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Abstract. This paper studies the close-enough traveling salesman prob-
lem, a variant of the Euclidean traveling salesman problem in which the
traveler visits a node if it passes through the neighborhood of that node.
We introduce an improved version of the adaptive internal discretiza-
tion scheme, recently proposed in the literature, and a heuristic that
combines this scheme with to a second-order cone programming algo-
rithm. Our heuristic is able to compute tight bounds for the problem.
The computational results, carried out on benchmark instances, confirm
the improvements of the bounds computed with respect to the other
algorithms proposed in the literature.
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1 Introduction

This paper concerns a variant of the traveling salesman problem (TSP) called
close-enough traveling salesman problem (CETSP). The TSP is one of the most
studied optimization problems. Given a set of target points, in an Euclidean
space, the TSP consists of finding a minimum length tour that starts and ends
at a depot while visiting each target point exactly once. In CETSP to each
target point v is associated a neighborhood, that is a compact region of the
space containing v. The CETSP consists of finding the shortest tour that starts
and ends at the depot and intersects each neighborhood once. In this work we
assume that the neighborhoods shape is a disc.

The CETSP has several practical applications in the context of Unmanned
Aerial Vehicles that are vehicles without crew used for military and civil missions
like aerial forest fire detection, supply delivering (food, munition, etc.) to targets,
geographic region monitoring and military surveillance. Moreover, even the robot
monitoring wireless sensor networks can be modeled as a CETSP [15]. Finally,
the CETSP arises in the context of the reading process of water (electricity
or gas) consumption. Indeed, by using radio frequency identification readers, it
is possible to catch the information about the consumption by using a drone



2 F. Carrabs, C. Cerrone, R. Cerulli, C. D’Ambrosio

flying within the range of each reader. This methodology is much faster than the
classical door-by-door reading process and requires the resolution of CETSP.

The CETSP was introduced by Gulczynski et al. [12] that proposed sev-
eral heuristics to face the problem. Afterwards, other heuristics were introduced
in [10, 13, 14] while an effective evolutionary approach was implemented in [15].

Very recently, a branch-and-bound algorithm was proposed in [9] in which the
subproblem, solved in each node of the search tree, consists of a Second Order
Cone Programming. The authors carried out computational tests on several
instances proving that their branch and bound often finds the optimal solution.
To the best of our knowledge, the idea to use the second order cone programming
for the CETSP was introduced the first time in [14].

In this paper we propose a more effective version of the internal discretiza-
tion scheme introduced in [5]. Moreover, we propose a new heutistic obtained
by combining this new scheme with the second-order cone programming algo-
rithm [14] to obtain a heuristic able to compute tight bounds for the CETSP
problem. The computational results reveal that our approach produces better
bounds with respect to the ones proposed in [2, 5].

The remainder of the paper is organized as follows. Section 2 introduces the
definitions and the notations that are throughout the paper. Section 3 contains
a brief overview of the algorithm based on the internal discretization scheme [5]
while Section 4 reports a mixed-integer programming model for CETSP. The
second-order cone programming algorithm [14] is described in Section 5. Finally,
computational results are presented in Section 6 followed by conclusions in Sec-
tion 7.

2 Definitions and Notation

Given a two-dimensional plane, let N be a set of target points placed in the plane,
with |N | = n, and let v0 /∈ N be the depot point. A circumference Cv, with center
v and radius rv, is associated to each target point v ∈ N (Figure 1(a)). The set
of points within and on Cv compose the neighborhood N(v) of v. W.l.o.g., we
suppose that v0 /∈ N(v) ,∀v ∈ N . Given the neighborhood N(v) depicted in
Figure 1(a), let di and dj be two points on Cv. We denote by di, dj the chord

between these two points and by d̆i, dj the circular arc from di to dj in the
clockwise direction.

The CETSP consists in finding a shortest tour T ∗ that starts and ends into
the depot v0 and intersects the neighborhoods of all target points. Given a tour
T , its turn points are the points where a direction change occurs. For instance,
in Figure 1(b) it is shown a feasible tour for the CETSP with the turn points
v0, p1, p2 and p3. Note that any tour can be uniquely identified through the
sequence of its turn points. Given a couple of turn points pi and pj , the length
of the edge (pi, pj) is given by the euclidean distance between pi and pj and it
is denoted by w(pi, pj). The total cost of a tour T is denoted by w(T ) and it is
equal to the sum of the edge lengths in T .



Improved upper and lower bounds for the CETSP 3

v0

Fig. 1. (a) Circumference Cv of the target point v. The points in and on Cv compose
the neighborhood N(v). (b) A feasible tour, for the CETSP, composed by turn points
v0, p1, p2 and p3.

3 The Adaptive Internal Discretization Algorithm

In this section we briefly describe the internal point discretization scheme (IP)
and the steps of the internal discretization algorithm, based on IP, that finds
upper bounds for CETSP. See [5] for a detailed explanation of both the dis-
cretization scheme and the algorithm.

It is easy to see that the number of feasible tours for CETSP is infinite be-
cause each neighborhood N(v), with v ∈ N , contains an infinite number of turn
points usable to create the tours. However, any single tour can be identified by
using a finite set of turn points. For this reason, we discretize the neighborhoods
by using a finite number of discretization points and we use only these points
to build the tours. Obviously, this choice implies that our algorithm will con-
sider only a subset of infinite feasible tours of the problem. In more details, each
neighborhood N(v) is discretized by using a fixed number k of discretization
points denoted by N̂(v). After the discretization, we build the discretized graph

G = (V,E), where V =
⋃
v∈N

N̂(v) and E = {(x, y) : x ∈ N(u), y ∈ N(v), u 6= v}.

From now on, we will denote by T and T̂ the feasible tours of the CETSP com-
puted by using the points of N(v) and of N̂(v), v ∈ N , respectively. It is easy
to see that the weight of any tour T̂ of G, that starts and ends at the depot and
that visits exactly one discretization point in each neighborhood, is an upper
bound to w(T ∗). However, in order to find tighter upper bound of w(T ∗) we
solve the Generalized Traveling Salesman Problem (GTSP) [11] on G obtaining
the shortest tour T̂ ∗. The tightness of w(T̂ ∗) with respect to w(T ∗) heavily de-
pends i) on the number of points k used to carry out the discretization and ii) on
their placement in each neighborhood. Obviously, as the number of discretiza-
tion points increases as the quality of the upper bound improves. However, by
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v0

Fig. 2. The discretization error carried out on N̂(v1). p1 is the turn point of T ∗ while d1
is the discretization point used by T̂ ∗. The length of p1, d1, multiplied by 2, corresponds
to ξ(v1).

increasing the discretization points used we increase the size of the graph G too
and then the computational time required to solve the GTSP on G. For this
reason, the number of discretization points, to use for each neighborhood, has to
be wisely defined in order to obtain an appropriate trade-off between the quality
of the upper bound and the time spent to compute it.

Fixed the number k of discretization point to use for each neighborhood the
next question is: where are the best positions where to place these discretiza-
tion points in order to obtain an upper bound as tight as possible? There are
various discretization scheme, proposed in literature, that state the positions of
the discretization points in each neighborhood. In this work we use IP scheme
introduced in [5]. However, before describing this scheme, let us see why the po-
sitions of discretization points can significantly change the quality of the upper
bound computed.

Since the construction of T̂ ∗ is carried out by using only the discretization
points then a discretization error ξ(vi) occurs, on each neighborhood N̂(vi), with
respect to the turn point pi of T ∗ in N(vi). If di is the discretization point of
N̂(vi) closest to the turn point pi, then ξ(vi) is equal to two times the length
of pi, di. For instance, in Figure 2 the neighborhood N(v1) is discretized by
using four points that are placed on Cv1 . Since the tour T ∗ intersects N(v1)
in the turn point p1 then ξ(vi) is equal to two times the length of p1, d1, one
time to come from p1 to d1 and another one to come back. Let Q be a walk
composed by edges of T ∗ and by discretization errors of all the neighborhoods.
This means that w(Q) = w(T ∗)+

∑
v∈N ξ(v). Moreover, since Q starts and ends

at the depot v0 and visits one discretization point for each neighborhood, then
w(T̂ ∗) ≤ w(Q). This means that the lower is the discretization error carried
out in each neighborhood, the tighter will be w(T̂ ∗). For this reason, it is very
important to apply a discretization scheme that minimizes

∑
v∈N ξ(v). Of course,

the best situation occurs when ξ(vi) = 0 that is when p1 coincides with d1 in
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Fig. 3. (a) The internal discretization scheme for k = 3. (b) Computation of the
maximum error ξ(v) for IP scheme.

Figure 2 but, in general, ξ(vi) > 0 and it will affect the quality of the upper
bounds found.

3.1 Internal Point Discretization Scheme

The internal point discretization (IP) scheme was introduced in [5] with the aim
to minimize the discretization error carried out during the construction of T̂ ∗

whatever are the turn points of T ∗. Given k discretization points, the IP scheme

divides Cv in k equal circular arcs and, for each arc â, b, places a discretization
point in the middle of the chord a, b. In Figure 3(a) the IP scheme is shown for
k = 3.

In order to compute the discretization error ξ(v), produced by IP scheme, let
us consider the example in 3(b). If the turn point p1 of T ∗ intersects N(v) on

the circular arc â, b then the maximum distance between p1 and the discretiza-
tion point d3 occurs when p1 coincides with the point a or b. Therefore, the
discretization error ξ(v) is equal to 2( 1

2w(a, b)) = w(a, b). The same reasoning

holds for the circular arc b̂, c with the discretization point d1 and for the circular
arc ĉ, a with the discretization point d2.

Now, from trigonometry, we know that w(a, b) = 2rv sin(α2 ), where α is the

central angle associated to the circular arc â, b. Note that, by definition, α = 2π
k .

As consequence, fixed the number k of discretization points, the maximum error
associated to the IP scheme in N̂(v) is ξ(v) = 2rv sin(πk ).

3.2 Convex Hull Strategy

In [2] the authors proved that the turn points of T ∗ are always on the circular arcs
belonging to the convex hull generated by target points. This means that all the
points of the circular arcs outside conv(N ∪{v0}) can be discarded because they
cannot belong to the optimal solution. In Figure 4 the convex hull, generated
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Fig. 4. In blue the circular arcs discretized after the construction of the convex hull.

by depot and target points p1, . . . , p8 is depicted. The circular arcs within the
convex hull are highlighted in blue and, from now on, are referred to as feasible

circular arcs (fca). Given a target point vi, we denote by v̆′i, v
′′
i the fca of Cvi

and by αi the central angle associated to v̆′i, v
′′
i .

Since the turn points of T ∗ can be only on the fca, rather than wasting
discretization points on whole circumference Cv, in [5] the author discretized
only the fca. Moreover, rather than using the same number k of points for each
fca, they assigned the number of discretization points to be used for each fca

according to its length. For instance, the length of ˚�p′p1 , p
′′
p1 , in Figure 4, is much

longer than the length of ˚�p′p5 , p
′′
p5 and then the number of discretization points

assigned to the former fca should be greater than the number of discretization
points assigned to the latter fca in order to minimize the discretization errors.

The number of discretization points, assigned to each neighborhood, is de-
fined as follows. Given a neighborhood N(vi), let α̂ be the degree step given
by the ratio between the sum of all central angles αi and the total number of

discretization points k|N |. Formally, α̂ =

∑
vi∈N αi
k|N |

. Then, the fca v̆′i, v
′′
i is dis-

cretized by using
⌊
αi

α̂

⌋
points. According to this idea, the discretization error

ξ(vi), carried out on N̂(vi), is expressed as: ξ(vi) = 2rvi sin( αi

2ki
) = 2rvi sin( α̂2 )

where ki = αi

α̂ .

Here we introduce a new modification to the previous scheme that can signif-
icantly improve the lower bounds computed. The idea behind this modification
is the following. Since ki is an integer value and ki = αi

α̂ then a truncation op-
erations is often carried out when we compute ki. Due to this truncation, the
total number of discretization points used could be lower than k|N |. When this
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event occurs, we have discretization points that can be used to further reduce
the discretization errors. Let ` be the number of remaining discretization points
available. Then we apply a greedy algorithm, named residual points assignment
(RPA) to assign even these points. The pseudocode of RPA is reported in Algo-
rithm 1.

Algorithm 1 Residual Points Assignment

1: Input: The value `.
2: while ` > 0 do
3: Select vertex vi such that ξ(vi) ≥ ξ(vj) ∀j ∈ N
4: ki ← ki + 1
5: `← `− 1
6: end while

For each residual point available, the algorithm finds the vertex vi with max-
imum discretization error (line 3) and try to reduce this last error by increasing

by one the number of discretization point used for ṗ′vi , p
′′
vi (line 4). The process

is repeated until all the residual points are assigned.

4 Mathematical Formulation

In this section we report the mathematical formulation of the GTSP problem
that is used to compute T̂ ∗. Since the resolution of GTSP is expensive, we
reduce the complexity of the problem by reducing the size of the graph G(V,E).
To this end, we apply on G the graph reduction algorithm described in [5]. This
algorithm looks for useless edges in G, that is edges that cannot belong to T̂ ∗,
and it removes them. Often the number of edges in G is reduced by 50%, thanks
to this algorithm, making the individuation of T̂ ∗ less expensive.

To formulate the GTSP problem, we associate to each edge (i, j) ∈ E′ a
binary variable xij taking value 1 if and only if (i, j) belongs to the solution.
Moreover, we associate to each discretization node i the binary variable yi taking
value 1 if and only if i belongs to the solution. Finally, we let cij be the euclidean
distance between the discretization points i and j and define the set E(S) as
follows:

E(S) = {(i, j) ∈ E′ : i, j ∈
⋃
v∈S

N̂(v)}

for S ⊆ N . Our integer linear programming model for the GTSP is the following:
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(MIP) min
∑

(i,j)∈E′

cijxij (1)

∑
i∈N̂(v)

yi = 1 ∀v ∈ N (2)

∑
i∈N̂(u),j∈N̂(v)

xij ≤ 1 u, v ∈ N, u 6= v (3)

∑
(i,j)∈E′

xij = 2yi ∀i ∈ V (4)

∑
(i,j)∈E(S)

xij ≤ |S| − 1 ∀S ⊆ N, |S| ≥ 2 (5)

The objective function (1) minimizes the cost of the tour. Constraints (2)
guarantee that a discretization point of each neighborhood is visited while Con-
straints (3) ensure that at most one edge connecting two neighborhoods is se-
lected. Constraints (4) bind the two sets of variables by letting yi equal to 1 if
and only if vi belongs to the solution. Finally, constraints (5) are the subtour
elimination constraints adapted to the Generalized TSP [11].

The MIP model returns the optimal tour T̂ ∗ with w(T̂ ∗) being our upper
bound to the optimal solution T ∗ of CETSP. A lower bound for T ∗ can be found
too by removing from w(T̂ ∗) the maximum discretization error value ξ(v) for
each target point v. Formally, LB = w(T̂ ∗)−

∑
v∈V ξ(v).

Finally, once the solution T̂ ∗ has been found, we carry out an additional
step to improve the upper bound, this additional step is introduced in the next
section.

5 Second-Order Cone Programming Algorithm

The solution T̂ ∗ computed by MIP model in the previous section, can be further
improved by modifying the position of the discretization points used. More in
details, when the visiting sequence of target points is fixed a priori, the CETSP
corresponds to the Touring Steiner Zones Problem (TSZP). This problem can
be formulated as a second-order cone programming (SOCP) [13] and solved in
polynomial time [1]. In the following we briefly describe the formulation proposed
in [13] and that is implemented in our algorithm to further improve the upper
bounds computed.
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(SOCP) min

|N |∑
i=0

zi (6)

wi = xi − xi+1 ∀ i ∈ {0, ... , |N |} (7)

ui = yi − yi+1 ∀ i ∈ {0, ... , |N |} (8)

si = x̄i − xi ∀ i ∈ {0, ... , |N |} (9)

ti = ȳi − yi ∀ i ∈ {0, ... , |N |} (10)

z2i ≥ w2
i + u2i ∀ i ∈ {0, ... , |N |} (11)

s2i + t2i ≤ r2i ∀ i ∈ {0, ... , |N |} (12)

zi ≥ 0 ∀ i ∈ {0, ... , |N |} (13)

wi, ui, si, ti, xi, yi, free ∀ i ∈ {0, ... , |N |} (14)

The tour T̂ ∗, computed by MIP, defines a visiting sequence of the target
points. W.l.o.g. let us suppose that such a sequence is (v1, v2, . . . , v|N |). We
replicate the first target point v1 in the last position of the sequence obtaining
the new sequence (v1, v2, . . . , v|N |, v1). To each target point vi in the sequence
are associated the variables xi and yi representing the coordinates of the dis-
cretization point that covers vi in the tour. For each target point vi, we want to
find the best position where to place the discretization point in order to mini-
mize the tour length. The zi variables represents the Euclidean distance between
the discretization points associated to vi and vi+1. The objective function (6)
minimizes the sum of Euclidean distances among the discretization points of the
tour. Finally, the variables wi and ui are used in constraints (11), to compute
the Euclidean distance between the vertex vi and vi+1 while the variables si and
ti are used in constraints (12), to ensure that the position of discretization point
(xi, yi) is inside the circumference Cvi .

6 Computational Results

This section presents the computational results of our algorithm, named IULB
on the largest benchmark instances proposed in [2] and [5]. IULB was coded
in Java on a OSX platform running on an Intel Core i5 2.9GHz processor with
16GB RAM, equipped with the IBM ILOG CPLEX 12.5.1 solver and the Concert
Technology Library for the mathematical formulations. In order to verify both
the effectiveness and the performance of IULB we will compare it with the
Bender Decomposition (BD) proposed in [2] and the ULB algorithm proposed
in [5].

In Table 1 the results of BD, ULB and IULB algorithms, on the instances
from 14 to 20 target points and with a radius equal to 0.25 and 0.5, are reported.
To each algorithm are associated two columns: Gap and Time. The Gap value
represents the gap in percentage between the upper (UB) and lower (LB) bound

values and it is computed with the formula: 100× (UB−LB)
UB . The Time value is
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Instance r=0.25 r=0.5

BD ULB IULB BD ULB IULB
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

CETSP-14-01 9.3 2.5 4.4 2.6 4.3 2.1 21.3 5.3 9.3 3.8 9.0 3.8
CETSP-14-02 9.5 1.5 4.5 1.3 4.4 1.2 19.8 2.2 10.1 3.2 9.7 2.4
CETSP-14-03 9.2 6.4 4.3 1.6 4.2 1.2 18.9 11.7 8.6 4.2 8.2 4.2
CETSP-14-04 8.5 2.6 4.5 1.3 4.3 1.0 18.6 4.5 8.9 3.4 8.7 2.5
CETSP-14-05 9.3 2.1 4.2 1.1 4.0 0.7 16.3 3.3 8.6 1.5 8.4 1.7
CETSP-14-06 9.6 3.7 4.9 2.0 4.4 1.5 21.9 2.5 10.0 3.3 9.1 2.6
CETSP-14-07 7.8 2.4 4.0 1.0 3.9 0.8 18.9 2.8 8.7 2.2 8.5 1.8
CETSP-14-08 9.8 6.3 4.7 1.3 4.5 1.1 20.2 7.4 9.9 2.9 9.6 3.0
CETSP-14-09 11.5 2.9 5.0 1.4 4.9 1.2 22.3 1.9 10.0 3.5 9.7 2.8
CETSP-14-10 10.2 3.4 4.9 2.0 4.8 1.1 20.5 6.0 10.3 4.5 10.0 3.3

CETSP-16-01 9.4 5.0 4.7 2.4 4.5 2.1 21.9 8.3 9.5 7.1 9.2 6.2
CETSP-16-02 11.5 1.8 5.6 1.1 5.5 0.9 22.8 8.7 11.8 3.5 11.4 2.5
CETSP-16-03 10.9 6.7 5.2 1.5 5.1 1.3 22.1 9.7 10.6 5.3 10.3 3.9
CETSP-16-04 9.7 3.0 5.0 1.3 4.9 1.1 20.0 13.8 10.9 4.8 10.7 5.2
CETSP-16-05 11.1 3.2 5.7 2.3 5.3 1.9 25.0 8.4 12.0 5.9 11.3 4.9
CETSP-16-06 8.3 4.0 4.3 3.2 4.2 1.9 19.9 14.2 9.3 3.6 8.9 3.4
CETSP-16-07 9.9 7.5 4.7 3.1 4.6 6.1 21.6 15.6 10.3 14.5 10.1 3.8
CETSP-16-08 9.9 2.0 5.2 1.1 4.9 1.0 19.9 7.2 10.7 2.5 10.3 1.3
CETSP-16-09 12.0 11.6 5.8 3.0 5.6 2.3 25.9 520.1 12.0 10.6 11.7 6.6
CETSP-16-10 11.7 5.2 5.6 2.2 5.4 3.5 24.8 15.8 11.5 6.8 11.3 6.9

CETSP-18-01 10.3 8.1 5.1 4.0 4.9 2.8 24.0 35.6 10.7 8.4 10.4 7.6
CETSP-18-02 12.8 12.8 5.7 4.6 5.5 2.3 24.3 202.0 12.0 8.9 11.6 7.8
CETSP-18-03 10.7 9.1 5.6 4.7 5.4 4.3 24.5 102.9 12.2 13.9 11.8 6.6
CETSP-18-04 11.8 2.7 5.2 2.4 5.0 2.0 22.7 11.0 11.0 4.7 10.7 5.1
CETSP-18-05 11.7 4.7 5.8 3.9 5.6 2.2 22.5 28.0 11.7 5.7 11.5 4.2
CETSP-18-06 12.5 13.4 5.8 5.4 5.6 4.4 28.0 173.9 12.6 11.9 12.0 15.2
CETSP-18-07 13.5 4.2 6.1 3.3 5.9 2.7 27.7 11.4 12.2 7.3 11.9 3.5
CETSP-18-08 12.9 22.0 6.3 4.5 6.1 4.1 33.4 1501.0 13.2 12.5 12.8 7.8
CETSP-18-09 13.0 5.7 6.3 2.2 6.1 1.7 27.3 38.4 13.3 9.0 12.9 6.8
CETSP-18-10 10.4 4.7 5.2 3.9 5.1 2.3 22.8 36.2 11.4 9.8 11.1 6.1

CETSP-20-01 11.9 11.7 5.6 4.0 5.4 3.9 23.8 556.4 12.1 12.5 11.7 12.5
CETSP-20-02 13.2 11.8 6.1 5.1 5.9 6.4 28.7 135.4 13.2 10.0 12.7 9.7
CETSP-20-03 10.2 8.3 5.3 1.9 5.1 4.3 24.6 41.5 11.7 13.6 11.3 7.8
CETSP-20-04 12.6 9.2 6.5 5.2 6.1 4.2 28.1 84.6 14.1 11.0 13.6 7.2
CETSP-20-05 12.3 8.2 6.2 4.4 5.9 2.4 25.7 716.9 13.3 8.4 12.7 8.1
CETSP-20-06 11.7 15.0 5.7 4.0 5.5 13.2 24.4 177.3 12.2 11.1 12.0 15.8
CETSP-20-07 13.7 15.8 7.0 6.8 6.8 3.7 31.9 1501.3 14.9 23.5 14.4 15.2
CETSP-20-08 13.4 39.4 6.6 7.5 6.4 8.0 30.8 1501.0 14.0 78.5 13.6 48.8
CETSP-20-09 11.5 17.4 5.8 3.1 5.7 5.0 27.3 57.0 12.7 8.3 12.4 9.5
CETSP-20-10 11.3 10.1 5.8 5.7 5.6 1.9 26.6 21.4 12.8 10.6 12.4 10.7

AVG 11.0 8.0 5.4 3.1 5.2 2.9 23.8 190.1 11.4 9.4 11.0 7.2

Table 1. Test results of the Bender Decomposition, ULB and IULB algorithms on the
instances up to 20 target points.

the CPU Time, in seconds, spent by algorithms to compute the bounds. Finally,
the average Gap and Time values are reported in the last line of the table.

On the scenarios with r = 0.25, IULB is much more effective and faster than
BD. Indeed, the Gap values of IULB are always better than the ones of BD
and the improvements ranges from 49.4 % (CETSP-16-06) to 57.48% (CETSP-
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18-04). With so high improvements, it is easy to state that, at least on these
instances, IULB is much more effective than BD. Regarding the performance,
IULB is always faster than BD and it results at least 50% faster than BD in 29
out of 40 instances.

More interesting is the comparison between IULB and ULB because allow us
to evaluate the impact of ideas proposed in this paper on the effectiveness and the
performance of original algorithm ULB. Obviously, due to the kind of ideas used
in IULB, its Gap values should be always better than or equal to the Gap values
of ULB. For this reason, thanks to the computational tests, we are interested to
quantify the quality improvement of the solution found by IULB with respect to
ULB and to evaluate the performance of new algorithm. The results show that
the Gap values of IULB are always better than the Gap values of ULB. These
improvements range from 1.15% (CETSP-14-09) to 9.36% (CETSP-14-06). It is
interesting to observe that, despite the use of a greedy algorithm to introduce
more discretization points and the application of an exact approach instead of
the elastic force heuristic, IULB results slower than ULB only in 4 out of 40
instances (CETSP-16-07, CETSP-20-02, CETSP-20-06, CETSP-20-08) while it
is from 14% to 84% faster than ULB in the remaining 36 instances.

By increasing the radius to 0.5 the instances become harder to solve as proven
by the increment of both the Gap values and Time of all the algorithms. Again,
the Gap values of IULB are always better than the Gap values of BD with
an improvement that reaches 61.82% (CETSP-18-08). Hence, the increment of
radius amplifies the gap effectiveness between these two algorithms. Regarding
the performance, only in three cases BD results faster than IULB but the gap
time in these cases is lower than a second and then negligible. On the contrary,
on the remaining 37 instances there are cases where IULB is orders of magnitude
faster than BD, in particular on the instances with 20 target points. Moreover,
there are three scenarios (18-08, 20-07 and 20-08) where BD reaches the time
limit of 1500 seconds while IULB solves these scenarios in less than 50 seconds.

Even on the instances with r = 0.5 the Gap values of IULB are always better
than the Gap values of ULB with the improvements that range from 1.45% to
9.05%. These results are very similar to the ones observed for the case with
r = 0.25 and then increasing the radius value does not change the effectiveness
gap between IULB and ULB. More interesting is to analyze the computational
time of IULB on these instances because it appears more expensive. Indeed, as
the radius increases as the Time value of IULB increases and there are more
instances in which IULB is slower than ULB. However, this gap time never
exceeds 5 seconds then it is not so relevant.

Finally, from the average values reported in the last line of the table, it is
evident that IULB is the more effective and efficient algorithm. Moreover, these
values further certify that the greater is the radius r the higher is the complexity
of the instances.

In Table 2 the results of ULB and IULB on the largest instances with 25 and
30 target points and radius r = 0.5 are reported. As expected, the Gap values
show that as the size of the instances increases as the quality of the bounds found
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Instance ULB IULB
GAP Time Gap Time

CETSP-25-01 16.17% 95.63 15.59% 95.24
CETSP-25-02 14.02% 16.64 13.69% 17.58
CETSP-25-03 14.34% 102.01 13.98% 92.04
CETSP-25-04 15.08% 21.19 14.64% 21.96
CETSP-25-05 14.91% 55.11 14.54% 46.81
CETSP-25-06 15.39% 93.91 14.89% 33.45
CETSP-25-07 14.06% 28.70 13.54% 61.53
CETSP-25-08 13.79% 57.22 13.13% 22.08
CETSP-25-09 15.41% 132.46 14.07% 61.20
CETSP-25-10 16.15% 49.67 16.04% 22.93

CETSP-30-01 17.89% 82.28 17.00% 98.13
CETSP-30-02 18.80% 78.37 17.56% 39.26
CETSP-30-03 15.86% 334.09 14.93% 240.33
CETSP-30-04 19.31% 866.01 18.19% 1005.15
CETSP-30-05 18.15% 129.34 17.59% 59.04
CETSP-30-06 16.78% 56.07 16.23% 79.40
CETSP-30-07 16.58% 537.38 16.28% 94.79
CETSP-30-08 16.23% 76.08 15.80% 93.93
CETSP-30-09 18.04% 331.81 17.47% 307.89
CETSP-30-10 17.69% 232.45 16.80% 95.57

Table 2. Computational results of ULB and IULB algorithms on the the larger in-
stances with r=0.5.

by two algorithms decreases. However, once again IULB results more effective
than ULB in all the instances with an improvement that ranges from 0.66%
(CETSP-25-10) to 8.71%(CETSP-25-09). These further results definitively state
that, whatever are the size of the instances and the radius considered, the new
ideas implemented in IULB make this new algorithm always more effective than
ULB. Surprisingly, the improvements concern even the performance. Indeed,
IULB is faster than ULB in 13 out of 20 instances and in 8 cases its computational
time is the half of the computational time of ULB. Finally, IULB solves 17
instances in less than 100 seconds while ULB, in the same time, solves only 12
instances.

7 Conclusions

In this article, we have presented an improved version of the adaptive internal
discretization scheme and a heuristic that combines this scheme with a second-
order cone programming algorithm. The computational results carried out on
benchmark instances revealed that the new algorithm outperforms previous ap-
proaches to CETSP, in terms of quality of the bounds and, often, of the com-
putational time. A possible direction for future work is to improve Algorithm 1
with the Carousel Greedy [8] or to develop new effective metaheuristics like
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Tabu Search [4, 7] and Genetic Algorithm [3, 6] without applying discretization
schemes.
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