number of columns generated by GA. Column
time shows the computational time in seconds.

Uniform coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 300 22.34 10.4 2.2 545.4 2.02 14.8 3.0 774.0 4.01
60 300 19.49 9.2 1.4 518.8 2.86 12.6 1.0 767.0 4.49
90 300 17.50 9.0 1.6 495.6 4.43 12.8 1.8 721.6 7.66
120 300 19.04 11.6 1.2 693.4 6.83 18.0 3.2 969.8 17.77
30 600 43.18 14.8 1.0 1022.8 5.62 26.4 2.0 1781.0 18.06
60 600 46.43 19.0 1.2 1327.0 11.00 38.2 2.2 2611.4 65.67
90 600 38.08 16.4 1.4 1109.8 14.37 27.6 1.4 1904.8 44.40
120 600 35.75 16.8 1.0 1172.2 18.40 28.6 2.0 1928.6 76.93
30 900 66.35 24.4 3.0 1681.6 24.04 35.6 2.8 2539.0 57.74
60 900 62.70 27.2 1.6 2021.4 32.49 48.0 4.6 3346.2 161.74
90 900 55.85 19.4 1.8 1391.8 30.06 37.2 2.6 2691.8 126.63
120 900 56.06 18.4 1.0 1381.6 25.15 39.0 1.0 2973.0 176.58
30 1200 85.99 28.8 1.4 2312.4 55.48 53.8 6.0 3929.2 193.18
60 1200 85.29 30.8 1.0 2521.4 102.87 69.8 3.8 5421.8 881.52
90 1200 74.84 23.2 1.0 1867.0 51.55 46.4 2.6 3605.0 310.49
120 1200 82.27 29.0 1.0 2367.8 78.07 60.0 1.2 4882.4 526.68
30 1800 141.09 34.2 1.0 3072.4 134.20 102.0 1.0 9226.8 1429.75
60 1800 148.89 58.6 3.2 5095.2 430.62 112.0 7.8 9397.6 2600.42
90 1800 129.12 51.4 1.0 4640.8 577.66 109.2 6.8 9085.8 4456.89
120 1800 109.60 34.2 1.2 3047.4 224.25 68.8 1.2 6142.8 1241.28
30 2400 206.46 74.4 1.6 7126.8 1040.16 160.2 5.8 14837.0 5219.41
60 2400 143.24 33.8 1.0 3224.4 364.97 94.2 1.2 9013.6 3019.98
90 2400 144.00 34.8 1.2 3305.8 262.20 90.6 2.0 8576.8 2573.16
120 2400 142.28 29.6 1.0 2814.6 222.15 97.6 1.2 9381.8 3206.81

Variable coverage requests
instance MLMFP MLMFP-R

|T | |S| lifetime GA it. SP it. GA columns time GA it. SP it. GA columns time
30 300 21.18 7.8 1.0 452.6 1.49 11.2 1.0 673.4 2.18
60 300 23.22 12.2 1.0 755.6 3.64 18.0 1.6 1073.8 8.96
90 300 18.99 8.2 1.0 484.2 2.78 11.8 1.0 713.2 4.56
120 300 18.24 9.6 1.0 577.0 5.25 15.2 1.6 901.8 10.83
30 600 45.86 14.4 1.0 997.0 6.14 28.2 1.0 1975.4 20.17
60 600 47.45 20.4 1.0 1442.4 11.73 39.0 3.2 2587.4 60.22
90 600 37.25 18.4 1.4 1249.8 16.29 28.8 2.2 1938.4 44.25
120 600 35.65 15.2 1.0 1051.6 14.44 28.0 1.2 1965.8 55.02
30 900 68.27 19.4 1.6 1408.8 13.04 33.4 2.2 2425.4 34.49
60 900 67.55 23.0 1.0 1746.2 22.83 42.8 1.0 3252.8 90.69
90 900 56.07 14.0 1.0 1032.2 13.51 33.6 1.0 2559.6 64.02
120 900 55.74 18.8 1.0 1409.8 33.95 41.6 2.8 3031.4 245.15
30 1200 86.45 20.8 1.0 1665.8 22.78 44.2 1.0 3575.8 68.60
60 1200 79.42 18.8 1.0 1499.8 21.71 55.4 3.2 4357.0 275.33
90 1200 76.24 21.6 1.0 1737.2 50.39 42.4 1.4 3395.6 218.43
120 1200 82.27 27.8 1.0 2264.0 60.26 62.4 1.0 5104.2 528.15
30 1800 141.09 27.0 1.2 2376.6 52.26 92.4 1.4 8336.8 809.27
60 1800 149.74 58.4 2.0 5186.2 352.24 108.0 3.6 9365.6 1939.62
90 1800 134.89 52.0 1.0 4714.6 420.99 110.2 3.6 9470.6 3523.63
120 1800 109.60 31.6 1.0 2829.2 144.32 68.8 1.0 6164.2 991.79
30 2400 215.23 59.6 1.2 5736.8 510.03 151.8 1.4 14514.8 3563.90
60 2400 143.24 25.8 1.0 2417.0 157.87 86.8 1.4 8307.0 2550.06
90 2400 144.00 32.0 1.0 3040.2 171.92 85.8 1.4 8194.0 2070.06
120 2400 142.28 26.8 1.0 2537.2 149.12 91.8 1.0 8861.0 2907.83
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Figure 9: Lifetime values when solving the two problems for the uniform coverage request
scenario (on the top) and the variable coverage request scenario (on the bottom), with |F | = 2.
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Figure 10: Lifetime values when solving the two problems for the uniform coverage request
scenario (on the top) and the variable coverage request scenario (on the bottom), with |F | = 6.
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Table 9: Values of wmin for |F | = 2 scenarios.

Each entry is an average of five instances. Results are reported for both the problems and
for both the coverage requirements. Column wmin for MLMFP is evaluated by checking the
minimum amount of time for which, among all the families, a target is covered in the optimum
solution. Column wmin for MLMFP-R is the optimum value of the related variable obtained
when solving this problem variant. Column % Gap reports the percentage difference between the
optimum wmin obtained when solving MLMFP-R and the value of wmin obtained when solving
MLMFP.

|F |=2 Uniform coverage requests Variable coverage requests

Instance MLMFP MLMFP-R % Gap MLMFP MLMFP-R % Gap
|T | |S| wmin wmin wmin wmin

30 100 2.42 2.78 14.88 1.23 2.78 126.02
60 100 1.13 1.27 12.39 0.41 1.27 209.76
90 100 1.47 2.07 40.82 0.65 2.07 218.46

120 100 1.22 1.65 35.25 0.67 1.65 146.27

30 200 6.63 7.18 8.30 4.96 7.18 44.76
60 200 5.20 6.07 16.73 4.31 6.07 40.84
90 200 4.60 5.40 17.39 2.96 5.40 82.43

120 200 3.36 4.25 26.49 2.12 4.25 100.47

30 300 7.23 7.89 9.13 3.31 7.89 138.37
60 300 6.65 7.64 14.89 4.61 7.64 65.73
90 300 7.95 9.25 16.35 4.80 9.25 92.71

120 300 6.45 7.09 9.92 3.99 7.09 77.69

30 400 13.00 13.31 2.38 5.94 13.31 124.07
60 400 11.77 12.22 3.82 9.43 12.22 29.59
90 400 13.65 14.45 5.86 9.06 14.45 59.49

120 400 9.39 10.33 10.01 6.42 10.33 60.90

30 600 28.74 29.25 1.77 20.32 29.25 43.95
60 600 18.26 19.22 5.26 11.02 19.22 74.41
90 600 16.41 17.55 6.95 10.19 17.55 72.23

120 600 17.95 20.04 11.64 13.20 20.04 51.82

30 800 31.42 32.87 4.61 19.57 32.87 67.96
60 800 24.04 25.02 4.08 15.78 25.02 58.56
90 800 22.75 23.58 3.65 18.96 23.58 24.37

120 800 23.41 24.09 2.90 15.65 24.09 53.93
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Table 10: Values of wmin for |F | = 6 scenarios.

Each entry is an average of five instances. Results are reported for both the problems and
for both the coverage requirements. Column wmin for MLMFP is evaluated by checking the
minimum amount of time for which, among all the families, a target is covered in the optimum
solution. Column wmin for MLMFP-R is the optimum value of the related variable obtained
when solving this problem variant. Column % Gap reports the percentage difference between the
optimum wmin obtained when solving MLMFP-R and the value of wmin obtained when solving
MLMFP.

|F |=6 Uniform coverage requests Variable coverage requests

Instance MLMFP MLMFP-R % Gap MLMFP MLMFP-R % Gap
|T | |S| wmin wmin wmin wmin

30 300 1.21 1.48 22.31 0.36 1.48 311.11
60 300 0.92 1.15 25.00 0.71 1.15 61.97
90 300 0.70 0.78 11.43 0.55 0.78 41.82

120 300 1.09 1.09 0.00 0.38 1.09 186.84

30 600 3.38 3.50 3.55 2.57 3.50 36.19
60 600 4.17 4.36 4.56 3.38 4.36 28.99
90 600 3.14 3.31 5.41 2.34 3.31 41.45

120 600 2.96 2.96 0.00 1.73 2.96 71.10

30 900 5.21 5.21 0.00 4.39 5.21 18.68
60 900 5.48 5.63 2.74 4.29 5.63 31.24
90 900 5.20 5.21 0.19 3.42 5.21 52.34

120 900 5.36 5.36 0.00 4.27 5.36 25.53

30 1200 7.22 7.63 5.68 5.94 7.63 28.45
60 1200 8.85 9.05 2.26 6.34 9.05 42.74
90 1200 6.40 6.65 3.91 5.82 6.65 14.26

120 1200 7.60 7.88 3.68 7.22 7.88 9.14

30 1800 17.55 18.27 4.10 11.37 18.27 60.69
60 1800 14.91 14.99 0.54 13.84 14.99 8.31
90 1800 14.15 14.17 0.14 12.59 14.17 12.55

120 1800 10.33 10.33 0.00 9.02 10.33 14.52

30 2400 22.94 23.53 2.57 16.80 23.53 40.06
60 2400 16.31 16.85 3.31 10.91 16.85 54.45
90 2400 15.01 15.09 0.53 11.89 15.09 26.91

120 2400 15.88 17.24 8.56 12.40 17.24 39.03
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